1
|
Iwamoto K, Matsuoka S, Ueda M. Excitable Ras dynamics-based screens reveal RasGEFX is required for macropinocytosis and random cell migration. Nat Commun 2025; 16:117. [PMID: 39746985 PMCID: PMC11696275 DOI: 10.1038/s41467-024-55389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Excitable systems of eukaryotic chemotaxis can generate asymmetric signals of Ras-GTP-enriched domains spontaneously to drive random cell migration without guidance cues. However, the molecules responsible for the spontaneous signal generation remain elusive. Here, we characterized RasGEFs encoded in Dictyostelium discoideum by live-cell imaging of the spatiotemporal dynamics of Ras-GTP and hierarchical clustering, finding that RasGEFX is primarily required for the spontaneous generation of Ras-GTP-enriched domains and is essential for random migration in combination with RasGEFB/M/U in starved cells, and they are dispensable for chemotaxis to chemoattractant cAMP. RasGEFX and RasGEFB that co-localize with Ras-GTP regulate the temporal periods and spatial sizes of the oscillatory Ras-GTP waves propagating along the membrane, respectively, and thus control the protrusions of motile cells differently, while RasGEFU and RasGEFM regulate adhesion and migration speed, respectively. Remarkably, RasGEFX is also important for Ras/PIP3-driven macropinocytosis in proliferating cells, but RasGEFB/M/U are not. These findings illustrate a specific and coordinated control of the cytoskeletal dynamics by multiple RasGEFs for spontaneous motility and macropinocytosis.
Collapse
Affiliation(s)
- Koji Iwamoto
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- PRESTO, JST, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Shimoyama M, Nakada-Tsukui K, Nozaki T. EhRacM differentially regulates macropinocytosis and motility in the enteric protozoan parasite Entamoeba histolytica. PLoS Pathog 2024; 20:e1012364. [PMID: 39536056 PMCID: PMC11560011 DOI: 10.1371/journal.ppat.1012364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Macropinocytosis is an evolutionarily conserved endocytic process that plays a vital role in internalizing extracellular fluids and particles in cells. This non-selective endocytic pathway is crucial for various physiological functions such as nutrient uptake, sensing, signaling, antigen presentation, and cell migration. While macropinocytosis has been extensively studied in macrophages and cancer cells, the molecular mechanisms of macropinocytosis in pathogens are less understood. It has been known that Entamoeba histolytica, the causative agent of amebiasis, exploits macropinocytosis for survival and pathogenesis. Since macropinocytosis is initiated by actin polymerization, leading to the formation of membrane ruffles and the subsequent trapping of solutes in macropinosomes, actin cytoskeleton regulation is crucial. Thus, this study focuses on unraveling the role of well-conserved actin cytoskeleton regulators, Rho small GTPase family proteins, in macropinocytosis in E. histolytica. Through gene silencing of highly transcribed Ehrho/Ehrac genes and following flow cytometry analysis, we identified that silencing EhracM enhances dextran macropinocytosis and affects cellular migration persistence. Live imaging and interactome analysis unveiled the cytosolic and vesicular localization of EhRacM, along with its interaction with signaling and membrane traffic-related proteins, shedding light on EhRacM's multiple roles. Our findings provide insights into the specific regulatory mechanisms of macropinocytosis among endocytic pathways in E. histolytica, highlighting the significance of EhRacM in both macropinocytosis and cellular migration.
Collapse
Affiliation(s)
- Misato Shimoyama
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas ML, Bithell A. Mathematical Modeling of PI3K/Akt Pathway in Microglia. Neural Comput 2024; 36:645-676. [PMID: 38457763 DOI: 10.1162/neco_a_01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 03/10/2024]
Abstract
The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/Akt pathway in microglia where Ca2+ influx is mediated by both P2Y purinergic receptors (P2YR) and P2X purinergic receptors (P2XR). The model parameters are estimated by employing optimization techniques to fit the model to phosphorylated Akt (pAkt) experimental modeling/in vitro data. The integrated model supports the hypothesis that Ca2+ influx via P2YR and P2XR can explain the experimentally reported biphasic transient responses in measuring pAkt levels. Our predictions reveal new quantitative insights into P2Rs on how they regulate Ca2+ and Akt in terms of physiological interactions and transient responses. It is shown that the upregulation of P2X receptors through a repetitive application of agonist results in a continual increase in the baseline [Ca2+], which causes the biphasic response to become a monophasic response which prolongs elevated levels of pAkt.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, Hertfordshire, U.K.
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Mark L Dallas
- School of Pharmacy, University of Reading, Reading, U.K.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, U.K.
| |
Collapse
|
4
|
Werner AN, Kumar AI, Charest PG. CRISPR-mediated reversion of oncogenic KRAS mutation results in increased proliferation and reveals independent roles of Ras and mTORC2 in the migration of A549 lung cancer cells. Mol Biol Cell 2023; 34:ar128. [PMID: 37729017 PMCID: PMC10848948 DOI: 10.1091/mbc.e23-05-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Although the RAS oncogene has been extensively studied, new aspects concerning its role and regulation in normal biology and cancer continue to be discovered. Recently, others and we have shown that the mechanistic Target of Rapamycin Complex 2 (mTORC2) is a Ras effector in Dictyostelium and mammalian cells. mTORC2 plays evolutionarily conserved roles in cell survival and migration and has been linked to tumorigenesis. Because RAS is often mutated in lung cancer, we investigated whether a Ras-mTORC2 pathway contributes to enhancing the migration of lung cancer cells expressing oncogenic Ras. We used A549 cells and CRISPR/Cas9 to revert the cells' KRAS G12S mutation to wild-type and establish A549 revertant (REV) cell lines, which we then used to evaluate the Ras-mediated regulation of mTORC2 and cell migration. Interestingly, our results suggest that K-Ras and mTORC2 promote A549 cell migration but as part of different pathways and independently of Ras's mutational status. Moreover, further characterization of the A549REV cells revealed that loss of mutant K-Ras expression for the wild-type protein leads to an increase in cell growth and proliferation, suggesting that the A549 cells have low KRAS-mutant dependency and that recovering expression of wild-type K-Ras protein increases these cells tumorigenic potential.
Collapse
Affiliation(s)
- Alyssa N. Werner
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Avani I. Kumar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Pascale G. Charest
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
- University of Arizona Cancer Center, Tucson, AZ 85721
| |
Collapse
|
5
|
Mansoor A, Akhter A, Kamran H, Minoo P, Stewart D. Unraveling the molecular landscape: a comparative analysis of PI3K and MAPK signaling pathways in plasmablastic lymphoma and diffuse large B-cell lymphoma with therapeutic implications. Hum Pathol 2023; 141:102-109. [PMID: 37524252 DOI: 10.1016/j.humpath.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Plasmablastic lymphoma (PBL) is a rare and aggressive subtype of non-Hodgkin lymphoma that shares features with diffuse large B-cell lymphoma (DLBCL). While significant progress has been made in treating DLBCL, the prognosis for PBL remains poor, highlighting the need to identify new therapeutic targets. Using RNA expression analysis, we compared the expression of genes involved in the phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways between PBL and DLBCL. We used critical PI3K (n = 201) and MAPK (n = 57) signaling probe sets to achieve this objective. Our results demonstrate unique molecular mechanisms underlying PBL pathogenesis compared to DLBCL, particularly within the PI3K and MAPK signaling pathways. We found that elevated STAT3 expression in PBL correlates with hyperactive MAPK and PI3K pathways, unlike DLBCL. Additionally, the hyperactivation of the PI3K signaling axis in PBL is unrelated to B-cell receptor or phosphatase and tensin homolog activity, indicating a distinct mechanism compared to DLBCL. Furthermore, we observed unique activation patterns in MAPK pathways between PBL and DLBCL, with PBL exhibiting high expression of the neurotrophic tyrosine kinase receptor (NTKR) family, specifically NTRK1 and NTRK2 genes, which have therapeutic potential. We also found that neither human immunodeficiency virus nor Epstein-Barr virus infection influences gene expression profiles linked to PI3K and MAPK signaling in PBL. These findings could lead to adapting targeted therapies developed for DLBCL to address the specific needs of PBL patients better and contribute to developing novel, targeted therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), T2N5A1, Canada.
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), T2N5A1, Canada
| | - Hamza Kamran
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), T2N5A1, Canada
| | - Parham Minoo
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), T2N5A1, Canada
| | - Douglas Stewart
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, T2N 4N2, Canada
| |
Collapse
|
6
|
Kim W, Jeon TJ. Dynamic subcellular localization of DydA in Dictyostelium cells. Biochem Biophys Res Commun 2023; 663:186-191. [PMID: 37121129 DOI: 10.1016/j.bbrc.2023.04.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
DydA plays an important role in chemotaxis, development, and cell growth as an adaptor protein that connects Ras signaling and cytoskeletal rearrangement. DydA is a downstream effector of RasG and is involved in controlling cell polarity and pseudopodia formation during chemoattractant-directed cell migration. To understand the mechanism by which DydA functions on the cell migration, we investigated the dynamic subcellular localization of DydA in response to chemoattractant stimulation and found that DydA rapidly and transiently translocated to the cell cortex through the RA domain and the PRM region in DydA in response to chemoattractant stimulation. The PRM region appears to play a primary role in the translocation of DydA to the cell cortex and in its localization to the actin foci at the bottom of cells. Colocalization experiments of GFP-PRM with RFP-coronin indicated that GFP-PRM preceded GFP-coronin by 2-3 s in response to chemoattractant stimulation. These results suggest that the PRM region plays an indispensable role in relaying upstream regulators, such as RasG, to downstream effectors by mediating the localization of DydA to the cell cortex upon chemoattractant stimulation.
Collapse
Affiliation(s)
- Wonbum Kim
- Department of Life Science, BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Taeck Joong Jeon
- Department of Life Science, BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
7
|
Collins SE, Wiegand ME, Werner AN, Brown IN, Mundo MI, Swango DJ, Mouneimne G, Charest PG. Ras-mediated activation of mTORC2 promotes breast epithelial cell migration and invasion. Mol Biol Cell 2023; 34:ar9. [PMID: 36542482 PMCID: PMC9930525 DOI: 10.1091/mbc.e22-06-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
We previously identified the mechanistic target of rapamycin complex 2 (mTORC2) as an effector of Ras for the control of directed cell migration in Dictyostelium. Recently, the Ras-mediated regulation of mTORC2 was found to be conserved in mammalian cells, and mTORC2 was shown to be an effector of oncogenic Ras. Interestingly, mTORC2 has been linked to cancer cell migration, and particularly in breast cancer. Here, we investigated the role of Ras in promoting the migration and invasion of breast cancer cells through mTORC2. We observed that both Ras and mTORC2 promote the migration of different breast cancer cells and breast cancer cell models. Using HER2 and oncogenic Ras-transformed breast epithelial MCF10A cells, we found that both wild-type Ras and oncogenic Ras promote mTORC2 activation and an mTORC2-dependent migration and invasion in these breast cancer models. We further observed that, whereas oncogenic Ras-transformed MCF10A cells display uncontrolled cell proliferation and invasion, disruption of mTORC2 leads to loss of invasiveness only. Together, our findings suggest that, whereas the Ras-mediated activation of mTORC2 is expected to play a minor role in breast tumor formation, the Ras-mTORC2 pathway plays an important role in promoting the migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Shannon E. Collins
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Mollie E. Wiegand
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Alyssa N. Werner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Isabella N. Brown
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Mary I. Mundo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Douglas J. Swango
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
| | - Pascale G. Charest
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
8
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
9
|
Shin YJ, Sa JK, Lee Y, Kim D, Chang N, Cho HJ, Son M, Oh MYT, Shin K, Lee JK, Park J, Jo YK, Kim M, Paddison PJ, Tergaonkar V, Lee J, Nam DH. PIP4K2A as a negative regulator of PI3K in PTEN -deficient glioblastoma. J Exp Med 2019; 216:1120-1134. [PMID: 30898893 PMCID: PMC6504209 DOI: 10.1084/jem.20172170] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/20/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor with profound genomic alterations. Tumor suppressor genes regulate multiple signaling networks that restrict cellular proliferation and present barriers to malignant transformation. While bona fide tumor suppressors such as PTEN and TP53 often undergo inactivation due to mutations, there are several genes for which genomic deletion is the primary route for tumor progression. To functionally identify putative tumor suppressors in GBM, we employed in vivo RNAi screening using patient-derived xenograft models. Here, we identified PIP4K2A, whose functional role and clinical relevance remain unexplored in GBM. We discovered that PIP4K2A negatively regulates phosphoinositide 3-kinase (PI3K) signaling via p85/p110 component degradation in PTEN-deficient GBMs and specifically targets p85 for proteasome-mediated degradation. Overexpression of PIP4K2A suppressed cellular and clonogenic growth in vitro and impeded tumor growth in vivo. Our results unravel a novel tumor-suppressive role of PIP4K2A for the first time and support the feasibility of combining oncogenomics with in vivo RNAi screen.
Collapse
Affiliation(s)
- Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Donggeon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | | | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Miseol Son
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Division of Cancer Cell Signaling, Institute of Molecular and Cell Biology, Singapore
| | - Michael Y T Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Kayoung Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Jin-Ku Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jiwon Park
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Yoon Kyung Jo
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Misuk Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Vinay Tergaonkar
- Division of Cancer Cell Signaling, Institute of Molecular and Cell Biology, Singapore
- Department of Pathology, National University of Singapore, Singapore
| | - Jeongwu Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
10
|
Krygowska AA, Castellano E. PI3K: A Crucial Piece in the RAS Signaling Puzzle. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031450. [PMID: 28847905 DOI: 10.1101/cshperspect.a031450] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS proteins are key signaling switches essential for control of proliferation, differentiation, and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In addition, mutations in upstream or downstream signaling components also contribute to oncogenic activation of the pathway. RAS proteins exert their functions through activation of several signaling pathways and dissecting the contributions of these effectors in normal cells and in cancer is an ongoing challenge. In this review, we summarize our current knowledge about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature development and for RAS-induced transformation in vitro and in vivo, especially in lung cancer, where it is essential for tumor initiation and necessary for tumor maintenance.
Collapse
Affiliation(s)
- Agata Adelajda Krygowska
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Esther Castellano
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
11
|
Hickey K, Stabenfeldt SE. Using biomaterials to modulate chemotactic signaling for central nervous system repair. Biomed Mater 2018; 13:044106. [PMID: 29411713 PMCID: PMC5991092 DOI: 10.1088/1748-605x/aaad82] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemotaxis enables cellular communication and movement within the body. This review focuses on exploiting chemotaxis as a tool for repair of the central nervous system (CNS) damaged from injury and/or degenerative diseases. Chemokines and factors alone may initiate repair following CNS injury/disease, but exogenous administration may enhance repair and promote regeneration. This review will discuss critical chemotactic molecules and factors that may promote neural regeneration. Additionally, this review highlights how biomaterials can impact the presentation and delivery of chemokines and growth factors to alter the regenerative response.
Collapse
Affiliation(s)
- Kassondra Hickey
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | | |
Collapse
|
12
|
Coant N, García-Barros M, Zhang Q, Obeid LM, Hannun YA. AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene 2018; 37:3852-3863. [PMID: 29662189 PMCID: PMC6041258 DOI: 10.1038/s41388-018-0236-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Despite advances in the field, colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. Research into bioactive sphingolipids over the past two decades has played an important role in increasing our understanding of the pathogenesis and therapeutics of CRC. In the complex metabolic network of sphingolipids, ceramidases (CDases) have a key function. These enzymes hydrolyze ceramides into sphingosine (SPH) which in turn is phosphorylated by sphingosine kinases (SK) 1 and 2 to generate sphingosine-1 phosphate (S1P). Importantly, we have recently shown that inhibition of neutral CDase (nCDase) induces an increase of ceramide in colon cancer cells which decreases cellular growth, increases apoptosis and modulates the WNT/β-catenin pathway. We have also shown that the deletion of nCDase protected mice from the onset and progression of colorectal cancer in the AOM carcinogen model. Here we demonstrate that AKT is a key target for the growth suppressing functions of ceramide. The results show that inhibition of nCDase activates GSK3β through dephosphorylation, and thus is required for the subsequent phosphorylation and degradation of β-catenin. Our findings show that inhibition of nCDase also inhibits the basal activation status of AKT, and we further establish that a constitutively active AKT (AKT T308D, S473D; AKTDD) reverses the effect of nCDase on β-catenin degradation. Functionally, the AKTDD mutant is able to overcome the growth suppressive effects of nCDase inhibition in CRC cells. Moreover, nCDase inhibition induces a growth delay of xenograft tumors from control cells, whereas xenograft tumors from constitutively active AKT cells become resistant to nCDase inhibition. Taken together, these results provide important mechanistic insight into how nCDase regulates cell proliferation. These findings demonstrate a heretofore unappreciated, but critical, role for nCDase in enabling/maintaining basal activation of AKT and also suggest that nCDase is a suitable novel target for colon cancer therapy.
Collapse
Affiliation(s)
- Nicolas Coant
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | | | - Qifeng Zhang
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Lina M Obeid
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Northport VA Medical Center, Northport, NY, USA
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA. .,Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
13
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
14
|
Hilbi H, Kortholt A. Role of the small GTPase Rap1 in signal transduction, cell dynamics and bacterial infection. Small GTPases 2017. [PMID: 28632994 DOI: 10.1080/21541248.2017.1331721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Rap1 belongs to the Ras family of small GTPases, which are involved in a multitude of cellular signal transduction pathways and have extensively been linked to cancer biogenesis and metastasis. The small GTPase is activated in response to various extracellular and intracellular cues. Rap1 has conserved functions in Dictyostelium discoideum amoeba and mammalian cells, which are important for cell polarity, substrate and cell-cell adhesion and other processes that involve the regulation of cytoskeletal dynamics. Moreover, our recent study has shown that Rap1 is required for the formation of the replication-permissive vacuole of an intracellular bacterial pathogen. Here we review the function and regulation of Rap1 in these distinct processes, and we discuss the underlying signal transduction pathways.
Collapse
Affiliation(s)
- Hubert Hilbi
- a Institute of Medical Microbiology, University of Zürich , Zürich , Switzerland
| | - Arjan Kortholt
- b Department of Cell Biochemistry, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
15
|
Suess PM, Watson J, Chen W, Gomer RH. Extracellular polyphosphate signals through Ras and Akt to prime Dictyostelium discoideum cells for development. J Cell Sci 2017; 130:2394-2404. [PMID: 28584190 DOI: 10.1242/jcs.203372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
Linear chains of five to hundreds of phosphates called polyphosphate are found in organisms ranging from bacteria to humans, but their function is poorly understood. In Dictyostelium discoideum, polyphosphate is used as a secreted signal that inhibits cytokinesis in an autocrine negative feedback loop. To elucidate how cells respond to this unusual signal, we undertook a proteomic analysis of cells treated with physiological levels of polyphosphate and observed that polyphosphate causes cells to decrease levels of actin cytoskeleton proteins, possibly explaining how polyphosphate inhibits cytokinesis. Polyphosphate also causes proteasome protein levels to decrease, and in both Dictyostelium and human leukemia cells, decreases proteasome activity and cell proliferation. Polyphosphate also induces Dictyostelium cells to begin development by increasing expression of the cell-cell adhesion molecule CsA (also known as CsaA) and causing aggregation, and this effect, as well as the inhibition of proteasome activity, is mediated by Ras and Akt proteins. Surprisingly, Ras and Akt do not affect the ability of polyphosphate to inhibit proliferation, suggesting that a branching pathway mediates the effects of polyphosphate, with one branch affecting proliferation, and the other branch affecting development.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jacob Watson
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Wensheng Chen
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
16
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
17
|
Fan Y, Xie L, Chung CY. Signaling Pathways Controlling Microglia Chemotaxis. Mol Cells 2017; 40:163-168. [PMID: 28301917 PMCID: PMC5386953 DOI: 10.14348/molcells.2017.0011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain's innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis.
Collapse
Affiliation(s)
- Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072,
P.R. China
| | - Lirui Xie
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072,
P.R. China
| | - Chang Y. Chung
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072,
P.R. China
| |
Collapse
|
18
|
Najrana T, Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front Pediatr 2016; 4:140. [PMID: 28083527 PMCID: PMC5183626 DOI: 10.3389/fped.2016.00140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
19
|
Liu Y, Lacal J, Firtel RA, Kortholt A. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization. Small GTPases 2016; 9:360-364. [PMID: 27715492 PMCID: PMC5997169 DOI: 10.1080/21541248.2016.1235390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The directional movement toward extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.
Collapse
Affiliation(s)
- Youtao Liu
- a Department of Cell Biochemistry , University of Groningen , Groningen , The Netherlands
| | - Jesus Lacal
- b Section of Cell and Developmental Biology, Division of Biological Sciences, University of California , San Diego, La Jolla , CA , USA
| | - Richard A Firtel
- b Section of Cell and Developmental Biology, Division of Biological Sciences, University of California , San Diego, La Jolla , CA , USA
| | - Arjan Kortholt
- a Department of Cell Biochemistry , University of Groningen , Groningen , The Netherlands
| |
Collapse
|
20
|
A Gα-Stimulated RapGEF Is a Receptor-Proximal Regulator of Dictyostelium Chemotaxis. Dev Cell 2016; 37:458-72. [PMID: 27237792 DOI: 10.1016/j.devcel.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/15/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022]
Abstract
Chemotaxis, or directional movement toward extracellular chemical gradients, is an important property of cells that is mediated through G-protein-coupled receptors (GPCRs). Although many chemotaxis pathways downstream of Gβγ have been identified, few Gα effectors are known. Gα effectors are of particular importance because they allow the cell to distinguish signals downstream of distinct chemoattractant GPCRs. Here we identify GflB, a Gα2 binding partner that directly couples the Dictyostelium cyclic AMP GPCR to Rap1. GflB localizes to the leading edge and functions as a Gα-stimulated, Rap1-specific guanine nucleotide exchange factor required to balance Ras and Rap signaling. The kinetics of GflB translocation are fine-tuned by GSK-3 phosphorylation. Cells lacking GflB display impaired Rap1/Ras signaling and actin and myosin dynamics, resulting in defective chemotaxis. Our observations demonstrate that GflB is an essential upstream regulator of chemoattractant-mediated cell polarity and cytoskeletal reorganization functioning to directly link Gα activation to monomeric G-protein signaling.
Collapse
|
21
|
Presa N, Gomez-Larrauri A, Rivera IG, Ordoñez M, Trueba M, Gomez-Muñoz A. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:402-9. [DOI: 10.1016/j.bbalip.2016.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
|
22
|
Torday JS. Life Is Simple-Biologic Complexity Is an Epiphenomenon. BIOLOGY 2016; 5:E17. [PMID: 27128951 PMCID: PMC4929531 DOI: 10.3390/biology5020017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Abstract
Life originated from unicellular organisms by circumventing the Second Law of Thermodynamics using the First Principles of Physiology, namely negentropy, chemiosmosis and homeostatic regulation of calcium and lipids. It is hypothesized that multicellular organisms are merely contrivances or tools, used by unicellular organisms as agents for the acquisition of epigenetic inheritance. The First Principles of Physiology, which initially evolved in unicellular organisms are the exapted constraints that maintain, sustain and perpetuate that process. To ensure fidelity to this mechanism, we must return to the first principles of the unicellular state as the determinants of the primary level of selection pressure during the life cycle. The power of this approach is reflected by examples of its predictive value. This perspective on life is a "game changer", mechanistically rendering transparent many dogmas, teleologies and tautologies that constrain the current descriptive view of Biology.
Collapse
Affiliation(s)
- John S Torday
- Evolutionary Medicine Program, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
24
|
The Emergence of Physiology and Form: Natural Selection Revisited. BIOLOGY 2016; 5:biology5020015. [PMID: 27534726 PMCID: PMC4929529 DOI: 10.3390/biology5020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/23/2022]
Abstract
Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution.
Collapse
|
25
|
Torday JS, Miller WB. Biologic relativity: Who is the observer and what is observed? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:29-34. [PMID: 26980522 DOI: 10.1016/j.pbiomolbio.2016.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
When quantum physics and biological phenomena are analogously explored, it emerges that biologic causation must also be understood independently of its overt appearance. This is similar to the manner in which Bohm characterized the explicate versus the implicate order as overlapping frames of ambiguity. Placed in this context, the variables affecting epigenetic inheritance can be properly assessed as a key mechanistic principle of evolution that significantly alters our understanding of homeostasis, pleiotropy, and heterochrony, and the purposes of sexual reproduction. Each of these become differing manifestations of a new biological relativity in which biologic space-time becomes its own frame. In such relativistic cellular contexts, it is proper to question exactly who has observer status, and who and what are being observed. Consideration within this frame reduces biology to cellular information sharing through cell-cell communication to resolve ambiguities at every scope and scale. In consequence, it becomes implicit that eukaryotic evolution derives from the unicellular state, remaining consistently adherent to it in a continuous evolutionary arc based upon elemental, non-stochastic physiologic first principles. Furthermore, the entire cell including its cytoskeletal apparatus and membranes that participate in the resolution of biological uncertainties must be considered as having equivalent primacy with genomes in evolutionary terms.
Collapse
Affiliation(s)
- John S Torday
- Evolutionary Medicine, UCLA, 1124 West Carson Street, Torrance, CA 90502-2006, USA.
| | | |
Collapse
|
26
|
Koh M, Yong HY, Kim ES, Son H, Jeon YR, Hwang JS, Kim MO, Cha Y, Choi WS, Noh DY, Lee KM, Kim KB, Lee JS, Kim HJ, Kim H, Kim HH, Kim EJ, Park SY, Kim HS, Moon WK, Choi Kim HR, Moon A. A novel role for flotillin-1 in H-Ras-regulated breast cancer aggressiveness. Int J Cancer 2015; 138:1232-45. [PMID: 26413934 DOI: 10.1002/ijc.29869] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/03/2023]
Abstract
Elevated expression and aberrant activation of Ras have been implicated in breast cancer aggressiveness. H-Ras, but not N-Ras, induces breast cell invasion. A crucial link between lipid rafts and H-Ras function has been suggested. This study sought to identify the lipid raft protein(s) responsible for H-Ras-induced tumorigenicity and invasiveness of breast cancer. We conducted a comparative proteomic analysis of lipid raft proteins from invasive MCF10A human breast epithelial cells engineered to express active H-Ras and non-invasive cells expressing active N-Ras. Here, we identified a lipid raft protein flotillin-1 as an important regulator of H-Ras activation and breast cell invasion. Flotillin-1 was required for epidermal growth factor-induced activation of H-Ras, but not that of N-Ras, in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Flotillin-1 knockdown inhibited the invasiveness of MDA-MB-231 and Hs578T TNBC cells in vitro and in vivo. In xenograft mouse tumor models of these TNBC cell lines, we showed that flotillin-1 played a critical role in tumor growth. Using human breast cancer samples, we provided clinical evidence for the metastatic potential of flotillin-1. Membrane staining of flotillin-1 was positively correlated with metastatic spread (p = 0.013) and inversely correlated with patient disease-free survival rates (p = 0.005). Expression of flotillin-1 was associated with H-Ras in breast cancer, especially in TNBC (p < 0.001). Our findings provide insight into the molecular basis of Ras isoform-specific interplay with flotillin-1, leading to tumorigenicity and aggressiveness of breast cancer.
Collapse
Affiliation(s)
- Minsoo Koh
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hae-Young Yong
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hwajin Son
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - You Rim Jeon
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Jin-Sun Hwang
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Myeong-Ok Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Yujin Cha
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Korea
| | - Dong-Young Noh
- Department of Surgery and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Kyung-Min Lee
- Department of Surgery and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ki-Bum Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Haemin Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Eun Joo Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Aree Moon
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| |
Collapse
|
27
|
Bigday EV, Samoilov VO. Chemotaxis as a mechanism of the locomotor activity of olfactory cilia. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Warren SC, Margineanu A, Katan M, Dunsby C, French PMW. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells. Int J Mol Sci 2015; 16:14695-716. [PMID: 26133241 PMCID: PMC4519867 DOI: 10.3390/ijms160714695] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/20/2022] Open
Abstract
Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3'-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3'-phosphoinositide accumulation.
Collapse
Affiliation(s)
- Sean C Warren
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK.
| | - Anca Margineanu
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK.
| | - Matilda Katan
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK.
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
29
|
Feng S, Zhu W. Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis. J Theor Biol 2014; 363:235-46. [DOI: 10.1016/j.jtbi.2014.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
|
30
|
Gu F, Wang L, He J, Liu X, Zhang H, Li W, Fu L, Ma Y. Girdin, an actin-binding protein, is critical for migration, adhesion, and invasion of human glioblastoma cells. J Neurochem 2014; 131:457-69. [PMID: 25060559 DOI: 10.1111/jnc.12831] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
Girdin, an actin-binding protein, possesses versatile functions in a multitude of cellular processes. Although several studies have shown that Girdin is involved in the cell DNA synthesis, actin cytoskeleton rearrangement, and cell motility, the molecular mechanisms of Girdin in tumor development and progression remain elusive. In this study, through over-expression and siRNA experiments, we found that Girdin increased migration of LN229 human glioblastoma cells. On the other hand, reducing Girdin impaired F-actin polymerization, which is essential for cell morphogenesis and motility. Matrix metalloproteinase 2, critical in human glioma migration and invasion, was down-regulated upon Girdin reduction and led to decreased invasion in vitro and in vivo. In addition, silencing Girdin expression impaired the phosphorylation of two important adhesion molecules, integrin β1 and focal adhesion kinase, resulting in cell adhesion defects. Our immunohistochemical study on human gliomas tissue sections indicated that Girdin expression was positively related with glioma malignancy, supporting the in vitro and in vivo results from cell lines. Collectively, our findings suggest a critical role for Girdin in glioma infiltration. We show that reduction of Girdin, an actin-binding protein, leads to impaired F-actin polymerization and down-regulated expression of matrix metallopeptidase protein 2 (MMP-2), phosphorylated integrin β1, and phosphorylated focal adhesion kinase (FAK), which resulted in decreased migration, adhesion, and invasion of glioblastoma cells. Girdin was positively correlated with glioma malignancy and negatively associated with clinical prognosis, suggesting Girdin as a critical regulator in glioma infiltration.
Collapse
Affiliation(s)
- Feng Gu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ghigliotti G, Barisione C, Garibaldi S, Fabbi P, Brunelli C, Spallarossa P, Altieri P, Rosa G, Spinella G, Palombo D, Arsenescu R, Arsenescu V. Adipose tissue immune response: novel triggers and consequences for chronic inflammatory conditions. Inflammation 2014; 37:1337-53. [PMID: 24823865 PMCID: PMC4077305 DOI: 10.1007/s10753-014-9914-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipose tissue inflammation mediates the association between excessive body fat accumulation and several chronic inflammatory diseases. A high prevalence of obesity-associated adipose tissue inflammation was observed not only in patients with cardiovascular conditions but also in patients with inflammatory bowel diseases, abdominal aortic aneurysm, or cardiorenal syndrome. In addition to excessive caloric intake, other triggers promote visceral adipose tissue inflammation followed by chronic, low-grade systemic inflammation. The infiltration and accumulation of immune cells in the inflamed and hypertrophied adipose tissue promote the production of inflammatory cytokines, contributing to target organ damages. This comorbidity seems to delimit subgroups of individuals with systemic adipose tissue inflammation and more severe chronic inflammatory diseases that are refractory to conventional treatment. This review highlights the association between adipose tissue immune response and the pathophysiology of visceral adiposity-related chronic inflammatory diseases, while suggesting several new therapeutic strategies.
Collapse
Affiliation(s)
- Giorgio Ghigliotti
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Chiara Barisione
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Silvano Garibaldi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Patrizia Fabbi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Claudio Brunelli
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Paolo Spallarossa
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Paola Altieri
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Gianmarco Rosa
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Giovanni Spinella
- Vascular and Endovascular Surgery Unit, University of Genoa, Genoa, Italy
| | - Domenico Palombo
- Vascular and Endovascular Surgery Unit, University of Genoa, Genoa, Italy
| | - Razvan Arsenescu
- IBD Center, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH USA
| | - Violeta Arsenescu
- Mucosal Immunology IBD Laboratory, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, 400W 12 Ave., Wiseman Hall, Room 1024, Columbus, OH 43210 USA
| |
Collapse
|
32
|
Zhang F, He Q, Tsang WP, Garvey WT, Chan WY, Wan C. Insulin exerts direct, IGF-1 independent actions in growth plate chondrocytes. Bone Res 2014; 2:14012. [PMID: 26273523 PMCID: PMC4472128 DOI: 10.1038/boneres.2014.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/06/2023] Open
Abstract
Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of insulin signaling in the growth plate. Insulin treatment of embryonic metatarsal bones from wild-type mice increased chondrocyte proliferation. Mice lacking insulin receptor (IR) selectively in chondrocytes (CartIR−/−) had no discernable differences in total femoral length compared to control littermates. However, CartIR−/− mice exhibited an increase in chondrocyte numbers in the growth plate than that of the controls. Chondrocytes lacking IR had elevated insulin-like growth factor (IGF)-1R mRNA and protein levels. Subsequently, IGF-1 induced phosphorylation of Akt and ERK was enhanced, while this action was eliminated when the cells were treated with IGF-1R inhibitor Picropodophyllin. Deletion of the IR impaired chondrogenic differentiation, and the effect could not be restored by treatment of insulin, but partially rescued by IGF-1 treatment. Intriguingly, the size of hypertrophic chondrocytes was smaller in CartIR−/− mice when compared with that of the control littermates, which was associated with upregulation of tuberous sclerosis complex 2 (TSC2). These results suggest that deletion of the IR in chondrocytes sensitizes IGF-1R signaling and action, IR and IGF-1R coordinate to regulate the proliferation, differentiation and hypertrophy of growth plate chondrocytes.
Collapse
Affiliation(s)
- Fengjie Zhang
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong SAR, China ; School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen, China
| | - Qiling He
- Departments of Microbiology and Pathology, University of Alabama at Birmingham , AL, USA
| | - Wing Pui Tsang
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong SAR, China ; School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen, China
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham , AL, USA
| | - Wai Yee Chan
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong SAR, China ; School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen, China
| | - Chao Wan
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong SAR, China ; School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen, China
| |
Collapse
|
33
|
Álvarez-González B, Bastounis E, Meili R, del Álamo JC, Firtel R, Lasheras JC. Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion. APPLIED MECHANICS REVIEWS 2014; 66. [PMID: 25328163 PMCID: PMC4201387 DOI: 10.1115/1.4026249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Migrating cells exert traction forces when moving. Amoeboid cell migration is a common type of cell migration that appears in many physiological and pathological processes and is performed by a wide variety of cell types. Understanding the coupling of the biochemistry and mechanics underlying the process of migration has the potential to guide the development of pharmacological treatment or genetic manipulations to treat a wide range of diseases. The measurement of the spatiotemporal evolution of the traction forces that produce the movement is an important aspect for the characterization of the locomotion mechanics. There are several methods to calculate the traction forces exerted by the cells. Currently the most commonly used ones are traction force microscopy methods based on the measurement of the deformation induced by the cells on elastic substrate on which they are moving. Amoeboid cells migrate by implementing a motility cycle based on the sequential repetition of four phases. In this paper we review the role that specific cytoskeletal components play in the regulation of the cell migration mechanics. We investigate the role of specific cytoskeletal components regarding the ability of the cells to perform the motility cycle effectively and the generation of traction forces. The actin nucleation in the leading edge of the cell, carried by the ARP2/3 complex activated through the SCAR/WAVE complex, has shown to be fundamental to the execution of the cyclic movement and to the generation of the traction forces. The protein PIR121, a member of the SCAR/WAVE complex, is essential to the proper regulation of the periodic movement and the protein SCAR, also included in the SCAR/WAVE complex, is necessary for the generation of the traction forces during migration. The protein Myosin II, an important F-actin cross-linker and motor protein, is essential to cytoskeletal contractility and to the generation and proper organization of the traction forces during migration.
Collapse
Affiliation(s)
- Begoña Álvarez-González
- Mechanical and Aerospace
Engineering Department,
University of California, San Diego,
La Jolla, CA 92093-0411
e-mail:
| | - Effie Bastounis
- Postdoctoral Fellow
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Ruedi Meili
- Mechanical and Aerospace
Engineering Department,
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Juan C. del Álamo
- Associate Professor
Mechanical and Aerospace
Engineering Department,
Institute for Engineering in Medicine,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Richard Firtel
- Distinguished Professor
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | | |
Collapse
|
34
|
Silver L, Michael JV, Goldfinger LE, Gallo G. Activation of PI3K and R-Ras signaling promotes the extension of sensory axons on inhibitory chondroitin sulfate proteoglycans. Dev Neurobiol 2014; 74:918-33. [PMID: 24578264 DOI: 10.1002/dneu.22174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular inhibitors of axon extension and plasticity, and cause growth cones to exhibit dystrophic behaviors. Phosphoinositide 3-kinase (PI3K) is a lipid kinase activated by axon growth promoting signals. In this study, we used embryonic chicken dorsal root ganglion neurons to determine if CSPGs impair signaling through PI3K. We report that CSPGs inhibit PI3K signaling in axons and growth cones, as evidenced by decreased levels of phosphorylated downstream kinases (Akt and S6). Direct activation of PI3K signaling, using a cell permeable phosphopeptide (PI3Kpep), countered the effects of CSPGs on growth cones and axon extension. Both overnight and acute treatment with PI3Kpep promoted axon extension on CSPG-coated substrates. The R-Ras GTPase is an upstream positive regulator of PI3K signaling. Expression of constitutively active R-Ras promoted axon extension and growth cone elaboration on CSPGs and permissive substrata. In contrast, an N-terminus-deleted constitutively active R-Ras, deficient in PI3K activation, promoted axon extension but not growth cone elaboration on CSPGs and permissive substrata. These data indicate that activation of R-Ras-PI3K signaling may be a viable approach for manipulating axon extension on CSPGs.
Collapse
Affiliation(s)
- Lee Silver
- Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500 North Broad St., Philadelphia, Pennsylvania, 19140; Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | | | | | | |
Collapse
|
35
|
Sobczyk GJ, Wang J, Weijer CJ. SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale. Nat Commun 2014; 5:3319. [PMID: 24569529 PMCID: PMC3971484 DOI: 10.1038/ncomms4319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/25/2014] [Indexed: 01/14/2023] Open
Abstract
Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role. Actin-dependent motility is driven by the rapid changes in the recruitment of many different structural and regulatory proteins at the cell’s cortex. Sobczyk et al. characterize these changes in the cytoskeletal proteome on a second to minute timescale during chemotactic response in Dictyostelium using SILAC-based proteomics.
Collapse
Affiliation(s)
- Grzegorz J Sobczyk
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jun Wang
- 1] Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK [2]
| | - Cornelis J Weijer
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
36
|
The Migration of Cancer Cells in Gradually Varying Chemical Gradients and Mechanical Constraints. MICROMACHINES 2014. [DOI: 10.3390/mi5010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Perkey E, Fingar D, Miller RA, Garcia GG. Increased mammalian target of rapamycin complex 2 signaling promotes age-related decline in CD4 T cell signaling and function. THE JOURNAL OF IMMUNOLOGY 2013; 191:4648-55. [PMID: 24078700 DOI: 10.4049/jimmunol.1300750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD4 T cell function declines significantly during aging. Although the mammalian target of rapamycin (TOR) has been implicated in aging, the roles of the TOR complexes (TORC1, TORC2) in the functional declines of CD4 T cells remain unknown. In this study, we demonstrate that aging increases TORC2 signaling in murine CD4 T cells, a change blocked by long-term exposure to rapamycin, suggesting that functional defects may be the result of enhanced TORC2 function. Using overexpression of Rheb to activate TORC1 and Rictor plus Sin1 to augment TORC2 in naive CD4 T cells from young mice, we demonstrated that increased TORC2, but not TORC1, signaling results in aging-associated biochemical changes. Furthermore, elevated TORC2 signaling in naive CD4 T cells from young mice leads to in vivo functional declines. The data presented in this article suggest a novel model in which aging increases TORC2 signaling and leads to CD4 T cell defects in old mice.
Collapse
Affiliation(s)
- Eric Perkey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science and the Arts, Ann Arbor, MI 48109
| | | | | | | |
Collapse
|
38
|
Kortholt A, Keizer-Gunnink I, Kataria R, Van Haastert PJM. Ras activation and symmetry breaking during Dictyostelium chemotaxis. J Cell Sci 2013; 126:4502-13. [PMID: 23886948 DOI: 10.1242/jcs.132340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Central to chemotaxis is the molecular mechanism by which a shallow spatial gradient of chemoattractant induces symmetry breaking of activated signaling molecules. Previously, we have used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signaling module providing activation of Ras and F-actin at the leading edge. Here, we show that Ras activation after application of a pipette releasing the chemoattractant cAMP has three phases, each depending on specific guanine-nucleotide-exchange factors (GEFs). Initially a transient activation of Ras occurs at the entire cell boundary, which is proportional to the local cAMP concentrations and therefore slightly stronger at the front than in the rear of the cell. This transient Ras activation is present in gα2 (gpbB)-null cells but not in gβ (gpbA)-null cells, suggesting that Gβγ mediates the initial activation of Ras. The second phase is symmetry breaking: Ras is activated only at the side of the cell closest to the pipette. Symmetry breaking absolutely requires Gα2 and Gβγ, but not the cytoskeleton or four cAMP-induced signaling pathways, those dependent on phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3], cGMP, TorC2 and PLA2. As cells move in the gradient, the crescent of activated Ras in the front half of the cell becomes confined to a small area at the utmost front of the cell. Confinement of Ras activation leads to cell polarization, and depends on cGMP formation, myosin and F-actin. The experiments show that activation, symmetry breaking and confinement of Ras during Dictyostelium chemotaxis uses different G-protein subunits and a multitude of Ras GEFs and GTPase-activating proteins (GAPs).
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
39
|
Ehrkamp A, Herrmann C, Stoll R, Heumann R. Ras and rheb signaling in survival and cell death. Cancers (Basel) 2013; 5:639-61. [PMID: 24216995 PMCID: PMC3730321 DOI: 10.3390/cancers5020639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022] Open
Abstract
One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.
Collapse
Affiliation(s)
- Anja Ehrkamp
- Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Christian Herrmann
- Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Rolf Heumann
- Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| |
Collapse
|
40
|
Dictyostelium Ric8 is a nonreceptor guanine exchange factor for heterotrimeric G proteins and is important for development and chemotaxis. Proc Natl Acad Sci U S A 2013; 110:6424-9. [PMID: 23576747 DOI: 10.1073/pnas.1301851110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins couple external signals to the activation of intracellular signal transduction pathways. Agonist-stimulated guanine nucleotide exchange activity of G-protein-coupled receptors results in the exchange of G-protein-bound GDP to GTP and the dissociation and activation of the complex into Gα-GTP and a Gβγ dimer. In Dictyostelium, a basal chemotaxis pathway consisting of heterotrimeric and monomeric G proteins is sufficient for chemotaxis. Symmetry breaking and amplification of chemoattractant sensing occurs between heterotrimeric G protein signaling and Ras activation. In a pull-down screen coupled to mass spectrometry, with Gα proteins as bait, we have identified resistant to inhibitors of cholinesterase 8 (Ric8) as a nonreceptor guanine nucleotide exchange factor for Gα-protein. Ric8 is not essential for the initial activation of heterotrimeric G proteins or Ras by uniform chemoattractant; however, it amplifies Gα signaling, which is essential for Ras-mediated symmetry breaking during chemotaxis and development.
Collapse
|
41
|
Davis MI, Sasaki AT, Shen M, Emerling BM, Thorne N, Michael S, Pragani R, Boxer M, Sumita K, Takeuchi K, Auld DS, Li Z, Cantley LC, Simeonov A. A homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a novel, rapid substrate preparation. PLoS One 2013; 8:e54127. [PMID: 23326584 PMCID: PMC3542272 DOI: 10.1371/journal.pone.0054127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022] Open
Abstract
Phosphoinositide kinases regulate diverse cellular functions and are important targets for therapeutic development for diseases, such as diabetes and cancer. Preparation of the lipid substrate is crucial for the development of a robust and miniaturizable lipid kinase assay. Enzymatic assays for phosphoinositide kinases often use lipid substrates prepared from lyophilized lipid preparations by sonication, which result in variability in the liposome size from preparation to preparation. Herein, we report a homogeneous 1536-well luciferase-coupled bioluminescence assay for PI5P4Kα. The substrate preparation is novel and allows the rapid production of a DMSO-containing substrate solution without the need for lengthy liposome preparation protocols, thus enabling the scale-up of this traditionally difficult type of assay. The Z’-factor value was greater than 0.7 for the PI5P4Kα assay, indicating its suitability for high-throughput screening applications. Tyrphostin AG-82 had been identified as an inhibitor of PI5P4Kα by assessing the degree of phospho transfer of γ-32P-ATP to PI5P; its inhibitory activity against PI5P4Kα was confirmed in the present miniaturized assay. From a pilot screen of a library of bioactive compounds, another tyrphostin, I-OMe tyrphostin AG-538 (I-OMe-AG-538), was identified as an ATP-competitive inhibitor of PI5P4Kα with an IC50 of 1 µM, affirming the suitability of the assay for inhibitor discovery campaigns. This homogeneous assay may apply to other lipid kinases and should help in the identification of leads for this class of enzymes by enabling high-throughput screening efforts.
Collapse
Affiliation(s)
- Mindy I. Davis
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Atsuo T. Sasaki
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Signal Transduction; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology and Oncology, Department of Internal Medicine, Neuroscience Institute: Brain Tumor Center, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Min Shen
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Brooke M. Emerling
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Signal Transduction; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Natasha Thorne
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sam Michael
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rajan Pragani
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew Boxer
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kazutaka Sumita
- Division of Hematology and Oncology, Department of Internal Medicine, Neuroscience Institute: Brain Tumor Center, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Koh Takeuchi
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo, Japan
| | - Douglas S. Auld
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
- Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Zhuyin Li
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lewis C. Cantley
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Signal Transduction; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anton Simeonov
- National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Vasaturo A, Caserta S, Russo I, Preziosi V, Ciacci C, Guido S. A novel chemotaxis assay in 3-D collagen gels by time-lapse microscopy. PLoS One 2012; 7:e52251. [PMID: 23284956 PMCID: PMC3526591 DOI: 10.1371/journal.pone.0052251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/15/2012] [Indexed: 01/22/2023] Open
Abstract
The directional cell response to chemical gradients, referred to as chemotaxis, plays an important role in physiological and pathological processes including development, immune response and tumor cell invasion. Despite such implications, chemotaxis remains a challenging process to study under physiologically-relevant conditions in-vitro, mainly due to difficulties in generating a well characterized and sustained gradient in substrata mimicking the in-vivo environment while allowing dynamic cell imaging. Here, we describe a novel chemotaxis assay in 3D collagen gels, based on a reusable direct-viewing chamber in which a chemoattractant gradient is generated by diffusion through a porous membrane. The diffusion process has been analysed by monitoring the concentration of FITC-labelled dextran through epifluorescence microscopy and by comparing experimental data with theoretical and numerical predictions based on Fick's law. Cell migration towards chemoattractant gradients has been followed by time-lapse microscopy and quantified by cell tracking based on image analysis techniques. The results are expressed in terms of chemotactic index (I) and average cell velocity. The assay has been tested by comparing the migration of human neutrophils in isotropic conditions and in the presence of an Interleukin-8 (IL-8) gradient. In the absence of IL-8 stimulation, 80% of the cells showed a velocity ranging from 0 to 1 µm/min. However, in the presence of an IL-8 gradient, 60% of the cells showed an increase in velocity reaching values between 2 and 7 µm/min. Furthermore, after IL-8 addition, I increased from 0 to 0.25 and 0.25 to 0.5, respectively, for the two donors examined. These data indicate a pronounced directional migration of neutrophils towards the IL-8 gradient in 3D collagen matrix. The chemotaxis assay described here can be adapted to other cell types and may serve as a physiologically relevant method to study the directed locomotion of cells in a 3D environment in response to different chemoattractants.
Collapse
Affiliation(s)
- Angela Vasaturo
- Dipartimento di Ingegneria Chimica Università di Napoli Federico II, Naples, Italy
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica Università di Napoli Federico II, Naples, Italy
- CEINGE – Advanced Biotechnologies, Naples, Italy
| | - Ilaria Russo
- Gastrointestinal Unit Baronissi, School of Medicine, University of Salerno, Salerno, Italy
| | - Valentina Preziosi
- Dipartimento di Ingegneria Chimica Università di Napoli Federico II, Naples, Italy
| | - Carolina Ciacci
- Gastrointestinal Unit Baronissi, School of Medicine, University of Salerno, Salerno, Italy
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica Università di Napoli Federico II, Naples, Italy
- CEINGE – Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
43
|
Joh EH, Hollenbaugh JA, Kim B, Kim DH. Pleckstrin homology domain of Akt kinase: a proof of principle for highly specific and effective non-enzymatic anti-cancer target. PLoS One 2012. [PMID: 23189201 PMCID: PMC3506615 DOI: 10.1371/journal.pone.0050424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While pharmacological inhibition of Akt kinase has been regarded as a promising anti-cancer strategy, most of the Akt inhibitors that have been developed are enzymatic inhibitors that target the kinase active site of Akt. Another key cellular regulatory event for Akt activation is the translocation of Akt kinase to the cell membrane from the cytoplasm, which is accomplished through the pleckstrin homology (PH) domain of Akt. However, compounds specifically interacting with the PH domain of Akt to inhibit Akt activation are currently limited. Here we identified a compound, lancemaside A (LAN-A), which specifically binds to the PH domain of Akt kinase. First, our mass spectra analysis of cellular Akt kinase isolated from cells treated with LAN-A revealed that LAN-A specifically binds to the PH domain of cellular Akt kinase. Second, we observed that LAN-A inhibits the translocation of Akt kinase to the membrane and thus Akt activation, as examined by the phosphorylation of various downstream targets of Akt such as GSK3β, mTOR and BAD. Third, in a co-cultured cell model containing human lung epithelial cancer cells (A549) and normal human primary lung fibroblasts, LAN-A specifically restricts the growth of the A549 cells. LAN-A also displayed anti-proliferative effects on various human cancer cell lines. Finally, in the A549-luciferase mouse transplant model, LAN-A effectively inhibited A549 cell growth with little evident cytotoxicity. Indeed, the therapeutic index of LAN-A in this mouse model was >250, supporting that LAN-A is a potential lead compound for PH domain targeting as a safe anti-cancer Akt inhibitor.
Collapse
Affiliation(s)
- Eun-Ha Joh
- Department of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Joseph A. Hollenbaugh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DHK); (BK)
| | - Dong-Hyun Kim
- Department of Pharmacy, Kyung-Hee University, Seoul, South Korea
- * E-mail: (DHK); (BK)
| |
Collapse
|
44
|
Capitanio D, Vasso M, Ratti A, Grignaschi G, Volta M, Moriggi M, Daleno C, Bendotti C, Silani V, Gelfi C. Molecular signatures of amyotrophic lateral sclerosis disease progression in hind and forelimb muscles of an SOD1(G93A) mouse model. Antioxid Redox Signal 2012; 17:1333-50. [PMID: 22563797 PMCID: PMC3437050 DOI: 10.1089/ars.2012.4524] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS This study utilized proteomics, biochemical and enzymatic assays, and bioinformatics tools that characterize protein alterations in hindlimb (gastrocnemius) and forelimb (triceps) muscles in an amyotrophic lateral sclerosis (ALS) (SOD1(G93A)) mouse model. The aim of this study was to identify the key molecular signatures involved in disease progression. RESULTS Both muscle types have in common an early down-regulation of complex I. In the hindlimb, early increases in oxidative metabolism are associated with uncoupling of the respiratory chain, an imbalance of NADH/NAD(+), and an increase in reactive oxygen species (ROS) production. The NADH overflow due to complex I inactivation induces TCA flux perturbations, leading to citrate production, triggering fatty acid synthase (FAS), and lipid peroxidation. These early metabolic changes in the hindlimb followed by sustained and comparatively higher metabolic and cytoskeletal derangements over time precede and may catalyze the progressive muscle wasting in this muscle at the late stage. By contrast, in the forelimb, there is an early down-regulation of complexes I and II that is associated with the reduction of oxidative metabolism, which promotes metabolic homeostasis that is accompanied by a greater cytoskeletal stabilization response. However, these early compensatory systems diminish by a later time point. INNOVATION The identification of potential early- and late-stage disease molecular signatures in an ALS model: muscle albumin, complex I, complex II, citrate synthase, FAS, and phosphoinositide 3-kinase functions as diagnostic markers and peroxisome proliferator-activated receptor γ co-activator 1α (PGC1α), Sema-3A, and Rho-associated protein kinase 1 (ROCK1) play the role of disease progression markers. CONCLUSION The differing pattern of cellular metabolism and cytoskeletal derangements in the hind and forelimb identifies the potential dysmetabolism/hypermetabolism molecular signatures associated with disease progression, which may serve as diagnostic/disease progression markers in ALS patients.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Michele Vasso
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Giuliano Grignaschi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Manuela Volta
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
| | - Cristina Daleno
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| |
Collapse
|
45
|
Kölsch V, Shen Z, Lee S, Plak K, Lotfi P, Chang J, Charest PG, Romero JL, Jeon TJ, Kortholt A, Briggs SP, Firtel RA. Daydreamer, a Ras effector and GSK-3 substrate, is important for directional sensing and cell motility. Mol Biol Cell 2012; 24:100-14. [PMID: 23135995 PMCID: PMC3541958 DOI: 10.1091/mbc.e12-04-0271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Daydreamer (DydA), a new Mig10/RIAM/lamellipodin family adaptor protein, is a Ras effector required for cell polarization and directional movement during chemotaxis. DydA is phosphorylated by glycogen synthase kinase-3, which is required for some, but not all, of DydA's functions. gskA− cells exhibit very strong chemotactic phenotypes, a subset of which are exhibited by dydA− cells. How independent signaling pathways are integrated to holistically control a biological process is not well understood. We have identified Daydreamer (DydA), a new member of the Mig10/RIAM/lamellipodin (MRL) family of adaptor proteins that localizes to the leading edge of the cell. DydA is a putative Ras effector that is required for cell polarization and directional movement during chemotaxis. dydA− cells exhibit elevated F-actin and assembled myosin II (MyoII), increased and extended phosphoinositide-3-kinase (PI3K) activity, and extended phosphorylation of the activation loop of PKB and PKBR1, suggesting that DydA is involved in the negative regulation of these pathways. DydA is phosphorylated by glycogen synthase kinase-3 (GSK-3), which is required for some, but not all, of DydA's functions, including the proper regulation of PKB and PKBR1 and MyoII assembly. gskA− cells exhibit very strong chemotactic phenotypes, as previously described, but exhibit an increased rate of random motility. gskA− cells have a reduced MyoII response and a reduced level of phosphatidylinositol (3,4,5)-triphosphate production, but a highly extended recruitment of PI3K to the plasma membrane and highly extended kinetics of PKB and PKBR1 activation. Our results demonstrate that GSK-3 function is essential for chemotaxis, regulating multiple substrates, and that one of these effectors, DydA, plays a key function in the dynamic regulation of chemotaxis.
Collapse
Affiliation(s)
- Verena Kölsch
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim BJ, Lee YS, Lee SY, Park SY, Dieplinger H, Ryu SH, Yea K, Choi S, Lee SH, Koh JM, Kim GS. Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway. Bone 2012; 51:431-40. [PMID: 22749887 DOI: 10.1016/j.bone.2012.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 12/19/2022]
Abstract
Although it is well known that osteoclastic bone resorption is followed by osteoblastic bone formation, questions remain as to when coupling factors are produced during bone resorption and which stages of bone formation are affected by these factors. To clarify these mechanisms, we established an in vitro system to investigate the coupling phenomenon. We obtained conditioned media (CM) from osteoclasts in the early and late stages of differentiation and from bone resorption stages. The collected CM was used to treat primary mouse calvarial osteoblasts and preosteoblastic MC3T3-E1 cells and to evaluate its influence on the migration, viability, proliferation, and differentiation of osteoblasts. We found that CM from osteoclasts in the early stage of differentiation predominantly stimulated the migration of osteoblastic lineages. By further performing fractional analyses of the CM with liquid chromatography-tandem mass spectrometry, we identified afamin, which has binding activity with vitamin E, as a possible coupling factor. The CM collected from afamin siRNA-transfected osteoclasts significantly suppressed preosteoblast migration. Afamin activated Akt in preosteoblasts, and pretreatment with Akt inhibitor significantly blocked afamin-stimulated preosteoblast migration. In conclusion, these results indicate that osteoclasts themselves play a central role in the coupling of bone resorption and formation by stimulating preosteoblast migration. In addition, we identified afamin as one of osteoclast-derived chemokines that affect preosteoblasts through the activation of the Akt-signaling pathway.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reddy SDN, Pakala SB, Molli PR, Sahni N, Karanam NK, Mudvari P, Kumar R. Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. J Biol Chem 2012; 287:27843-50. [PMID: 22700976 PMCID: PMC3431680 DOI: 10.1074/jbc.m112.348474] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/13/2012] [Indexed: 12/11/2022] Open
Abstract
Metastasis-associated protein 1 (MTA1) is widely overexpressed in human cancers and is associated with malignant phenotypic changes contributing to morbidity in the associated diseases. Here we discovered for the first time that MTA1, a master chromatin modifier, transcriptionally represses the expression of phosphatase and tensin homolog (PTEN), a tumor suppressor gene, by recruiting class II histone deacetylase 4 (HDAC4) along with the transcription factor Yin-Yang 1 (YY1) onto the PTEN promoter. We also found evidence of an inverse correlation between the expression levels of MTA1 and PTEN in physiologically relevant breast cancer microarray datasets. We found that MTA1 up-regulation leads to a decreased expression of PTEN protein and stimulation of PI3K as well as phosphorylation of its signaling targets. Accordingly, selective down-regulation of MTA1 in breast cancer cells increases PTEN expression and inhibits stimulation of the PI3K/AKT signaling. Collectively, these findings provide a mechanistic role for MTA1 in transcriptional repression of PTEN, leading to modulation of the resulting signaling pathways.
Collapse
Affiliation(s)
- Sirigiri Divijendra Natha Reddy
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Suresh B. Pakala
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Poonam R. Molli
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Neil Sahni
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Narasimha Kumar Karanam
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Prakriti Mudvari
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Rakesh Kumar
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| |
Collapse
|
48
|
Zou W, Chu X, Cai C, Zou M, Meng X, Chen H, Zou F. AKT-mediated regulation of polarization in differentiated human neutrophil-like HL-60 cells. Inflamm Res 2012; 61:853-62. [PMID: 22588279 DOI: 10.1007/s00011-012-0478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/07/2012] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Neutrophil polarization is critical for the inflammatory response. AKT is a serine/threonine protein kinase and has been implicated in cell migration. However, it is not completely clear whether AKT affects neutrophil polarization. In this study, we tested the hypothesis that AKT regulates the polarization of neutrophil-like differentiated HL-60 cells (dHL-60) in response to fMLP. METHODS HL-60 cells were differentiated into dHL-60 by incubation in medium containing 1.3 % DMSO for up to 6 days. Polarization of dHL-60 cells and primary human neutrophils were measured by Zigmond chamber. Phospho-Akt was analyzed by immunofluorescence and Western blot analysis. F-actin polymerization was detected by Rhodamine-Phalloidine staining. Rac2 activation was evaluated using GST Pull-down assay. RESULTS We found that changes in the rate of cell polarization were consistent with the changes in AKT phosphorylation levels during HL-60 cell differentiation in response to fMLP. Moreover, cell polarization and AKT phosphorylation were reduced in fMLP-stimulated dHL-60 cells pretreated with the PI3 kinase inhibitors or the AKT inhibitors, which was confirmed in the primary human neutrophils. The AKT inhibitors altered fMLP-induced F-actin polymerization. Rac2 GTPases was also decreased by the AKT inhibitors in fMLP-stimulated dHL-60 cells. CONCLUSION This study demonstrates that AKT activation plays a crucial role in dHL-60 cell polarization.
Collapse
Affiliation(s)
- Wenying Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Mun H, Jeon TJ. Regulation of actin cytoskeleton by Rap1 binding to RacGEF1. Mol Cells 2012; 34:71-6. [PMID: 22644079 PMCID: PMC3887774 DOI: 10.1007/s10059-012-0097-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 01/12/2023] Open
Abstract
Rap1 is rapidly and transiently activated in response to chemoattractant stimulation and helps establish cell polarity by locally modulating cytoskeletons. Here, we investigated the mechanisms by which Rap1 controls actin cytoskeletal reorganization in Dictyostelium and found that Rap1 interacts with RacGEF1 in vitro and stimulates F-actin polymerization at the sites where Rap1 is activated upon chemoattractant stimulation. Live cell imaging using GFP-coronin, a reporter for F-actin, demonstrates that cells expressing constitutively active Rap1 (Rap1CA) exhibit a high level of F-actin uniformly distributed at the cortex including the posterior and lateral sides of the chemotaxing cell. Examination of the localization of a PH-domain containing PIP3 reporter, PhdA-GFP, and the activation of Akt/Pkb and other Ras proteins in Rap1CA cells reveals that activated Rap1 has no effect on the production of PIP3 or the activation of Akt/Pkb and Ras proteins in response to chemoattractant stimulation. Rac family proteins are crucial regulators in actin cytoskeletal reorganization. In vitro binding assay using truncated RacGEF1 proteins shows that Rap1 interacts with the DH domain of RacGEF1. Taken together, these results suggest that Rap1-mediated F-actin polymerization probably occurs through the Rac signaling pathway by directly binding to RacGEF1.
Collapse
Affiliation(s)
- Hyemin Mun
- Department of Biology, College of Natural Sciences, Chosun University, Gwangju 501-759,
Korea
| | - Taeck J. Jeon
- Department of Biology, College of Natural Sciences, Chosun University, Gwangju 501-759,
Korea
| |
Collapse
|
50
|
Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol 2012; 3:119. [PMID: 22654878 PMCID: PMC3360162 DOI: 10.3389/fimmu.2012.00119] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/24/2012] [Indexed: 01/09/2023] Open
Abstract
Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT) B4, LTD4, and LTC4, and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1–3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | | | |
Collapse
|