1
|
Xu P, He Z, Gao X, Zeng X, Wei D, Long X, Yu Y. Research on the Expression of Immune-Related Genes at Different Stages in the Third-Instar Larvae of Spodoptera frugiperda Infected by Metarhizium rileyi. INSECTS 2025; 16:199. [PMID: 40003829 PMCID: PMC11856804 DOI: 10.3390/insects16020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Spodoptera frugiperda is a major migratory agricultural pest that poses a significant threat to global crop safety. Metarhizium rileyi has emerged as an effective biocontrol agent against lepidopteran pests. In this study, we examined the immune responses of third-instar S. frugiperda larvae at various stages of an M. rileyi infection. Using RNA-seq and microscopic observation, we identified the immune-related pathways enriched at different infection stages, which were further validated by a qRT-PCR. Our findings revealed the following immune responses during infection: During the stage when M. rileyi penetrated the host cuticle (0-48 h), the genes related to energy metabolism, detoxification, and melanization were upregulated. Meanwhile, the TOLL and IMD signaling pathways were activated to counter the infection. During the stage of M. rileyi's internal infection (48-96 h), which was the peak expression period of the immune-related genes, cellular immunity predominated. Hemocytes encapsulated and phagocytosed the hyphal bodies. Phagocytosis was enhanced through the upregulation of the genes related to ROS and the melanization-related genes, as well as the genes involved in insect hormone biosynthesis. During the stage when M. rileyi grew from the inside to the outside of the host (96-120 h), immune system paralysis resulted in host mortality. These findings deepen our understanding of the immune interactions between M. rileyi and S. frugiperda, support the potential of M. rileyi as an effective biocontrol agent, and provide a theoretical foundation for the development of targeted biopesticides for pests using biotechnological approaches.
Collapse
Affiliation(s)
- Pengfei Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhan He
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xuyuan Gao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xianru Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dewei Wei
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiuzhen Long
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yonghao Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
2
|
Xu D, Wu Y. Ectoin attenuates cortisone-induced skin issues by suppression GR signaling and the UVB-induced overexpression of 11β-HSD1. J Cosmet Dermatol 2024; 23:4303-4314. [PMID: 39222375 PMCID: PMC11626367 DOI: 10.1111/jocd.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Accelerated pace of modern work and lifestyles subject individuals to various external and psychological stressors, which, in turn, can trigger additional stress through visible signs of fatigue, hair loss, and obesity. As the primary stress hormone affecting skin health, cortisol connects to the glucocorticoid receptor (GR) to aggravate skin issues induced by stress. This activation depends on the expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in skin cells, which locally converts cortisone-produced by the central and peripheral hypothalamic-pituitary-adrenal axis-into its active form. METHODS Our study delves deeper into stress's adverse effects on the skin, including the disruption of keratinocyte structural proteins, the loss of basement membrane proteins, and the degradation of collagen. RESULTS Remarkably, we discovered that Ectoin, an amino acid derivative obtained from halophilic bacteria, is capable of mitigating the inhibitory impacts of cortisone on the expression of cutaneous functional proteins, including involucrin, loricrin, laminin-5, and claudin-1. Moreover, Ectoin reduces the suppressive effect of stress on collagen and hyaluronic acid synthesis by impeding GR signal transduction. Additionally, Ectoin counterbalances the UVB-induced overexpression of 11β-HSD1, thereby diminishing the concentration of endogenous glucocorticoids. CONCLUSION Our findings illuminate the significant potential of Ectoin as a preventative agent against stress-induced skin maladies.
Collapse
Affiliation(s)
- Dailin Xu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| | - Yue Wu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| |
Collapse
|
3
|
Katoh Y, Sato A, Takahashi N, Nishioka Y, Shimizu-Endo N, Ito T, Ohnuma-Koyama A, Shiga A, Yoshida T, Aoyama H. Junctional Epidermolysis Bullosa in Sprague Dawley Rats Caused by a Frameshift Mutation of Col17a1 Gene. J Transl Med 2024; 104:102132. [PMID: 39265891 DOI: 10.1016/j.labinv.2024.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Junctional epidermolysis bullosa is an intractable cutaneous disorder in humans causing skin fragility and blistering due to mutations in genes encoding essential molecules adhering epidermis and dermis including collagen XVII. However, the pathogenesis still remains to be not fully understood perhaps because of a lack of appropriate animal models. In this study, we report novel mutant rats experiencing junctional epidermolysis bullosa, which was confirmed to be caused by a frameshift mutation of Col17a1 gene, as a rat model for investigating the underlying mechanism of pathogenesis. The mutant rats completely lacked the expression of collagen XVII and had blisters leading to infantile deaths as a homozygous condition, although their skin was apparently normal at birth by light microscopic evaluation except that immunohistochemical examination could not detect collagen XVII in any organs. These observations suggest that collagen XVII is not essential for the development of skin during the prenatal period but is indispensable for keeping epidermal-dermal connections stable after birth. Subsequent electron microscopic examinations further revealed an absence of hemidesmosomal inner plaques being composed of BP230, a binding partner of collagen XVII, and plectin in Col17a1-null newborns, albeit mRNA expressions of these molecules seemed to be unaffected at least during the fetal period. These results suggest that the lack of collagen XVII induces attenuation of hemidesmosomal inner plaques, which in turn destabilizes the epidermis-dermis connection and results in deterioration of epidermal physiology with formation of blisters after birth.
Collapse
Affiliation(s)
- Yoshitaka Katoh
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Akira Sato
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Naofumi Takahashi
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Yasushi Nishioka
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Naoko Shimizu-Endo
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Tsuyoshi Ito
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Aya Ohnuma-Koyama
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Atsushi Shiga
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan.
| |
Collapse
|
4
|
Gewehr DM, Carvalho PEP, Izar FP, Haddad AG, Falkenbach Tenius VD, Giovanini AF, Kubrusly LF. Impact of Long-term Storage in 4% Formaldehyde on Immunophenotypic Markers in Glutaraldehyde-treated Bovine Pericardium. Appl Immunohistochem Mol Morphol 2024; 32:442-445. [PMID: 39171668 DOI: 10.1097/pai.0000000000001221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Bovine pericardium (BP) is widely used as a biomaterial for tissue engineering. Glutaraldehyde and formaldehyde are commonly employed in the reticulation processes to enhance the material's resistance and preservation. In this study, we assessed the impact of long-term storage in 4% formaldehyde on the quantitative expression of immunophenotypic markers in glutaraldehyde-treated BP. Histologic and immunohistochemical analyses were performed on 2 BP patches, manufactured in 2009 and 2020, respectively. Braile Biomédica provided the BP patches. Sections of BP were stained with H&E, Weigert, and picrosirius red, followed by immunolabeling for vimentin, laminin 5, collagen I, and collagen IV using a standardized protocol. Microscopic images were captured using light and polarized microscopy, and the area of the antibody signal was quantified using Image J Software. Histologic analysis showed no autolysis or significant changes in the patches. Immunohistochemical analysis revealed a diffuse distribution of collagen I and collagen IV throughout the connective tissue of the patches. The 2020 specimen exhibited higher expression levels of collagen I (21.36%) and collagen IV (24.67%) compared with the 2009 specimen (collagen I: 15.87%; collagen IV: 12.02%). Laminin did not show reactivity in either specimen. Notably, vimentin immunopositivity differed significantly between the patches, with a larger area of expression observed in the 2020 patch (54%) compared with the 2009 patch (13%). In summary, there were no substantial differences in immunophenotypic expression between the 2009 and 2020 BP patches, except for the higher vimentin expression in the 2020 BP patch.
Collapse
Affiliation(s)
| | - Pedro E P Carvalho
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda P Izar
- Mackenzie Evangelical College of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | - Luiz F Kubrusly
- Curitiba Heart Institute, Curitiba, Paraná, Brazil
- Mackenzie Evangelical College of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
5
|
Huo D, Liu S, Zhang L, Yang H, Sun L. Importance of the ECM-receptor interaction for adaptive response to hypoxia based on integrated transcription and translation analysis. Mol Ecol 2024:e17352. [PMID: 38624130 DOI: 10.1111/mec.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Low dissolved oxygen (LO) conditions represent a major environmental challenge to marine life, especially benthic animals. For these organisms, drastic declines in oxygen availability (hypoxic events) can trigger mass mortality events and thus, act as agents of selection influencing the evolution of adaptations. In sea cucumbers, one of the most successful groups of benthic invertebrates, the exposure to hypoxic conditions triggers adaptive adjustments in metabolic rates and behaviour. It is unclear, however, how these adaptive responses are regulated and the genetic mechanisms underpinning them. Here, we addressed this knowledge gap by assessing the genetic regulation (transcription and translation) of hypoxia exposure in the sea cucumber Apostichopus japonicus. Transcriptional and translational gene expression profiles under short- and long-term exposure to low oxygen conditions are tightly associated with extracellular matrix (ECM)-receptor interaction in which laminin and collagen likely have important functions. Finding revealed that genes with a high translational efficiency (TE) had a relatively short upstream open reading frame (uORF) and a high uORF normalized minimal free energy, suggesting that sea cucumbers may respond to hypoxic stress via altered TE. These results provide valuable insights into the regulatory mechanisms that confer adaptive capacity to holothurians to survive oxygen deficiency conditions and may also be used to inform the development of strategies for mitigating the harmful effects of hypoxia on other marine invertebrates facing similar challenges.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| |
Collapse
|
6
|
Yu S, Xie J, Guo Q, Yan X, Wang Y, Leng T, Li L, Zhou J, Zhang W, Su X. Clostridium butyricum isolated from giant panda can attenuate dextran sodium sulfate-induced colitis in mice. Front Microbiol 2024; 15:1361945. [PMID: 38646621 PMCID: PMC11027743 DOI: 10.3389/fmicb.2024.1361945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Objective Probiotics are beneficial to the intestinal barrier, but few studies have investigated probiotics from giant pandas. This study aims to explore the preventive effects of giant panda-derived Clostridium butyricum on dextran sodium sulfate (DSS)-induced colitis in mice. Methods Clostridium butyricum was administered to mice 14 days before administering DSS treatment to induce enteritis. Results Clostridium butyricum B14 could more effectively prevent colitis in mice than C. butyricum B13. C. butyricum B14 protected the mouse colon by decreasing the histology index and serum interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels, which improved intestinal inflammation-related symptoms. In addition, the treatment led to the regulation of the expression of Tifa, Igkv12-89, and Nr1d1, which in turn inhibited immune pathways. The expression of Muc4, Lama3, Cldn4, Cldn3, Ocln, Zo1, Zo2, and Snai is related the intestinal mucosal barrier. 16S sequencing shows that the C. butyricum B14 significantly increased the abundance of certain intestinal probiotics. Overall, C. butyricum B14 exerted a preventive effect on colitis in mice by inhibiting immune responses, enhancing the intestinal barrier and increasing the abundance of probiotic species. Thus, C. butyricum B14 administration helps regulate the balance of the intestinal microecology. It can suppress immune pathways and enhance barrier-protective proteins.
Collapse
Affiliation(s)
- Shuran Yu
- College of Life Science, Southwest Forestry University, Kunming, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Junjin Xie
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Qiang Guo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| | - Xia Yan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Yuxiang Wang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Tangjian Leng
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Lin Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Jielong Zhou
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Wenping Zhang
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| |
Collapse
|
7
|
Kubanov AA, Chikin VV, Karamova AE, Monchakovskaya ES. Junctional epidermolysis bullosa: genotype-phenotype correlations. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Junctional epidermolysis bullosa most commonly results from mutations in theLAMA3, LAMB3, LAMC2, COL17A1, ITGA6 and ITGB4genes. Junctional epidermolysis bullosa is characterized by clinical heterogeneity. To date, scientific findings allow to evaluate correlations between the severity of clinical manifestations and genetic defects underlying in the development of the disease. A systematic literature search was performed using PubMed and RSCI, and keywords including junctional epidermolysis bullosa, laminin 332, collagen XVII, 64 integrin. The review includes description of clinical findings of junctional epidermolysis bullosa, mutation location and types, its impact on protein production and functions. To evaluate the impact of gene mutation on protein functions, this review explores the structure and functions of lamina lucida components, including laminin 332, collagen XVII and 64 integrin, which are frequently associated with the development of junctional epidermolysis bullosa. The correlation between severe types of junctional epidermolysis bullosa and mutations resulting in premature stop codon generation and complete absence of protein expression has been described. Although, genotype-phenotype correlations should be analyzed carefully due to mechanisms which enable to improve protein expression.
Collapse
|
8
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Tellman TV, Dede M, Aggarwal VA, Salmon D, Naba A, Farach-Carson MC. Systematic Analysis of Actively Transcribed Core Matrisome Genes Across Tissues and Cell Phenotypes. Matrix Biol 2022; 111:95-107. [PMID: 35714875 DOI: 10.1016/j.matbio.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) is a highly dynamic, well-organized acellular network of tissue-specific biomolecules, that can be divided into structural or core ECM proteins and ECM-associated proteins. The ECM serves as a blueprint for organ development and function and, when structurally altered through mutation, altered expression, or degradation, can lead to debilitating syndromes that often affect one tissue more than another. Cross-referencing the FANTOM5 SSTAR (Semantic catalog of Samples, Transcription initiation And Regulators) and the defined catalog of core matrisome ECM (glyco)proteins, we conducted a comprehensive analysis of 511 different human samples to annotate the context-specific transcription of the individual components of the defined matrisome. Relative log expression normalized SSTAR cap analysis gene expression peak data files were downloaded from the FANTOM5 online database and filtered to exclude all cell lines and diseased tissues. Promoter-level expression values were categorized further into eight core tissue systems and three major ECM categories: proteoglycans, glycoproteins, and collagens. Hierarchical clustering and correlation analyses were conducted to identify complex relationships in promoter-driven gene expression activity. Integration of the core matrisome and curated FANTOM5 SSTAR data creates a unique tool that provides insight into the promoter-level expression of ECM-encoding genes in a tissue- and cell-specific manner. Unbiased clustering of cap analysis gene expression peak data reveals unique ECM signatures within defined tissue systems. Correlation analysis among tissue systems exposes both positive and negative correlation of ECM promoters with varying levels of significance. This tool can be used to provide new insight into the relationships between ECM components and tissues and can inform future research on the ECM in human disease and development. We invite the matrix biology community to continue to explore and discuss this dataset as part of a larger and continuing conversation about the human ECM. An interactive web tool can be found at matrixpromoterome.github.io along with additional resources that can be found at dx.doi.org/10.6084/m9.figshare.19794481 (figures) and https://figshare.com/s/e18ecbc3ae5aaf919b78 (python notebook).
Collapse
Affiliation(s)
- Tristen V Tellman
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, 1941 East Road, BBS-4220, Houston, TX 77054, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, P.O. Box 301402 Houston, TX 77230, USA
| | - Vikram A Aggarwal
- Departments of BioSciences and Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Duncan Salmon
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, 1941 East Road, BBS-4220, Houston, TX 77054, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Rm E202 (MC901), Chicago, IL 60612, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, 1941 East Road, BBS-4220, Houston, TX 77054, USA.; Departments of BioSciences and Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA.; Center for Theoretical Biological Physics, Rice University, 6100 Main St., Houston, TX 77005, USA..
| |
Collapse
|
10
|
Carlton M, Voisey J, Parker TJ, Punyadeera C, Cuttle L. A review of potential biomarkers for assessing physical and psychological trauma in paediatric burns. BURNS & TRAUMA 2021; 9:tkaa049. [PMID: 33654699 PMCID: PMC7901707 DOI: 10.1093/burnst/tkaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
Biological markers that evaluate physical healing as well as psychological impact of a burn are essential for effective treatment of paediatric burns. The objective of this review is to summarize the evidence supporting the use of biomarkers in children with burns. An extensive review of the literature was performed using PubMed. A total of 59 biomarkers were identified relating to burn presence, specifically relating to processes involved in inflammation, wound healing, growth and metabolism. In addition, biomarkers involved in the stress response cascade following a burn trauma were also identified. Although many biomarkers have been identified that are potentially associated with burn-related physical and psychological trauma, an understanding of burn biology is still lacking in children. We propose that future research in the field of children’s burns should be conducted using broad screening methods for identifying potential biomarkers, examine the biological interactions of different biomarkers, utilize child-appropriate biological fluids such as urine or saliva, and include a range of different severity burns. Through further research, the biological response to burn injury may be fully realized and clinically relevant diagnostic tests and treatment therapies utilizing these biomarkers could be developed, for the improvement of healing outcomes in paediatric burn patients.
Collapse
Affiliation(s)
- Morgan Carlton
- Queensland University of Technology (QUT), Centre for Children's Burn and Trauma Research, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Joanne Voisey
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Tony J Parker
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Chamindie Punyadeera
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Brisbane, Queensland, Australia
| | - Leila Cuttle
- Queensland University of Technology (QUT), Centre for Children's Burn and Trauma Research, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Schreurs O, Balta MG, Karatsaidis A, Schenck K. Composition of hemidesmosomes in basal keratinocytes of normal buccal mucosa and oral lichen planus. Eur J Oral Sci 2020; 128:369-378. [PMID: 32870574 DOI: 10.1111/eos.12732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease displaying ultrastructural disturbances in epithelial hemidesmosomes. The expression of several key hemidesmosomal components in OLP as well as in normal buccal mucosa is, however, unknown. The aim of the study was therefore to examine intracellular and extracellular components involved in hemidesmosomal attachment, in OLP (n = 20) and in normal buccal mucosa (n = 10), by immunofluorescence. In normal buccal mucosa, laminin-α3γ2, integrin-α6β4, CD151, collagen α-1(XVII) chain, and dystonin showed linear expression along the basal membrane, indicating the presence of type I hemidesmosomes. Plectin stained most epithelial cell membranes and remained unphosphorylated at S4642. In OLP, most hemidesmosomal molecules examined showed disturbed expression consisting of discontinuous increases, apicolateral location, and/or intracellular accumulation. Plectin showed S4642-phosphorylation at the basement membrane, and deposits of laminin-α3 and laminin-γ2 were found within the connective tissue. The disturbed expression of hemidesmosomal proteins in OLP indicates deficient attachment of the basal cell layer, which can contribute to detachment and cell death of basal keratinocytes seen in the disease.
Collapse
Affiliation(s)
- Olav Schreurs
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Maria G Balta
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | | | - Karl Schenck
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Wechman SL, Emdad L, Sarkar D, Das SK, Fisher PB. Vascular mimicry: Triggers, molecular interactions and in vivo models. Adv Cancer Res 2020; 148:27-67. [PMID: 32723566 DOI: 10.1016/bs.acr.2020.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular mimicry is induced by a wide array of genes with functions related to cancer stemness, hypoxia, angiogenesis and autophagy. Vascular mimicry competent (VM-competent) cells that form de novo blood vessels are common in solid tumors facilitating tumor cell survival and metastasis. VM-competent cells display increased levels of vascular mimicry selecting for stem-like cells in an O2-gradient-dependent manner in deeply hypoxic tumor regions, while also aiding in maintaining tumor cell metabolism and stemness. Three of the principal drivers of vascular mimicry are EphA2, Nodal and HIF-1α, however, directly or indirectly many of these molecules affect VE-Cadherin (VE-Cad), which forms gap-junctions to bind angiogenic blood vessels together. During vascular mimicry, the endothelial-like functions of VM-competent cancer stem cells co-opt VE-Cad to bind cancer cells together to create cancer cell-derived blood conducting vessels. This process potentially compensates for the lack of access to blood and nutrient in avascular tumors, simultaneously providing nutrients and enhancing cancer invasion and metastasis. Current evidence also supports that vascular mimicry promotes cancer malignancy and metastasis due to the cooperation of oncogenic signaling molecules driving cancer stemness and autophagy. While a number of currently used cancer therapeutics are effective inhibitors of vascular mimicry, developing a new class of vascular mimicry specific inhibitors could allow for the treatment of angiogenesis-resistant tumors, inhibit cancer metastasis and improve patient survival. In this review, we describe the principal vascular mimicry pathways in addition to emphasizing the roles of hypoxia, autophagy and select proangiogenic oncogenes in this process.
Collapse
Affiliation(s)
- Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
13
|
Mariath LM, Santin JT, Schuler-Faccini L, Kiszewski AE. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. An Bras Dermatol 2020; 95:551-569. [PMID: 32732072 PMCID: PMC7563003 DOI: 10.1016/j.abd.2020.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inherited epidermolysis bullosa is a group of genetic diseases characterized by skin fragility and blistering on the skin and mucous membranes in response to minimal trauma. Epidermolysis bullosa is clinically and genetically very heterogeneous, being classified into four main types according to the layer of skin in which blistering occurs: epidermolysis bullosa simplex (intraepidermal), junctional epidermolysis bullosa (within the lamina lucida of the basement membrane), dystrophic epidermolysis bullosa (below the basement membrane), and Kindler epidermolysis bullosa (mixed skin cleavage pattern). Furthermore, epidermolysis bullosa is stratified into several subtypes, which consider the clinical characteristics, the distribution of the blisters, and the severity of cutaneous and extracutaneous signs. Pathogenic variants in at least 16 genes that encode proteins essential for the integrity and adhesion of skin layers have already been associated with different subtypes of epidermolysis bullosa. The marked heterogeneity of the disease, which includes phenotypes with a broad spectrum of severity and many causal genes, hinders its classification and diagnosis. For this reason, dermatologists and geneticists regularly review and update the classification criteria. This review aimed to update the state of the art on inherited epidermolysis bullosa, with a special focus on the associated clinical and genetic aspects, presenting data from the most recent reclassification consensus, published in 2020.
Collapse
Affiliation(s)
- Luiza Monteavaro Mariath
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Tosetto Santin
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Dermatology Service, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Ana Elisa Kiszewski
- Dermatology Service, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Pediatric Dermatology Unit, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Li Y, Zhang J, Cheng Z, Wang Y, Huang T, Lai K, Du X, Jiang Z, Yang G. Adenovirus-Mediated LAMA3 Transduction Enhances Hemidesmosome Formation and Periodontal Reattachment during Wound Healing. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:291-303. [PMID: 32671133 PMCID: PMC7334303 DOI: 10.1016/j.omtm.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
A robust dento-epithelial junction prevents external pathogenic factors from entering connective tissue and could be crucial for periodontal reattachment after periodontal surgery. The junctional epithelium (JE) is attached to the tooth surface through the hemidesmosome (HD) and internal basal lamina, where the primary component is laminin-332. Destruction of the JE leads to the loss of periodontal attachment. Traditional treatments are effective in eliminating local inflammation of the gingiva; however, few directly promote periodontal reattachment and HD formation. Here, we designed a gene-therapy strategy using the adenovirus-mediated human laminin-332 α3 chain (LAMA3) gene (Ad-LAMA3) transduced into a human-immortalized epidermal cell line (HaCaT) to study the formation of HD in vitro. Ad-LAMA3 promoted early adhesion and fast migration of HaCaT cells and increased expression of LAMA3 and type XVII collagen (BP180) significantly. Furthermore, HaCaT cells could facilitate formation of mature HDs after LAMA3 overexpression. In vivo experiments demonstrated that the JE transduced with Ad-LAMA3 could increase expression of LAMA3 and BP180 and “biological sealing” between the tooth and gingival epithelium. These results suggested that adenovirus-mediated LAMA3 transduction is a novel therapeutic strategy that promotes the stability and integration of the JE around the tooth during wound healing.
Collapse
Affiliation(s)
- Yongzheng Li
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310029, China
| | - Jing Zhang
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310029, China
| | - Zhenxuan Cheng
- Department of Oral Medicine, Zhejiang University School of Hospital, Hangzhou 310058, China
| | - Ying Wang
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310029, China
| | - Tingben Huang
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310029, China
| | - Kaichen Lai
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310029, China
| | - Xue Du
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310029, China
| | - Zhiwei Jiang
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310029, China
| | - Guoli Yang
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310029, China
| |
Collapse
|
15
|
Mittwollen R, Wohlfart S, Park J, Grosch E, Has C, Hohenester E, Schneider H, Hammersen J. Aberrant splicing as potential modifier of the phenotype of junctional epidermolysis bullosa. J Eur Acad Dermatol Venereol 2020; 34:2127-2134. [PMID: 32124492 DOI: 10.1111/jdv.16332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND A lack or dysfunction of the anchoring protein laminin-332 in the basement membrane leads to the skin blistering disorder junctional epidermolysis bullosa (JEB). The mutation c.628G>A in the gene LAMB3 encoding the laminin β3-chain is associated with generalized intermediate JEB; it may introduce an amino acid substitution (p.Glu210Lys) or disrupt splicing. OBJECTIVE This retrospective study aimed at determining the effects of aberrant splicing on the JEB phenotype. METHODS LAMB3 transcription was analysed in two siblings compound heterozygous for the LAMB3 mutations p.Glu210Lys and p.Arg635* with a diverging JEB phenotype from late childhood on. Laminin-332 levels in skin sections and in cultured keratinocytes were investigated by immunofluorescence staining. Real-time PCR was used to quantify LAMB3 expression in keratinocytes. RNA splice variants were identified by subcloning of a LAMB3 cDNA fraction and subsequent DNA sequencing. Structural models of laminin-332 helped to assess the impact of certain mutations on laminin-332 folding. RESULTS Both siblings showed diminished LAMB3 expression. Laminin-332 was equally reduced in skin sections obtained during infancy but differed in keratinocytes isolated during adolescence. Although aberrant LAMB3 splicing with 26 variants was detected in both patients, splicing differed significantly: the full-length LAMB3 transcript harbouring the p.Glu210Lys mutation was found more often in the patient affected less severely (14/108 vs. 5/106 clones; P = 0.03). Structural modelling predicted that several deletions in LAMB3, but not the point mutation p.Glu210Lys, have an effect on laminin-332 folding and secretion. CONCLUSIONS Differential LAMB3 mRNA splicing in the patients may explain the disparate JEB phenotype. By elucidating the regulation of laminin-332 gene expression, these findings may contribute to the development of therapeutic strategies for JEB and might help to understand phenotype modification by splice-site mutations in other hereditary diseases.
Collapse
Affiliation(s)
- R Mittwollen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - S Wohlfart
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - J Park
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - E Grosch
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - C Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - E Hohenester
- Department of Life Sciences, Imperial College London, London, UK
| | - H Schneider
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - J Hammersen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
Hammersen J, Neuner A, Wild F, Schneider H. Attenuation of Severe Generalized Junctional Epidermolysis Bullosa by Systemic Treatment with Gentamicin. Dermatology 2019; 235:315-322. [PMID: 31132778 DOI: 10.1159/000499906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Severe generalized junctional epidermolysis bullosa (JEB), a lethal genodermatosis, is mainly caused by premature termination codons (PTCs) in one of the three genes encoding the anchoring protein laminin-332. Only symptomatic treatment has been established; overcoming PTCs by aminoglycosides may represent an interesting alternative. This retrospective study aimed at assessing for the first time the clinical effects of systemic gentamicin application in infants with severe generalized JEB. Five patients, homozygous or compound-heterozygous for PTCs in the gene LAMB3, were treated with gentamicin which was administered intravenously or by intramuscular injection at doses of 7.5 mg/kg/d for three weeks. Skin biopsies were investigated by immunofluorescence analyses. Clinical effects of the medication were recorded with a parent questionnaire and by assessing weight-for-age charts. Gentamicin application was well tolerated, long hospitalization was not required. Low levels of laminin-332 could be detected in a skin sample obtained after treatment. Gentamicin had a positive impact on skin fragility and daily life in four patients but did not influence weight gain and failed to reverse the lethal course of the disease. Gentamicin injections should be considered regularly in cases of severe generalized JEB caused by PTCs as they may attenuate JEB symptoms without impeding quality of life.
Collapse
Affiliation(s)
- Johanna Hammersen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany,
| | - Andrea Neuner
- Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Wild
- Department of Pediatrics, Hospital St. Elisabeth, Neuburg an der Donau, Germany
| | - Holm Schneider
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
17
|
Abstract
The skin provides the primary protection for the body against external injuries and is essential in the maintenance of general homeostasis. During ageing, resident cells become senescent and the extracellular matrix, mainly in the dermis, is progressively damaged affecting the normal organization of the skin and its capacity for repair. In parallel, extrinsic factors such as ultraviolet irradiation, pollution, and intrinsic factors such as diabetes or vascular disease can further accelerate this phenomenon. Indeed, numerous mechanisms are involved in age-induced degradation of the skin and these also relate to non-healing or chronic wounds in the elderly. In particular, the generation of reactive oxygen species seems to play a major role in age-related skin modifications. Certainly, targeting both the hormonal status of the skin or its surface nutrition can slow down age-induced degradation of the skin and improve healing of skin damage in the elderly. Skin care regimens that prevent radiation and pollution damage, and reinforce the skin surface and its microbiota are among the different approaches able to minimize the effects of ageing on the skin.
Collapse
|
18
|
Wang H, Yang Y, Zhou J, Cao J, He X, Li L, Gao S, Mao B, Tian P, Zhou A. Targeted next-generation sequencing identifies a novel mutation of LAMB3 in a Chinese neonatal patient presented with junctional epidermolysis bullosa. Medicine (Baltimore) 2018; 97:e13225. [PMID: 30544381 PMCID: PMC6310585 DOI: 10.1097/md.0000000000013225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/19/2018] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Epidermolysis bullosa (EB) refers to a group of rare inherited mechanobullous disorders that present with great clinical and genetic heterogeneity. Its severity ranges from mild blistering to life-threatening. However, the clinical symptoms of different types of EB overlap significantly, especially at an early stage. Thus it is important to clarify the diagnosis for prognostic implications, patient management, and genetic counseling. PATIENT CONCERNS Here, we report a 10-day-old male neonate from a nonconsanguineous Chinese family. He showed a bulla on the left lower limb lasting for 3 days, erosions around fingertips and toe tips at birth (predominantly on fingers), with the progressive spread of generalized blisters over the body as well as the development of the illness. DIAGNOSIS The patient was diagnosed with suspected epidermolysis bullosa according to the blisters and erosions of the body as well as the pyogenic fingernails and toenails. INTERVENTIONS The patient was performed targeted next-generation sequencing (NGS) with 9 candidate known genes, subsequently, his parents were screened for the mutations identified in the patient by Sanger sequencing. Then, prenatal diagnosis with amniotic fluid was performed in the subsequent pregnancy by Sanger sequencing. OUTCOMES Targeted NGS revealed a previously unreported splice site variant c.822+1G>A (IVS 8) and a known recurrent nonsense variant c.124C>T (p.Arg42Ter, exon 3) in LAMB3 gene. The patient's father possessed a heterozygous c.822+1G>A mutation, his mother possessed a heterozygous c.124C>T mutation. For the subsequent pregnancy, the analyses of amniotic fluid sample indicated that the fetus carried neither of the mutations. LESSONS Our finding will further enlarge LAMB3 genotype-phenotype correlations spectrum. Targeted capture sequencing is a valuable method to illustrate precise molecular pathology in patients with EB disorders, especially at an early stage of the clinical evaluation of complex disorders to avoid unnecessary and economically wasteful tests.
Collapse
Affiliation(s)
| | - Yun Yang
- BGI-Wuhan, BGI-Shenzhen, Wuhan, Hubei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Jieqiong Zhou
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| | - Jiangxia Cao
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| | - Xuelian He
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| | - Long Li
- BGI-Wuhan, BGI-Shenzhen, Wuhan, Hubei
| | - Shuyang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong
| | - Bing Mao
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Tian
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| | - Aifen Zhou
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| |
Collapse
|
19
|
Physiologie de la peau, réparation cutanée et réaction stromale. ACTUALITES PHARMACEUTIQUES 2018. [DOI: 10.1016/j.actpha.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Kang SD, Chatterjee S, Alam S, Salzberg AC, Milici J, van der Burg SH, Meyers C. Effect of Productive Human Papillomavirus 16 Infection on Global Gene Expression in Cervical Epithelium. J Virol 2018; 92:e01261-18. [PMID: 30045992 PMCID: PMC6158420 DOI: 10.1128/jvi.01261-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022] Open
Abstract
Human papillomavirus (HPV) infection is the world's most common sexually transmitted infection and is responsible for most cases of cervical cancer. Previous studies of global gene expression changes induced by HPV infection have focused on the cancerous stages of infection, and therefore, not much is known about global gene expression changes at early preneoplastic stages of infection. We show for the first time the global gene expression changes during early-stage HPV16 infection in cervical tissue using 3-dimensional organotypic raft cultures, which produce high levels of progeny virions. cDNA microarray analysis showed that a total of 594 genes were upregulated and 651 genes were downregulated at least 1.5-fold with HPV16 infection. Gene ontology analysis showed that biological processes including cell cycle progression and DNA metabolism were upregulated, while skin development, immune response, and cell death were downregulated with HPV16 infection in cervical keratinocytes. Individual genes were selected for validation at the transcriptional and translational levels, including UBC, which was central to the protein association network of immune response genes, and top downregulated genes RPTN, SERPINB4, KRT23, and KLK8 In particular, KLK8 and SERPINB4 were shown to be upregulated in cancer, which contrasts with the gene regulation during the productive replication stage. Organotypic raft cultures, which allow full progression of the HPV life cycle, allowed us to identify novel gene modulations and potential therapeutic targets of early-stage HPV infection in cervical tissue. Additionally, our results suggest that early-stage productive infection and cancerous stages of infection are distinct disease states expressing different host transcriptomes.IMPORTANCE Persistent HPV infection is responsible for most cases of cervical cancer. The transition from precancerous to cancerous stages of HPV infection is marked by a significant reduction in virus production. Most global gene expression studies of HPV infection have focused on the cancerous stages. Therefore, little is known about global gene expression changes at precancerous stages. For the first time, we measured global gene expression changes at the precancerous stages of HPV16 infection in human cervical tissue producing high levels of virus. We identified a group of genes that are typically overexpressed in cancerous stages to be significantly downregulated at the precancerous stage. Moreover, we identified significantly modulated genes that have not yet been studied in the context of HPV infection. Studying the role of these genes in HPV infection will help us understand what drives the transition from precancerous to cancerous stages and may lead to the development of new therapeutic targets.
Collapse
Affiliation(s)
- Sa Do Kang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sreejata Chatterjee
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Samina Alam
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Anna C Salzberg
- Bioinformatics Core, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Janice Milici
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Craig Meyers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
21
|
Torres P, Castro M, Reyes M, Torres VA. Histatins, wound healing, and cell migration. Oral Dis 2018; 24:1150-1160. [PMID: 29230909 DOI: 10.1111/odi.12816] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
Wounds in the oral mucosa heal faster and more efficiently than those in the skin, although the mechanisms underlying these differences are not completely clear. In the last 10 years, a group of salivary peptides, the histatins, has gained attention on behalf of their ability to improve several phases of the wound-healing process. In addition to their roles as anti-microbial agents and in enamel maintenance, histatins elicit other biological effects, namely by promoting the migration of different cell types contained in the oral mucosa and in non-oral tissues. Histatins, and specifically histatin-1, promote cell adhesion and migration in oral keratinocytes, gingival and dermal fibroblasts, non-oral epithelial cells, and endothelial cells. This is particularly relevant, as histatin-1 promotes the re-epithelialization phase and the angiogenic responses by increasing epithelial and endothelial cell migration. Although the molecular mechanisms associated with histatin-dependent cell migration remain poorly understood, recent studies have pointed to the control of signaling endosomes and the balance of small GTPases. This review aimed to update the literature on the effects of histatins in cell migration, with a focus on wound healing. We will also discuss the consequences that this increasing field will have in disease and therapy design.
Collapse
Affiliation(s)
- P Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Castro
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Reyes
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - V A Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Kang CH, Rhie SJ, Kim YC. Antioxidant and Skin Anti-Aging Effects of Marigold Methanol Extract. Toxicol Res 2018; 34:31-39. [PMID: 29371999 PMCID: PMC5776915 DOI: 10.5487/tr.2018.34.1.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/29/2017] [Accepted: 10/16/2017] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to evaluate the antioxidant and anti-aging effects of marigold methanol extract (MGME) in human dermal fibroblasts. Total polyphenolic and flavonoid contents in MGME were 74.8 mg TAE (tannic acid equivalent)/g and 85.6 mg RE (rutin equivalent)/g, respectively. MGME (500 μg/mL) increased 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2′-azino-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging, and superoxide dismutase (SOD)-like antioxidant activities by 36.5, 54.7, and 14.8%, respectively, compared with the control. At 1,000 μg/mL, these activities increased by 63.7, 70.6, and 20.6%, respectively. MGME (100 μg/mL) significantly increased the synthesis of type 1 procollagen by 83.7% compared with control treatment. It also significantly decreased Matrix Metalloproteinase-2 (MMP-2) activity and MMP-1 mRNA expression by 36.5% and 69.5%, respectively; however, it significantly increased laminin-5 mRNA expression by 181.2%. These findings suggest that MGME could protect human skin against photo-aging by attenuating oxidative damage, suppressing MMP expression and/or activity as well as by stimulating collagen synthesis.
Collapse
Affiliation(s)
- Chul Ho Kang
- Department of Physical Therapy, Daejeon Woori Hospital, Daejeon, Korea
| | - Sung Ja Rhie
- Department of Beauty Care Design, Halla University, Wonju, Korea
| | - Young Chul Kim
- Department of Public Health, Graduate School, Keimyung University, Daegu, Korea
| |
Collapse
|
23
|
Kubanov АA, Karamova AEH, Al'banova VI, CHikin VV, Monchakovskaya ES. CONGENITAL EPIDERMOLYSIS BULLOSA: PECULIARITIES OF EPIDERMIS REGENERATION AND METHODS OF TREATMENT. VESTNIK DERMATOLOGII I VENEROLOGII 2017. [DOI: 10.25208/0042-4609-2017-93-4-28-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Congenital epidermolysis bullosa is a group of hereditary skin diseases caused by mutations in the genes of structural proteins of the dermoepidermal junction of the skin, characterized by formation of blisters and erosions at the smallest mechanical trauma. In patients with severe subtypes of borderline and dystrophic epidermolysis bullosa there are long-term erosive and ulcerative defects with disruption of the healing process. Factors that impede healing include: malnutrition, anemia, pain, inactivity, local factors (presence of infection, prolonged inflammation, extensive nature of the lesion, absence of skin appendages in the affected area, deficiency or lack of formation of type VII collagen). Elimination of healing impeding factors is the main challenge in treatment of severe subtypes of bullous epidermolysis. Modern promising treatment techniques are at the stage of development and have not yet been introduced into clinical practice, and, as of today, skin care and optimal topical treatment with modern non-adhesive dressings remain the most widespread treatment methods that facilitate accelerated healing.
Collapse
|
24
|
Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci 2017; 74:1095-1115. [PMID: 27696112 PMCID: PMC11107706 DOI: 10.1007/s00018-016-2381-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Laminin, one of the most widely expressed extracellular matrix proteins, exerts many important functions in multiple organs/systems and at various developmental stages. Although its critical roles in embryonic development have been demonstrated, laminin's functions at later stages remain largely unknown, mainly due to its intrinsic complexity and lack of research tools (most laminin mutants are embryonic lethal). With the advance of genetic and molecular techniques, many new laminin mutants have been generated recently. These new mutants usually have a longer lifespan and show previously unidentified phenotypes. Not only do these studies suggest novel functions of laminin, but also they provide invaluable animal models that allow investigation of laminin's functions at late stages. Here, I first briefly introduce the nomenclature, structure, and biochemistry of laminin in general. Next, all the loss-of-function mutants/models for each laminin chain are discussed and their phenotypes compared. I hope to provide a comprehensive review on laminin functions and its loss-of-function models, which could serve as a reference for future research in this understudied field.
Collapse
Affiliation(s)
- Yao Yao
- College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
25
|
Hammersen J, Has C, Naumann-Bartsch N, Stachel D, Kiritsi D, Söder S, Tardieu M, Metzler M, Bruckner-Tuderman L, Schneider H. Genotype, Clinical Course, and Therapeutic Decision Making in 76 Infants with Severe Generalized Junctional Epidermolysis Bullosa. J Invest Dermatol 2016; 136:2150-2157. [PMID: 27375110 DOI: 10.1016/j.jid.2016.06.609] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/20/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Severe generalized junctional epidermolysis bullosa, a lethal hereditary blistering disorder, is usually treated by palliative care. Allogeneic stem cell transplantation (SCT) has been proposed as a therapeutic approach, yet without clinical evidence. Decision making was evaluated retrospectively in 76 patients with severe generalized junctional epidermolysis bullosa born in the years 2000-2015. The diagnosis was based on the absence of laminin-332 in skin biopsies. With an incidence of 1 of 150,000, severe generalized junctional epidermolysis bullosa occurred more often than published previously. Eleven as yet unreported mutations in the laminin-332 genes were detected. Although patients homozygous for the LAMB3 mutation c.1903C>T lived longer than the others, life expectancy was greatly diminished (10.8 vs. 4.6 months). Most patients failed to thrive. In two patients with initially normal weight gain, the decision for SCT from haploidentical bone marrow or peripheral blood was made. Despite transiently increasing skin erosions, the clinical status of both subjects stabilized for several weeks after SCT, but finally deteriorated. Graft cells, but no laminin-332, were detected in skin biopsies. The patients died 96 and 129 days after SCT, respectively, one of them after receiving additional skin grafts. Treatment of severe generalized junctional epidermolysis bullosa by SCT is a last-ditch attempt still lacking proof of efficacy.
Collapse
Affiliation(s)
- Johanna Hammersen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany.
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Daniel Stachel
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stephan Söder
- Department of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Mathilde Tardieu
- Dermatologie Pédiatrique, University Hospital Grenoble, Grenoble, France
| | - Markus Metzler
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | | | - Holm Schneider
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Autoimmunity against laminins. Clin Immunol 2016; 170:39-52. [PMID: 27464450 DOI: 10.1016/j.clim.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/30/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Laminins are ubiquitous constituents of the basement membranes with major architectural and functional role as supported by the fact that absence or mutations of laminins lead to either lethal or severely impairing phenotypes. Besides genetic defects, laminins are involved in a wide range of human diseases including cancer, infections, and inflammatory diseases, as well as autoimmune disorders. A growing body of evidence implicates several laminin chains as autoantigens in blistering skin diseases, collagenoses, vasculitis, or post-infectious autoimmunity. The current paper reviews the existing knowledge on autoimmunity against laminins referring to both experimental and clinical data, and on therapeutic implications of anti-laminin antibodies. Further investigation of relevant laminin epitopes in pathogenic autoimmunity would facilitate the development of appropriate diagnostic tools for thorough characterization of patients' antibody specificities and should decisively contribute to designing more specific therapeutic interventions.
Collapse
|
27
|
Hammersen J, Hou J, Wünsche S, Brenner S, Winkler T, Schneider H. A new mouse model of junctional epidermolysis bullosa: the LAMB3 628G>A knockin mouse. J Invest Dermatol 2015; 135:921-924. [PMID: 25350318 DOI: 10.1038/jid.2014.466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Johanna Hammersen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Jin Hou
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Stephanie Wünsche
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Sven Brenner
- Department of Genetics, Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Winkler
- Department of Genetics, Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Holm Schneider
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
28
|
Lee DY, Lee JH, Ahn HJ, Oh SH, Kim TH, Kim HB, Park SW, Kwon SK. Synergistic effect of laminin and mesenchymal stem cells on tracheal mucosal regeneration. Biomaterials 2015; 44:134-42. [DOI: 10.1016/j.biomaterials.2014.12.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/17/2014] [Accepted: 12/20/2014] [Indexed: 12/21/2022]
|
29
|
Murgiano L, Wiedemar N, Jagannathan V, Isling LK, Drögemüller C, Agerholm JS. Epidermolysis bullosa in Danish Hereford calves is caused by a deletion in LAMC2 gene. BMC Vet Res 2015; 11:23. [PMID: 25888738 PMCID: PMC4328060 DOI: 10.1186/s12917-015-0334-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Heritable forms of epidermolysis bullosa (EB) constitute a heterogeneous group of skin disorders of genetic aetiology that are characterised by skin and mucous membrane blistering and ulceration in response to even minor trauma. Here we report the occurrence of EB in three Danish Hereford cattle from one herd. RESULTS Two of the animals were necropsied and showed oral mucosal blistering, skin ulcerations and partly loss of horn on the claws. Lesions were histologically characterized by subepidermal blisters and ulcers. Analysis of the family tree indicated that inbreeding and the transmission of a single recessive mutation from a common ancestor could be causative. We performed whole genome sequencing of one affected calf and searched all coding DNA variants. Thereby, we detected a homozygous 2.4 kb deletion encompassing the first exon of the LAMC2 gene, encoding for laminin gamma 2 protein. This loss of function mutation completely removes the start codon of this gene and is therefore predicted to be completely disruptive. The deletion co-segregates with the EB phenotype in the family and absent in normal cattle of various breeds. Verifying the homozygous private variants present in candidate genes allowed us to quickly identify the causative mutation and contribute to the final diagnosis of junctional EB in Hereford cattle. CONCLUSIONS Our investigation confirms the known role of laminin gamma 2 in EB aetiology and shows the importance of whole genome sequencing in the analysis of rare diseases in livestock.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001, Bern, Switzerland.
| | - Natalie Wiedemar
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001, Bern, Switzerland.
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001, Bern, Switzerland.
| | - Louise K Isling
- Department of Veterinary Disease Biology, Section for Veterinary Pathology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870, Frederiksberg C, Denmark.
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001, Bern, Switzerland.
| | - Jørgen S Agerholm
- Department of Veterinary Disease Biology, Section for Veterinary Pathology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870, Frederiksberg C, Denmark. .,Department of Large Animal Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 68, DK-1870, Frederiksberg C, Denmark.
| |
Collapse
|
30
|
Turcan I, Jonkman MF. Blistering disease: insight from the hemidesmosome and other components of the dermal-epidermal junction. Cell Tissue Res 2014; 360:545-69. [PMID: 25502077 DOI: 10.1007/s00441-014-2021-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The hemidesmosome is a specialized transmembrane complex that mediates the binding of epithelial cells to the underlying basement membrane. In the skin, this multiprotein structure can be regarded as the chief adhesion unit at the site of the dermal-epidermal junction. Focal adhesions are additional specialized attachment structures located between hemidesmosomes. The integrity of the skin relies on well-assembled and functional hemidesmosomes and focal adhesions (also known as integrin adhesomes). However, if these adhesion structures are impaired, e.g., as a result of circulating autoantibodies or inherited genetic mutations, the mechanical strength of the skin is compromised, leading to blistering and/or tissue inflammation. A particular clinical presentation emerges subject to the molecule that is targeted. None of these junctional complexes are simply compounds of adhesion molecules; they also play a significant role in signalling pathways involved in the differentiation and migration of epithelial cells such as during wound healing and in tumour invasion. We summarize current knowledge about hereditary and acquired blistering diseases emerging from pathologies of the hemidesmosome and its neighbouring proteins as components of the dermal-epidermal junction.
Collapse
Affiliation(s)
- Iana Turcan
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands,
| | | |
Collapse
|
31
|
Koivisto L, Heino J, Häkkinen L, Larjava H. Integrins in Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:762-783. [PMID: 25493210 DOI: 10.1089/wound.2013.0436] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/06/2023] Open
Abstract
Significance: Regulation of cell adhesions during tissue repair is fundamentally important for cell migration, proliferation, and protein production. All cells interact with extracellular matrix proteins with cell surface integrin receptors that convey signals from the environment into the nucleus, regulating gene expression and cell behavior. Integrins also interact with a variety of other proteins, such as growth factors, their receptors, and proteolytic enzymes. Re-epithelialization and granulation tissue formation are crucially dependent on the temporospatial function of multiple integrins. This review explains how integrins function in wound repair. Recent Advances: Certain integrins can activate latent transforming growth factor beta-1 (TGF-β1) that modulates wound inflammation and granulation tissue formation. Dysregulation of TGF-β1 function is associated with scarring and fibrotic disorders. Therefore, these integrins represent targets for therapeutic intervention in fibrosis. Critical Issues: Integrins have multifaceted functions and extensive crosstalk with other cell surface receptors and molecules. Moreover, in aberrant healing, integrins may assume different functions, further increasing the complexity of their functionality. Discovering and understanding the role that integrins play in wound healing provides an opportunity to identify the mechanisms for medical conditions, such as excessive scarring, chronic wounds, and even cancer. Future Directions: Integrin functions in acute and chronic wounds should be further addressed in models better mimicking human wounds. Application of any products in acute or chronic wounds will potentially alter integrin functions that need to be carefully considered in the design.
Collapse
Affiliation(s)
- Leeni Koivisto
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Lari Häkkinen
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Hannu Larjava
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Stemmler S, Parwez Q, Petrasch-Parwez E, Epplen JT, Hoffjan S. Association of variation in the LAMA3 gene, encoding the alpha-chain of laminin 5, with atopic dermatitis in a German case-control cohort. BMC DERMATOLOGY 2014; 14:17. [PMID: 25363238 PMCID: PMC4221780 DOI: 10.1186/1471-5945-14-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder caused by complex interaction of genetic and environmental factors. Besides mutations in the filaggrin gene, leading to impaired skin barrier function, variation in genes encoding additional skin proteins has been suggested to contribute to disease risk. Laminin 5, playing an important role in skin integrity, is composed of three subunits encoded by the LAMA3, LAMB3 and LAMC2 genes in which biallelic mutations cause epidermolysis bullosa junctionalis. We aimed at evaluating the role of variation in the LAMA3, LAMB3 and LAMC2 genes for AD pathogenesis. METHODS 29 single nucleotide polymorphisms (SNPs) were genotyped in the three genes in a German AD case-control cohort comprising 470 unrelated AD patients and 320 non-atopic controls by means of restriction enzyme digestion. Allele, genotype and haplotype frequencies were compared between cases and controls using chi-square testing and the Haploview software. RESULTS Several SNPs in the LAMA3 gene showed significant association with AD in our cohort (p <0.01), while we did not detect association with variations in the LAMB3 and LAMC2 genes. Haplotype analysis additionally revealed several significantly associated haplotypes in the LAMA3 gene. Due to extensive linkage disequilibrium, though, we were not able to further differentiate the specific disease causing variation(s) in this region. CONCLUSIONS We established the LAMA3 gene as novel potential susceptibility gene for AD. Additional studies in independent cohorts are needed to replicate these results.
Collapse
Affiliation(s)
- Susanne Stemmler
- Department of Human Genetics, Ruhr-University, Universitätsstrasse 150, 44801 Bochum, Germany
| | | | | | - Joerg T Epplen
- Department of Human Genetics, Ruhr-University, Universitätsstrasse 150, 44801 Bochum, Germany
- Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University, Universitätsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
33
|
Sproule TJ, Bubier JA, Grandi FC, Sun VZ, Philip VM, McPhee CG, Adkins EB, Sundberg JP, Roopenian DC. Molecular identification of collagen 17a1 as a major genetic modifier of laminin gamma 2 mutation-induced junctional epidermolysis bullosa in mice. PLoS Genet 2014; 10:e1004068. [PMID: 24550734 PMCID: PMC3923665 DOI: 10.1371/journal.pgen.1004068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis Bullosa (EB) encompasses a spectrum of mechanobullous disorders caused by rare mutations that result in structural weakening of the skin and mucous membranes. While gene mutated and types of mutations present are broadly predictive of the range of disease to be expected, a remarkable amount of phenotypic variability remains unaccounted for in all but the most deleterious cases. This unexplained variance raises the possibility of genetic modifier effects. We tested this hypothesis using a mouse model that recapitulates a non-Herlitz form of junctional EB (JEB) owing to the hypomorphic jeb allele of laminin gamma 2 (Lamc2). By varying normally asymptomatic background genetics, we document the potent impact of genetic modifiers on the strength of dermal-epidermal adhesion and on the clinical severity of JEB in the context of the Lamc2(jeb) mutation. Through an unbiased genetic approach involving a combination of QTL mapping and positional cloning, we demonstrate that Col17a1 is a strong genetic modifier of the non-Herlitz JEB that develops in Lamc2(jeb) mice. This modifier is defined by variations in 1-3 neighboring amino acids in the non-collagenous 4 domain of the collagen XVII protein. These allelic variants alter the strength of dermal-epidermal adhesion in the context of the Lamc2(jeb) mutation and, consequentially, broadly impact the clinical severity of JEB. Overall the results provide an explanation for how normally innocuous allelic variants can act epistatically with a disease causing mutation to impact the severity of a rare, heritable mechanobullous disorder.
Collapse
Affiliation(s)
| | - Jason A. Bubier
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Victor Z. Sun
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Vivek M. Philip
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Elisabeth B. Adkins
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | |
Collapse
|
34
|
Poulter JA, El-Sayed W, Shore RC, Kirkham J, Inglehearn CF, Mighell AJ. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta. Eur J Hum Genet 2014; 22:132-5. [PMID: 23632796 PMCID: PMC3865405 DOI: 10.1038/ejhg.2013.76] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/24/2013] [Indexed: 01/13/2023] Open
Abstract
The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.
Collapse
Affiliation(s)
- James A Poulter
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | - Walid El-Sayed
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
- Department of Oral Biology, Dental School, Suez Canal University, Ismailia, Egypt
- Department of Oral Medicine, Leeds Dental Institute, University of Leeds, Leeds, UK
| | - Roger C Shore
- Department of Oral Biology, Leeds Dental Institute, University of Leeds, Leeds, UK
| | - Jennifer Kirkham
- Department of Oral Biology, Leeds Dental Institute, University of Leeds, Leeds, UK
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
- Department of Oral Medicine, Leeds Dental Institute, University of Leeds, Leeds, UK
| |
Collapse
|
35
|
Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:327-347. [PMID: 24587971 DOI: 10.1089/wound.2012.0380] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Normal wound healing progresses through a series of overlapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. RECENT ADVANCES A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, exposed termini, and the fact that their only modifications are two disulfide bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to pharmacological modulation. CRITICAL ISSUES Chemokines are multifunctional, and in many situations, their functions are highly dependent on the microenvironment. Moreover, each specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligomers. Activation of one receptor by any single chemokine can lead to desensitization of other chemokine receptors, or even other GPCRs in the same cell, with implications for how these proteins or their receptors could be used to manipulate function. FUTURE DIRECTIONS Investment in better understanding of the functions of chemokines and their receptors in a local context can reveal new ways for therapeutic intervention. Understanding how different chemokines can activate the same receptor and vice versa could identify new possibilities for drug development based on their heterotypic interactions.
Collapse
Affiliation(s)
- Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Melissa Petreaca
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| |
Collapse
|
36
|
Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the foundation of epidermal integrity--BM functions and diverse roles of bridging molecules nidogen and perlecan. BIOMED RESEARCH INTERNATIONAL 2013; 2013:179784. [PMID: 23586018 PMCID: PMC3618921 DOI: 10.1155/2013/179784] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellular matrix (ECM) of the dermis underneath. Both compartments are connected by the basement membrane (BM), composed of a set of distinct glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding not only (i) the dermoepidermal interface but also (ii) the resident microvasculature, primarily focusing on the per se nonscaffold forming components perlecan and nidogen-1 and nidogen-2. Depletion or functional deficiencies of any BM component are lethal at some stage of development or around birth, though BM defects vary between organs and tissues. Lethality problems were overcome by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D) cocultures of normal or defective cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further "minor" local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively, orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-specific, or functional context.
Collapse
Affiliation(s)
- Dirk Breitkreutz
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | | | | | | |
Collapse
|
37
|
|
38
|
Lopez-Escobar B, De Felipe B, Sanchez-Alcazar JA, Sasaki T, Copp AJ, Ybot-Gonzalez P. Laminin and integrin expression in the ventral ectodermal ridge of the mouse embryo: implications for regulation of BMP signalling. Dev Dyn 2012; 241:1808-15. [PMID: 22911573 PMCID: PMC3629792 DOI: 10.1002/dvdy.23846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. RESULTS We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β, and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. CONCLUSIONS Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm.
Collapse
Affiliation(s)
- Beatriz Lopez-Escobar
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Yuen WY, Duipmans JC, Molenbuur B, Herpertz I, Mandema JM, Jonkman MF. Long-term follow-up of patients with Herlitz-type junctional epidermolysis bullosa. Br J Dermatol 2012; 167:374-82. [PMID: 22512697 DOI: 10.1111/j.1365-2133.2012.10997.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Junctional epidermolysis bullosa, type Herlitz (JEB-H) is a rare, autosomal recessive disease caused by absence of the epidermal basement membrane adhesion protein laminin-332. It is characterized by extensive and devastating blistering of the skin and mucous membranes, leading to death in early childhood. OBJECTIVES To present the results of the long-term follow-up of a cohort of patients with JEB-H, and to provide guidelines for prognosis, treatment and care. METHODS All patients with JEB-H included in the Dutch Epidermolysis Bullosa (EB) Registry between 1988 and 2011 were followed longitudinally by our EB team. Diagnosis was established using immunofluorescence antigen mapping, electron microscopy and DNA analysis. RESULTS In total, we included 22 patients with JEB-H over a 23-year period. Their average age at death was 5.8 months (range 0.5-32.6 months). The causes of death were, in order of frequency: failure to thrive, respiratory failure, pneumonia, dehydration, anaemia, sepsis and euthanasia. The pattern of initial weight gain was a predictor of lifespan in these patients. Invasive treatments to extend life did not promote survival in our patients. CONCLUSIONS It is important to diagnose JEB-H as soon as possible after birth so that the management can be shifted from life-saving to comfort care. The palliative end-of-life care can take place in hospital, but is also safe in the home setting. Suffering in patients with JEB-H can become so unbearable that in some patients who do not respond to adequate analgesic and sedative treatment, newborn euthanasia, performed according to the Groningen protocol, is legally permitted in the Netherlands.
Collapse
Affiliation(s)
- W Y Yuen
- Department of Dermatology, Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
41
|
Yuen WY, Lemmink HH, van Dijk-Bos KK, Sinke RJ, Jonkman MF. Herlitz junctional epidermolysis bullosa: diagnostic features, mutational profile, incidence and population carrier frequency in the Netherlands. Br J Dermatol 2011; 165:1314-22. [PMID: 21801158 DOI: 10.1111/j.1365-2133.2011.10553.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Junctional epidermolysis bullosa, type Herlitz (JEB-H) is a lethal, autosomal recessive blistering disease caused by null mutations in the genes coding for the lamina lucida/densa adhesion protein laminin-332 (LAMB3, LAMA3 and LAMC2). OBJECTIVES To present the diagnostic features and molecular analyses of all 22 patients with JEB-H in the Dutch Epidermolysis Bullosa Registry between 1988 and 2011, and to calculate the disease incidence and carrier frequency in the Netherlands. METHODS All patients were analysed with immunofluorescence antigen mapping (IF), electron microscopy (EM) and molecular analysis. RESULTS The mean lifespan of our patients with JEB-H was 5·8 months (range 0·5-32·6). IF showed absent (91%) or strongly reduced (9%) staining for laminin-332 with monoclonal antibody GB3. In EM the hemidesmosomes and sub-basal dense plates were hypoplastic or absent. We identified mutations in all 22 patients: in 19 we found LAMB3 mutations, in two LAMA3 mutations, and in one LAMC2 mutations. We found three novel splice site mutations in LAMB3: (i) c.29-2A>G resulting in an out-of-frame skip of exon 3 and a premature termination codon (PTC); (ii) c.1289-2_1296del10 leading to an out-of-frame skip of exon 12 and a PTC; and (iii) c.3228+1G>T leading to an exon 21 skip. CONCLUSIONS All diagnostic tools should be evaluated to clarify the diagnosis of JEB-H. We have identified 11 different mutations in 22 patients with JEB-H, three of them novel. In the Netherlands the incidence rate of JEB-H is 4·0 per one million live births. The carrier frequency of a JEB-H mutation in the Dutch population is 1 in 249.
Collapse
Affiliation(s)
- W Y Yuen
- Department of Dermatology, Centre for Blistering Diseases, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, the Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Yuen WY, Pas HH, Sinke RJ, Jonkman MF. Junctional epidermolysis bullosa of late onset explained by mutations in COL17A1. Br J Dermatol 2011; 164:1280-4. [PMID: 21466533 DOI: 10.1111/j.1365-2133.2011.10359.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Junctional epidermolysis bullosa of late onset (JEB-lo) is a rare disease characterized by blistering of primarily the hands and feet starting in childhood. The pathogenesis remains unclear. OBJECTIVES To clarify the pathogenesis of JEB-lo. METHODS Two patients with JEB-lo, a brother and a sister, were examined using electron microscopy (EM), immunofluorescence (IF) antigen mapping and molecular analysis. RESULTS We found subtle changes in IF antigen mapping and EM. The most remarkable changes were loss of the apical-lateral staining of monoclonal antibodies (mAbs) against type XVII collagen (Col17), and a broadened distribution of mAb staining against the ectodomain of Col17, laminin-332 and type VII collagen. Mutation analysis of COL17A1, encoding Col17, showed a compound heterozygosity for a novel mutation c.1992_1995delGGGT and the known mutation c.3908G>A in both patients. The deletion c.1992_1995delGGGT results in a premature termination codon and mRNA decay, leaving the patients functionally hemizygous for the missense mutation c.3908G>A (p.R1303Q) in the noncollagenous 4 domain of Col17. CONCLUSIONS JEB-lo is an autosomal recessive disorder caused by mutations in COL17A1, and subtle aberrations in EM and IF antigen mapping are clues to diagnosis.
Collapse
Affiliation(s)
- W Y Yuen
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Mömke S, Kerkmann A, Wöhlke A, Ostmeier M, Hewicker-Trautwein M, Ganter M, Kijas J, for the International Sheep Consortium, Distl O. A frameshift mutation within LAMC2 is responsible for Herlitz type junctional epidermolysis bullosa (HJEB) in black headed mutton sheep. PLoS One 2011; 6:e18943. [PMID: 21573221 PMCID: PMC3087721 DOI: 10.1371/journal.pone.0018943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
Junctional epidermolysis bullosa (JEB) is a hereditary mechanobullous skin disease in humans and animals. A Herlitz type JEB was identified in German Black Headed Mutton (BHM) sheep and affected lambs were reproduced in a breeding trial. Affected lambs showed skin and mucous membranes blistering and all affected lambs died within the first weeks of life. The pedigree data were consistent with a monogenic autosomal recessive inheritance. Immunofluorescence showed a reduced expression of laminin 5 protein which consists of 3 subunits encoded by the genes LAMA3, LAMB3 and LAMC2. We screened these genes for polymorphisms. Linkage and genome-wide association analyses identified LAMC2 as the most likely candidate for HJEB. A two base pair deletion within exon 18 of the LAMC2 gene (FM872310:c.2746delCA) causes a frameshift mutation resulting in a premature stop codon (p.A928*) 13 triplets downstream of this mutation and in addition, introduces an alternative splicing of exon 18 LAMC2. This deletion showed a perfect co-segregation with HJEB in all 740 analysed BHM sheep. Identification of the LAMC2 deletion means an animal model for HJEB is now available to develop therapeutic approaches of relevance to the human form of this disease.
Collapse
Affiliation(s)
- Stefanie Mömke
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Hannover, Germany
| | - Andrea Kerkmann
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Hannover, Germany
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Hannover, Germany
| | - Anne Wöhlke
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Hannover, Germany
| | - Miriam Ostmeier
- Institute for Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Hannover, Germany
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, St. Lucia, Brisbane, Queensland, Australia
| | | | - Ottmar Distl
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
44
|
Copp AJ, Carvalho R, Wallace A, Sorokin L, Sasaki T, Greene ND, Ybot-Gonzalez P. Regional differences in the expression of laminin isoforms during mouse neural tube development. Matrix Biol 2011; 30:301-9. [PMID: 21524702 PMCID: PMC3565558 DOI: 10.1016/j.matbio.2011.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 01/13/2023]
Abstract
Many significant human birth defects originate around the time of neural tube closure or early during post-closure nervous system development. For example, failure of the neural tube to close generates anencephaly and spina bifida, faulty cell cycle progression is implicated in primary microcephaly, while defective migration of neuroblasts can lead to neuronal migration disorders such as lissencephaly. At the stage of neural tube closure, basement membranes are becoming organised around the neuroepithelium, and beneath the adjacent non-neural surface ectoderm. While there is circumstantial evidence to implicate basement membrane dynamics in neural tube and surface ectodermal development, we have an incomplete understanding of the molecular composition of basement membranes at this stage. In the present study, we examined the developing basement membranes of the mouse embryo at mid-gestation (embryonic day 9.5), with particular reference to laminin composition. We performed in situ hybridization to detect the mRNAs of all eleven individual laminin chains, and immunohistochemistry to identify which laminin chains are present in the basement membranes. From this information, we inferred the likely laminin variants and their tissues of origin: that is, whether a given basement membrane laminin is contributed by epithelium, mesenchyme, or both. Our findings reveal major differences in basement composition along the body axis, with the rostral neural tube (at mandibular arch and heart levels) exhibiting many distinct laminin variants, while the lumbar level where the neural tube is just closing shows a much simpler laminin profile. Moreover, there appears to be a marked difference in the extent to which the mesenchyme contributes laminin variants to the basement membrane, with potential contribution of several laminins rostrally, but no contribution caudally. This information paves the way towards a mechanistic analysis of basement membrane laminin function during early neural tube development in mammals.
Collapse
Affiliation(s)
- Andrew J. Copp
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Rita Carvalho
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Adam Wallace
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Australia
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Takako Sasaki
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nürnberg, Glueckstr.6, D-91054 Erlangen, Germany
| | - Nicholas D.E. Greene
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Patricia Ybot-Gonzalez
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Departamento de Pediatria, Hospital Infantil Virgen del Rocio, Sevilla, Spain
| |
Collapse
|
45
|
Niculescu C, Ganguli-Indra G, Pfister V, Dupé V, Messaddeq N, De Arcangelis A, Georges-Labouesse E. Conditional ablation of integrin alpha-6 in mouse epidermis leads to skin fragility and inflammation. Eur J Cell Biol 2011; 90:270-7. [DOI: 10.1016/j.ejcb.2010.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/15/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022] Open
|
46
|
Margadant C, Charafeddine RA, Sonnenberg A. Unique and redundant functions of integrins in the epidermis. FASEB J 2010; 24:4133-52. [DOI: 10.1096/fj.09-151449] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Coert Margadant
- Division of Cell BiologyThe Netherlands Cancer Institute Amsterdam The Netherlands
| | | | - Arnoud Sonnenberg
- Division of Cell BiologyThe Netherlands Cancer Institute Amsterdam The Netherlands
| |
Collapse
|
47
|
Evans MJ, Fanucchi MV, Miller LA, Carlson MA, Nishio SJ, Hyde DM. Reduction of collagen VII anchoring fibrils in the airway basement membrane zone of infant rhesus monkeys exposed to house dust mite. Am J Physiol Lung Cell Mol Physiol 2010; 298:L543-7. [PMID: 20139177 DOI: 10.1152/ajplung.00337.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collagen VII anchoring fibrils in the basement membrane zone (BMZ) are part of a supracellular anchoring network that attaches the epithelium to the BMZ. Sloughing of airway epithelium in asthmatics (creola bodies) is a pathology associated with the supracellular anchoring network. In a rhesus monkey model of house dust mite (HDM)-induced allergic asthma, we found increased deposition of collagen I in the BMZ. In this study, we determine whether HDM also affected deposition of collagen VII in the BMZ. In the developing airway of rhesus monkeys, the width of collagen VII anchoring fibrils in the BMZ was 0.02 +/- 0.04 microm at 1 mo of age. At 6 mo the width had increased to 1.28 +/- 0.34 microm and at 12 mo 2.15 +/- 0.13 microm. In animals treated with HDM, we found a 42.2% reduction in the width of collagen VII layer in the BMZ at 6 mo (0.74 +/- 0.15 microm; P < 0.05). During recovery, the rate of collagen VII deposition returned to normal. However, the amount of collagen VII lost was not recovered after 6 mo. We concluded that normal development of the collagen VII attachment between the epithelium and BMZ occurs in coordination with development of the BMZ. However, in HDM-treated animals, the collagen VII attachment with the epithelium was significantly reduced. Such a reduction in collagen VII may weaken the supracellular anchoring network and be associated with sloughing of the epithelium and formation of creola bodies in asthmatics.
Collapse
Affiliation(s)
- Michael J Evans
- California National Primate Research Center and Center for Comparative Respiratory Biology and Medicine, Universitof California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Shakarjian MP, Heck DE, Gray JP, Sinko PJ, Gordon MK, Casillas RP, Heindel ND, Gerecke DR, Laskin DL, Laskin JD. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol Sci 2009; 114:5-19. [PMID: 19833738 DOI: 10.1093/toxsci/kfp253] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Guess CM, Quaranta V. Defining the role of laminin-332 in carcinoma. Matrix Biol 2009; 28:445-55. [PMID: 19686849 PMCID: PMC2875997 DOI: 10.1016/j.matbio.2009.07.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/10/2023]
Abstract
The deadly feature of cancer, metastasis, requires invasion of cells through basement membranes (BM), which normally act as barriers between tissue compartments. In the case of many epithelially-derived cancers (carcinomas), laminin-332 (Ln-332) is a key component of the BM barrier. This review provides a historical examination of Ln-332 from its discovery through identification of its functions in BM and possible role in carcinomas. Current understanding points to distinct roles for the three Ln-332 subunits (alpha3, beta3, gamma2) in cell adhesion, extracellular matrix stability, and cell signaling processes in cancer. Given the large number of studies linking Ln-332 gamma2 subunit with cancer prognosis, particular attention is given to the crucial role of this subunit in cancer invasion and to the unanswered questions in this area.
Collapse
Affiliation(s)
- Cherise M Guess
- Meharry Medical College, Department of Microbial Pathogenesis & Immune Response; Nashville, TN 37232-6840, USA.
| | | |
Collapse
|
50
|
Desai LP, White SR, Waters CM. Mechanical stretch decreases FAK phosphorylation and reduces cell migration through loss of JIP3-induced JNK phosphorylation in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L520-9. [PMID: 19574423 DOI: 10.1152/ajplung.00076.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
JNK is a nonreceptor kinase involved in the early events that signal cell migration after injury. However, the linkage to early signals required to initiate the migration response to JNK has not been defined in airway epithelial cells, which exist in an environment subjected to cyclic mechanical strain (MS). The present studies demonstrate that the JNK/stress-activated protein kinase-associated protein 1 (JSAP1; also termed JNK-interacting protein 3, JIP3), a scaffold factor for MAPK cascades that links JNK activation to focal adhesion kinase (FAK), are both associated and activated following mechanical injury in 16HBE14o- human airway epithelial cells and that both FAK and JIP3 phosphorylation seen after injury are decreased in cells subjected to cyclic MS. Overexpression of either wild-type (WT)-FAK or WT-JIP3 enhanced phosphorylation and kinase activation of JNK and reduced the inhibitory effect of cyclic MS. These results suggest that cyclic MS impairs signaling of cell migration after injury via a pathway that involves FAK-JIP3-JNK.
Collapse
Affiliation(s)
- Leena P Desai
- Dept. of Physiology, The Univ. of Tennessee Health Science Center, 894 Union Ave, Rm. 426, Memphis, TN 38163-0001, USA
| | | | | |
Collapse
|