1
|
Stellacci E, Carter JN, Pannone L, Stevenson D, Moslehi D, Venanzi S, Undiagnosed Diseases Network, Bernstein JA, Tartaglia M, Martinelli S. Immunological and hematological findings as major features in a patient with a new germline pathogenic CBL variant. Am J Med Genet A 2024; 194:e63627. [PMID: 38613168 PMCID: PMC11223960 DOI: 10.1002/ajmg.a.63627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.
Collapse
Affiliation(s)
- Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| | - Jennefer N. Carter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- These authors equally contributed to this work
| | - Luca Pannone
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - David Stevenson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dorsa Moslehi
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
| | - Serenella Venanzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jonathan A. Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- These authors equally contributed to this work
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| |
Collapse
|
2
|
Abstract
Many receptor tyrosine kinases (RTKs, such as EGFR, MET) are negatively regulated by ubiquitination and degradation mediated by Cbl proteins, a family of RING finger (RF) ubiquitin ligases (E3s). Loss of Cbl protein function is associated with malignant transformation driven by increased RTK activity. RF E3s, such as the Cbl proteins, interact with a ubiquitin-conjugating enzyme (E2) to confer specificity to the ubiquitination process and direct the transfer of ubiquitin from the E2 to one or more lysines on the target proteins. Using in vitro E3 assays and yeast two-hybrid screens, we found that Ube2d, Ube2e families, Ube2n/2v1, and Ube2w catalyze autoubiquitination of the Cbl protein and Ube2d2, Ube2e1, and Ube 2n/2v1 catalyze Cbl-mediated substrate ubiquitination of the EGFR and SYK. Phosphorylation of the Cbl protein by by Src resulted in increased E3 activity compared to unphosphorylated cbl or Cbl containing a phosphomimetic Y371E mutation. Ubiquitin chain formation depended on the E2 tested with Cbl with Ube2d2 forming both K48 and K63 linked chains, Ube2n/2v1 forming only K63 linked chains, and Ube2w inducing monoubiquitination. In cells, the Ube2d family, Ube2e family, and Ube2n/2v1 contributed to EGFR ubiquitination. Our data suggest that multiple E2s can interact with Cbl and modulate its E3 activity in vitro and in cells.
Collapse
|
3
|
Abstract
Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
- Département de Pathologie et de Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
| |
Collapse
|
4
|
Tidyman WE, Rauen KA. Pathogenetics of the RASopathies. Hum Mol Genet 2016; 25:R123-R132. [PMID: 27412009 DOI: 10.1093/hmg/ddw191] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 01/26/2023] Open
Abstract
The RASopathies are defined as a group of medical genetics syndromes that are caused by germ-line mutations in genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) pathway. Taken together, the RASopathies represent one of the most prevalent groups of malformation syndromes affecting greater than 1 in 1,000 individuals. The Ras/MAPK pathway has been well studied in the context of cancer as it plays essential roles in growth, differentiation, cell cycle, senescence and apoptosis, all of which are also critical to normal development. The consequence of germ-line dysregulation leads to phenotypic alterations of development. RASopathies can be caused by several pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. These pathogenetic mechanisms can include functional alteration of GTPases, Ras GTPase-activating proteins, Ras guanine exchange factors, kinases, scaffolding or adaptor proteins, ubiquitin ligases, phosphatases and pathway inhibitors. Although these mechanisms are diverse, the common underlying biochemical phenotype shared by all the RASopathies is Ras/MAPK pathway activation. This results in the overlapping phenotypic features among these syndromes.
Collapse
Affiliation(s)
- William E Tidyman
- Division of Behavioral and Developmental Pediatrics, Department of Pediatrics UC Davis MIND Institute, Sacramento, CA 95817, USA
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA, USA UC Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Seong MW, Ka SH, Park JH, Park JH, Yoo HM, Yang SW, Park JM, Park D, Lee ST, Seol JH, Chung CH. Deleterious c-Cbl Exon Skipping Contributes to Human Glioma. Neoplasia 2016; 17:518-24. [PMID: 26152360 PMCID: PMC4719003 DOI: 10.1016/j.neo.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022] Open
Abstract
c-Cbl, a RING-type ubiquitin E3 ligase, downregulates various receptor tyrosine kinases (e.g., epidermal growth factor receptor (EGFR)), leading to inhibition of cell proliferation. Moreover, patients with myeloid neoplasm frequently harbor c-Cbl mutations, implicating the role of c-Cbl as a tumor suppressor. Recently, we have shown that c-Cbl downregulates αPix-mediated cell migration and invasion, and the lack of c-Cbl in the rat C6 and human A172 glioma cells is responsible for their malignant behavior. Here, we showed that c-Cbl exon skipping occurs in the glioma cells and the brain tissues from glioblastoma patients lacking c-Cbl. This exon skipping resulted in generation of two types of c-Cbl isoforms: type I lacking exon-9 and type II lacking exon-9 and exon-10. However, the c-Cbl isoforms in the cells and tissues could not be detected as they were rapidly degraded by proteasome. Consequently, C6 and A172 cells showed sustained EGFR activation. However, no splice site mutation was found in the region from exon-7 to exon-11 of the c-Cbl gene in C6 cells and a glioblastoma tissue lacking c-Cbl. In addition, c-Cbl exon skipping could be induced when cells transfected with a c-Cbl mini-gene were grown to high density or under hypoxic stress. These results suggest that unknown alternations (e.g., mutation) of splicing machinery in C6 and A172 cells and the glioblastoma brain tissues are responsible for the deleterious exon skipping. Collectively, these findings indicate that the c-Cbl exon skipping contributes to human glioma and its malignant behavior.
Collapse
Affiliation(s)
- Min Woo Seong
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Seung Hyeun Ka
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Ji Ho Park
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jong Ho Park
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Hee Min Yoo
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Seung Wook Yang
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jung Mi Park
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Dongeun Park
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Soon Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Jae Hong Seol
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea.
| | - Chin Ha Chung
- School of Biological Sciences and Institute for Protein Metabolism and Diseases, College of Natural Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
6
|
Martinelli S, Stellacci E, Pannone L, D'Agostino D, Consoli F, Lissewski C, Silvano M, Cencelli G, Lepri F, Maitz S, Pauli S, Rauch A, Zampino G, Selicorni A, Melançon S, Digilio MC, Gelb BD, De Luca A, Dallapiccola B, Zenker M, Tartaglia M. Molecular Diversity and Associated Phenotypic Spectrum of Germline CBL Mutations. Hum Mutat 2015; 36:787-96. [PMID: 25952305 DOI: 10.1002/humu.22809] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/30/2015] [Indexed: 01/11/2023]
Abstract
Noonan syndrome (NS) is a relatively common developmental disorder with a pleomorphic phenotype. Mutations causing NS alter genes encoding proteins involved in the RAS-MAPK pathway. We and others identified Casitas B-lineage lymphoma proto-oncogene (CBL), which encodes an E3-ubiquitin ligase acting as a tumor suppressor in myeloid malignancies, as a disease gene underlying a condition clinically related to NS. Here, we further explored the spectrum of germline CBL mutations and their associated phenotype. CBL mutation scanning performed on 349 affected subjects with features overlapping NS and no mutation in NS genes allowed the identification of five different variants with pathological significance. Among them, two splice-site changes, one in-frame deletion, and one missense mutation affected the RING domain and/or the adjacent linker region, overlapping cancer-associated defects. A novel nonsense mutation generating a v-Cbl-like protein able to enhance signal flow through RAS was also identified. Genotype-phenotype correlation analysis performed on available records indicated that germline CBL mutations cause a variable phenotype characterized by a relatively high frequency of neurological features, predisposition to juvenile myelomonocytic leukemia, and low prevalence of cardiac defects, reduced growth, and cryptorchidism. Finally, we excluded a major contribution of two additional members of the CBL family, CBLB and CBLC, to NS and related disorders.
Collapse
Affiliation(s)
- Simone Martinelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Stellacci
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pannone
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy.,Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Daniela D'Agostino
- Department of Medical Genetics, McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Federica Consoli
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy.,Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza, Rome, Italy
| | - Christina Lissewski
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marianna Silvano
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Cencelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | | | - Silvia Maitz
- Dipartimento di Pediatria, Genetica Clinica, Ospedale S. Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Silke Pauli
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Selicorni
- Dipartimento di Pediatria, Genetica Clinica, Ospedale S. Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Serge Melançon
- Department of Medical Genetics, McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Alessandro De Luca
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza, Rome, Italy
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Klemke CD, Feoktistova M, Leverkus M. Silencing autocrine death: a ubiquitin ligase that blocks activation-induced cell death in cutaneous T-cell lymphoma. J Invest Dermatol 2015; 135:662-665. [PMID: 25666675 DOI: 10.1038/jid.2014.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) tumor cells lack the ability of activated T cells to undergo TCR/CD3-mediated activation-induced cell death (AICD). In this issue, the study reported by Wu et al. demonstrates that c-CBL (Casitas B-lineage Lymphoma proto-oncogene) is overexpressed in CTCL. When CTCL cells lose c-CBL, AICD is enhanced. Furthermore, combination therapy with methotrexate (a known demethylating agent for the CD95 gene) in combination with the loss of c-CBL increases CTCL cell death. Therefore, inhibition of c-CBL could represent a method of sensitizing lymphoma cells to enhance AICD. Armed with their novel data, the investigators envision combination therapies that target c-CBL to reactivate AICD in the malignant T cells whenever responsiveness to TCR/CD3 signaling is retained.
Collapse
Affiliation(s)
- Claus-Detlev Klemke
- Departments of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Maria Feoktistova
- Section of Molecular Dermatology, Departments of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Martin Leverkus
- Departments of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany; Section of Molecular Dermatology, Departments of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| |
Collapse
|
8
|
Noble M, Mayer-Pröschel M, Li Z, Dong T, Cui W, Pröschel C, Ambeskovic I, Dietrich J, Han R, Yang YM, Folts C, Stripay J, Chen HY, Stevens BM. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment. Free Radic Biol Med 2015; 79:300-23. [PMID: 25481740 PMCID: PMC10173888 DOI: 10.1016/j.freeradbiomed.2014.10.860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Zaibo Li
- Department of Pathology, Ohio State University Wexner Medical Center, 410W 10th Avenue, E403 Doan Hall, Columbus, OH 43210-1240, USA.
| | - Tiefei Dong
- University of Michigan Tech Transfer, 1600 Huron Pkwy, 2nd Floor, Building 520, Ann Arbor, MI 48109-2590, USA.
| | - Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine,10 South Pine Street, MSTF Room 600, Baltimore, MD 21201, USA.
| | - Christoph Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Ibro Ambeskovic
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Joerg Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 9E, Boston, MA 02114, USA.
| | - Ruolan Han
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Yin Miranda Yang
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Christopher Folts
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jennifer Stripay
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Hsing-Yu Chen
- Harvard Medical School, Department of Cell Biology 240 Longwood Avenue Building C1, Room 513B Boston, MA 02115, USA.
| | - Brett M Stevens
- University of Colorado School of Medicine, Division of Hematology, 12700 E. 19th Avenue, Campus Box F754-AMCA, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Stevens BM, Folts CJ, Cui W, Bardin AL, Walter K, Carson-Walter E, Vescovi A, Noble M. Cool-1-mediated inhibition of c-Cbl modulates multiple critical properties of glioblastomas, including the ability to generate tumors in vivo. Stem Cells 2014; 32:1124-35. [PMID: 24458840 DOI: 10.1002/stem.1644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 11/23/2013] [Accepted: 12/16/2013] [Indexed: 11/08/2022]
Abstract
We discovered that glioblastoma (GBM) cells use Cool-1/β-pix to inhibit normal activation of the c-Cbl ubiquitin ligase via the redox/Fyn/c-Cbl pathway and that c-Cbl inhibition is critical for GBM cell function. Restoring normal c-Cbl activity by Cool-1 knockdown in vitro reduced GBM cell division, almost eliminated generation of adhesion-independent spheroids, reduced the representation of cells expressing antigens thought to identify tumor initiating cells (TICs), reduced levels of several proteins of critical importance in TIC function (such as Notch-1 and Sox2), and increased sensitivity to BCNU (carmustine) and temozolomide (TMZ). In vivo, Cool-1 knockdown greatly suppressed the ability of GBM cells to generate tumors, an outcome that was c-Cbl dependent. In contrast, Cool-1 knockdown did not reduce division or increase BCNU or TMZ sensitivity in primary glial progenitor cells and Cool-1/c-Cbl complexes were not found in normal brain tissue. Our studies provide the first evidence that Cool-1 may be critical in the biology of human tumors, that suppression of c-Cbl by Cool-1 may be critical for generation of at least a subset of GBMs and offer a novel target that appears to be selectively necessary for TIC function and modulates chemoresistance in GBM cells. Targeting such proteins that inhibit c-Cbl offers potentially attractive opportunities for therapeutic development.
Collapse
Affiliation(s)
- Brett M Stevens
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chung BM, Tom E, Zutshi N, Bielecki TA, Band V, Band H. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants. World J Clin Oncol 2014; 5:806-823. [PMID: 25493220 PMCID: PMC4259944 DOI: 10.5306/wjco.v5.i5.806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/19/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy.
Collapse
|
11
|
Seong MW, Park JH, Yoo HM, Yang SW, Oh KH, Ka SH, Park DE, Lee ST, Chung CH. c-Cbl regulates αPix-mediated cell migration and invasion. Biochem Biophys Res Commun 2014; 455:153-8. [PMID: 25450678 DOI: 10.1016/j.bbrc.2014.10.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 12/23/2022]
Abstract
c-Cbl, a RING-type ubiquitin E3 ligase, down-regulates receptor tyrosine kinases, including EGF receptor, and inhibits cell proliferation. Moreover, c-Cbl mutations are frequently found in patients with myeloid neoplasm. Therefore, c-Cbl is known as a tumor suppressor. αPix is expressed only in highly proliferative and mobile cells, including immune cells, and up-regulated in certain invasive tumors, such as glioblastoma multiforme. Here, we showed that c-Cbl serves as an ubiquitin E3 ligase for proteasome-mediated degradation of αPix, but not βPix. Remarkably, the rat C6 and human A172 glioma cells were unable to express c-Cbl, which leads to a dramatic accumulation of αPix. Depletion of αPix by shRNA markedly reduced the ability of the glioma cells to migrate and invade, whereas complementation of shRNA-insensitive αPix promoted it. These results indicate that c-Cbl negatively regulates αPix-mediated cell migration and invasion and the lack of c-Cbl in the C6 and A172 glioma cells is responsible for their malignant behavior.
Collapse
Affiliation(s)
- Min Woo Seong
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Ho Park
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Min Yoo
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Wook Yang
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyu Hee Oh
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Hyeun Ka
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dong Eun Park
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Chin Ha Chung
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
12
|
Abstract
The RASopathies are a clinically defined group of medical genetic syndromes caused by germline mutations in genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) pathway. These disorders include neurofibromatosis type 1, Noonan syndrome, Noonan syndrome with multiple lentigines, capillary malformation-arteriovenous malformation syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, and Legius syndrome. Because of the common underlying Ras/MAPK pathway dysregulation, the RASopathies exhibit numerous overlapping phenotypic features. The Ras/MAPK pathway plays an essential role in regulating the cell cycle and cellular growth, differentiation, and senescence, all of which are critical to normal development. Therefore, it is not surprising that Ras/MAPK pathway dysregulation has profound deleterious effects on both embryonic and later stages of development. The Ras/MAPK pathway has been well studied in cancer and is an attractive target for small-molecule inhibition to treat various malignancies. The use of these molecules to ameliorate developmental defects in the RASopathies is under consideration.
Collapse
Affiliation(s)
- Katherine A Rauen
- Department of Pediatrics, Division of Medical Genetics, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94115;
| |
Collapse
|
13
|
Gäbler K, Behrmann I, Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2:e25025. [PMID: 24069563 PMCID: PMC3772115 DOI: 10.4161/jkst.25025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
The Janus kinase 2 (JAK2) mutant V617F and other JAK mutants are found in patients with myeloproliferative neoplasms and leukemias. Due to their involvement in neoplasia and inflammatory disorders, Janus kinases are promising targets for kinase inhibitor therapy. Several small-molecule compounds are evaluated in clinical trials for myelofibrosis, and ruxolitinib (INCB018424, Jakafi®) was the first Janus kinase inhibitor to receive clinical approval. In this review we provide an overview of JAK2V617F signaling and its inhibition by small-molecule kinase inhibitors. In addition, myeloproliferative neoplasms are discussed regarding the role of JAK2V617F and other mutant proteins of possible relevance. We further give an overview about treatment options with special emphasis on possible combination therapies.
Collapse
Affiliation(s)
- Karoline Gäbler
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Iris Behrmann
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Claude Haan
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| |
Collapse
|
14
|
Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J 2013; 32:2140-57. [PMID: 23799367 PMCID: PMC3730230 DOI: 10.1038/emboj.2013.149] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022] Open
Abstract
How the cell converts graded signals into threshold-activated responses is a question of great biological relevance. Here, we uncover a nonlinear modality of epidermal growth factor receptor (EGFR)-activated signal transduction, by demonstrating that the ubiquitination of the EGFR at the PM is threshold controlled. The ubiquitination threshold is mechanistically determined by the cooperative recruitment of the E3 ligase Cbl, in complex with Grb2, to the EGFR. This, in turn, is dependent on the simultaneous presence of two phosphotyrosines, pY1045 and either one of pY1068 or pY1086, on the same EGFR moiety. The dose–response curve of EGFR ubiquitination correlate precisely with the non-clathrin endocytosis (NCE) mode of EGFR internalization. Finally, EGFR-NCE mechanistically depends on EGFR ubiquitination, as the two events can be simultaneously re-engineered on a phosphorylation/ubiquitination-incompetent EGFR backbone. Since NCE controls the degradation of the EGFR, our findings have implications for how the cell responds to increasing levels of EGFR signalling, by varying the balance of receptor signalling and degradation/attenuation. The amount of EGF present for binding to its receptor governs an on–off switch of EGFR ubiquitination and hence ligand-controlled non-clathrin-mediated endocytosis and EGFR degradation.
Collapse
|
15
|
Abstract
Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work.
Collapse
Affiliation(s)
- Lai Kuan Goh
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
16
|
Chen HY, Yang YM, Stevens BM, Noble M. Inhibition of redox/Fyn/c-Cbl pathway function by Cdc42 controls tumour initiation capacity and tamoxifen sensitivity in basal-like breast cancer cells. EMBO Mol Med 2013; 5:723-36. [PMID: 23606532 PMCID: PMC3662315 DOI: 10.1002/emmm.201202140] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/14/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
We found that basal-like breast cancer (BLBC) cells use Cdc42 to inhibit function of the redox/Fyn/c-Cbl (RFC) pathway, which normally functions to convert small increases in oxidative status into enhanced degradation of c-Cbl target proteins. Restoration of RFC pathway function by genetic or pharmacological Cdc42 inhibition enabled harnessing of pro-oxidant effects of low µM tamoxifen (TMX) concentrations - concentrations utilized in trials on multiple tumour types - to suppress division and induce death of BLBC cells in vitro and to confer TMX sensitivity in vivo through oestrogen receptor-α-independent mechanisms. Cdc42 knockdown also inhibited generation of mammospheres in vitro and tumours in vivo, demonstrating the additional importance of this pathway in tumour initiating cell (TIC) function. These findings provide a new regulatory pathway that is subverted in cancer cells, a novel means of attacking TIC and non-TIC aspects of BLBCs, a lead molecule (ML141) that confers sensitivity to low µM TMX in vitro and in vivo and also appear to be novel in enhancing sensitivity to a non-canonical mode of action of an established therapeutic agent.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
17
|
Smith CJ, Berry DM, McGlade CJ. The E3 ubiquitin ligases RNF126 and Rabring7 regulate endosomal sorting of the epidermal growth factor receptor. J Cell Sci 2013; 126:1366-80. [PMID: 23418353 DOI: 10.1242/jcs.116129] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) results in internalization and ubiquitin-dependent endosomal sorting, leading to lysosomal degradation. Here we describe the role of the RING-finger-domain-containing protein RNF126 and the related protein, Rabring7 in EGFR endosomal sorting. We demonstrate that RNF126 specifies K48-linked chains with UbcH5b and also functions with Ubc13/Uev1a to form K63-linked chains in vitro. RNF126 and Rabring7 associate with the EGFR through a ubiquitin-binding zinc finger domain and both E3 ubiquitin ligases promote ubiquitylation of EGFR. In the absence of c-Cbl or in cells expressing Cbl-70Z, the binding of RNF126 and Rabring7 to the EGFR is reduced, suggesting that RNF126 and Rabring7 function downstream of c-Cbl. In HeLa cells depleted of either RNF126 or Rabring7 the EGFR is retained in a late endocytic compartment and is inefficiently degraded. In addition, depletion of RNF126 or Rabring7 destabilizes ESCRT-II and reduces the number of multivesicular bodies formed after EGF stimulation. We also show that the depletion of Rabring7 attenuates the degradation of MET and that both RNF126 and Rabring7 regulate the sorting of CXCR4 from an early endocytic compartment. Together these data suggest that RNF126 and Rabring7 play a role in the ubiquitin-dependent sorting and downregulation of membrane receptors.
Collapse
Affiliation(s)
- Christopher J Smith
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | | |
Collapse
|
18
|
Abstract
Noonan syndrome is a genetic multisystem disorder characterised by distinctive facial features, developmental delay, learning difficulties, short stature, congenital heart disease, renal anomalies, lymphatic malformations, and bleeding difficulties. Mutations that cause Noonan syndrome alter genes encoding proteins with roles in the RAS-MAPK pathway, leading to pathway dysregulation. Management guidelines have been developed. Several clinically relevant genotype-phenotype correlations aid risk assessment and patient management. Increased understanding of the pathophysiology of the disease could help development of pharmacogenetic treatments.
Collapse
Affiliation(s)
- Amy E Roberts
- Department of Cardiology and Division of Genetics, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
19
|
Ashton-Beaucage D, Therrien M. [The greater RTK/RAS/ERK signalling pathway: how genetics has helped piece together a signalling network]. Med Sci (Paris) 2011; 26:1067-73. [PMID: 21187046 DOI: 10.1051/medsci/201026121067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cells respond to changes in their environment, to developmental cues and to pathogen aggression through the action of a complex network of proteins. These networks can be split into a multitude of signalling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signalling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signalling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the poorly known contribution of these multicellular organisms to our understanding of what has become a prototype in cell signalling as well as to the more recent description of the complex network of regulators that is now known to govern RTK/RAS/ERK signalling.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institut de recherche en immunologie et cancérologie, Département de pathologie et biologie cellulaire, Université de Montréal, CP 6128, succursale centre-ville, Montréal, Québec, H3C 3J7 Canada
| | | |
Collapse
|
20
|
Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, Caputo V, Silvano M, Buscherini F, Consoli F, Ferrara G, Digilio MC, Cavaliere ML, van Hagen JM, Zampino G, van der Burgt I, Ferrero GB, Mazzanti L, Screpanti I, Yntema HG, Nillesen WM, Savarirayan R, Zenker M, Dallapiccola B, Gelb BD, Tartaglia M. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 2010; 87:250-7. [PMID: 20619386 PMCID: PMC2917705 DOI: 10.1016/j.ajhg.2010.06.015] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 02/06/2023] Open
Abstract
RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies.
Collapse
Affiliation(s)
- Simone Martinelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Alessandro De Luca
- Ospedale “Casa Sollievo della Sofferenza” IRCCS, San Giovanni Rotondo,71013, Italy
| | - Emilia Stellacci
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cesare Rossi
- Unità Operativa Genetica Medica, Policlinico S. Orsola-Malpighi, Bologna, 40138, Italy
| | - Saula Checquolo
- Dipartimento di Medicina Sperimentale, Università “La Sapienza,” Rome 00161, Italy
| | - Francesca Lepri
- Ospedale “Casa Sollievo della Sofferenza” IRCCS, San Giovanni Rotondo,71013, Italy
| | - Viviana Caputo
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Marianna Silvano
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Francesco Buscherini
- Unità Operativa Genetica Medica, Policlinico S. Orsola-Malpighi, Bologna, 40138, Italy
| | - Federica Consoli
- Ospedale “Casa Sollievo della Sofferenza” IRCCS, San Giovanni Rotondo,71013, Italy
| | - Grazia Ferrara
- Dipartimento di Medicina Sperimentale, Università “La Sapienza,” Rome 00161, Italy
| | | | - Maria L. Cavaliere
- Unità Operativa Genetica Medica, Ospedale “A. Cardarelli,” Naples 80131, Italy
| | - Johanna M. van Hagen
- Department of Human Genetics, Vrije Universiteit University Medical Center, Amsterdam 1007, The Netherlands
| | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Ineke van der Burgt
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6500, The Netherlands
| | | | - Laura Mazzanti
- Dipartimento di Pediatria, Università di Bologna, Bologna 40138, Italy
| | - Isabella Screpanti
- Dipartimento di Medicina Sperimentale, Università “La Sapienza,” Rome 00161, Italy
| | - Helger G. Yntema
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6500, The Netherlands
| | - Willy M. Nillesen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6500, The Netherlands
| | - Ravi Savarirayan
- Genetic Health Services Victoria and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3052, Melbourne, Australia
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Magdeburg 39120, Germany
| | | | - Bruce D. Gelb
- Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| |
Collapse
|
21
|
New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases. Blood 2010; 116:2429-37. [PMID: 20581310 DOI: 10.1182/blood-2010-04-279752] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A large number of alterations in genes encoding receptor tyrosine kinase (RTK), namely FLT3, c-KIT, platelet-derived growth factor (PDGF) receptors, fibroblast growth factor (FGF) receptors, and the anaplastic large cell lymphoma kinase (ALK), have been found in hematopoietic malignancies. They have drawn much attention after the development of tyrosine kinase inhibitors. RTK gene alterations include point mutations and gene fusions that result from chromosomal rearrangements. In both cases, they activate the kinase domain in the absence of ligand, producing a permanent signal for cell proliferation. Recently, this simple model has been refined. First, by contrast to wild-type RTK, many mutated RTK do not seem to signal from the plasma membrane, but from various locations inside the cell. Second, their signal transduction properties are altered: the pathways that are crucial for cell transformation, such as signal transducer and activator of transcription (STAT) factors, do not necessarily contribute to the physiologic functions of these receptors. Finally, different mechanisms prevent the termination of the signal, which normally occurs through receptor ubiquitination and degradation. Several mutations inactivating CBL, a key RTK E3 ubiquitin ligase, have been recently described. In this review, we discuss the possible links among RTK trafficking, signaling, and degradation in leukemic cells.
Collapse
|
22
|
Truitt L, Freywald T, DeCoteau J, Sharfe N, Freywald A. The EphB6 receptor cooperates with c-Cbl to regulate the behavior of breast cancer cells. Cancer Res 2010; 70:1141-53. [PMID: 20086179 DOI: 10.1158/0008-5472.can-09-1710] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer invasiveness plays a major role in the mortality of patients with solid tumors, and deregulated cell adhesion and migration are suspected to drive invasive behavior. Since Eph receptor tyrosine kinases control both cell attachment and migration, they may act to define the level of cancer invasiveness. EphB6 is an unusual Eph receptor, lacking catalytic capacity due to alterations in its kinase domain. Interestingly, increased metastatic activity is associated with reduced EphB6 receptor expression in several tumor types, including breast cancer. This emphasizes the potential of EphB6 to act as a suppressor of cancer aggressiveness; however, the mechanism of its action is not well understood. We show that restoration of EphB6 expression in invasive breast cancer cells supports actin-dependent spreading and attachment and blocks invasiveness. EphB6 stimulation induces its tyrosine phosphorylation, which is crucial for its function and is mediated by the EphB4 receptor. This is accompanied by EphB6-c-Cbl interaction and phosphorylation of c-Cbl partner, the Abl kinase. Cbl silencing suppresses Abl phosphorylation, cell adhesion, and morphologic changes and blocks the ability of EphB6 to inhibit invasiveness, confirming its importance for EphB6 activity. Despite its crucial role in EphB6 responses, EphB4 also acts in an EphB6-independent manner to enhance invasive activity, suggesting that cancer invasiveness may be defined by the balance in the EphB6-EphB4 system. Overall, our observations suggest a new role for EphB6 in suppressing cancer invasiveness through c-Cbl-dependent signaling, morphologic changes, and cell attachment and indicate that EphB6 may represent a useful prognostic marker and a promising target for therapeutic approaches.
Collapse
Affiliation(s)
- Luke Truitt
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | | | | | | | | |
Collapse
|
23
|
Toffalini F, Kallin A, Vandenberghe P, Pierre P, Michaux L, Cools J, Demoulin JB. The fusion proteins TEL-PDGFRbeta and FIP1L1-PDGFRalpha escape ubiquitination and degradation. Haematologica 2009; 94:1085-93. [PMID: 19644140 DOI: 10.3324/haematol.2008.001149] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chimeric oncogenes encoding constitutively active protein tyrosine kinases are associated with chronic myeloid neoplasms. TEL-PDGFRbeta (TPbeta, also called ETV6-PDGFRB) is a hybrid protein produced by the t(5;12) translocation, FIP1L1-PDGFRalpha (FPalpha) results from a deletion on chromosome 4q12 and ZNF198-FGFR1 is created by the t(8;13) translocation. These fusion proteins are found in patients with myeloid neoplasms associated with eosinophilia. Wild-type receptor tyrosine kinases are efficiently targeted for degradation upon activation, in a process that requires Cbl-mediated monoubiquitination of receptor lysines. Since protein degradation pathways have been identified as useful targets for cancer therapy, the aim of this study was to compare the degradation of hybrid and wild-type receptor tyrosine kinases. DESIGN AND METHODS We used Ba/F3 as a model cell line, as well as leukocytes from two patients, to analyze hybrid protein degradation. RESULTS In contrast to the corresponding wild-type receptors, which are quickly degraded upon activation, we observed that TPbeta, FPalpha and the ZNF198-FGFR1 hybrids escaped down-regulation in Ba/F3 cells. The high stability of TPbeta and FPalpha hybrid proteins was confirmed in leukocytes from leukemia patients. Ubiquitination of TPbeta and FPalpha was much reduced compared to that of wild-type receptors, despite marked Cbl phosphorylation in cells expressing hybrid receptors. The fusion of a destabilizing domain to TPbeta induced protein degradation. Instability was reverted by adding the destabilizing domain ligand, Shield1. The destabilization of this modified TPbeta reduced cell transformation and STAT5 activation. CONCLUSIONS We have shown that chimeric receptor tyrosine kinases escape ubiquitination and down-regulation and that their stabilization is critical to efficient stimulation of cell proliferation.
Collapse
|
24
|
The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 2008; 27:6939-57. [DOI: 10.1038/onc.2008.345] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Langenick J, Araki T, Yamada Y, Williams JG. A Dictyostelium homologue of the metazoan Cbl proteins regulates STAT signalling. J Cell Sci 2008; 121:3524-30. [PMID: 18840649 DOI: 10.1242/jcs.036798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cbl proteins downregulate metazoan signalling pathways by ubiquitylating receptor tyrosine kinases, thereby targeting them for degradation. They contain a phosphotyrosine-binding region, comprising an EF-hand and an SH2 domain, linked to an E3 ubiquitin-ligase domain. CblA, a Dictyostelium homologue of the Cbl proteins, contains all three conserved domains. In a cblA(-) strain early development occurs normally but migrating cblA(-) slugs frequently fragment and the basal disc of the culminants that are formed are absent or much reduced. These are characteristic features of mutants in signalling by DIF-1, the low-molecular-mass prestalk and stalk cell inducer. Tyrosine phosphorylation of STATc is induced by DIF-1 but in the cblA(-) strain this response is attenuated relative to parental cells. We present evidence that CblA fulfils this function, as a positive regulator of STATc tyrosine phosphorylation, by downregulating PTP3, the protein tyrosine phosphatase responsible for dephosphorylating STATc. Thus Cbl proteins have an ancient origin but, whereas metazoan Cbl proteins regulate tyrosine kinases, the Dictyostelium Cbl regulates via a tyrosine phosphatase.
Collapse
Affiliation(s)
- Judith Langenick
- University of Dundee, School of Life Sciences, Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|