1
|
Ling T, Zhang C, Liu Y, Jiang C, Gu L. Single-cell analysis revealed a potential role of T-cell exhaustion in colorectal cancer with liver metastasis. J Cell Mol Med 2024; 28:e18341. [PMID: 38647235 PMCID: PMC11034372 DOI: 10.1111/jcmm.18341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Liver metastasis (LM) is an important factor leading to colorectal cancer (CRC) mortality. However, the effect of T-cell exhaustion on LM in CRC is unclear. Single-cell sequencing data derived from the Gene Expression Omnibus database. Data were normalized using the Seurat package and subsequently clustered and annotated into different cell clusters. The differentiation trajectories of epithelial cells and T cells were characterized based on pseudo-time analysis. Single-sample gene set enrichment analysis (ssGSEA) was used to calculate enrichment scores for different cell clusters and to identify enriched biological pathways. Finally, cell communication analysis was performed. Nine cell subpopulations were identified from CRC samples with LM. The proportion of T cells increased in LM. T cells can be subdivided into NK/T cells, regulatory T cells (Treg) and exhausted T cells (Tex). In LM, cell adhesion and proliferation activity of Tex were promoted. Epithelial cells can be categorized into six subpopulations. The transformation of primary CRC into LM involved two evolutionary branches of Tex cells. Epithelial cells two were at the beginning of the trajectory in CRC but at the end of the trajectory in CRC with LM. The receptor ligands CEACAM5 and ADGRE5-CD55 played critical roles in the interactions between Tex and Treg cell-epithelial cell, which may promote the epithelial-mesenchymal transition process in CRC. Tex cells are able to promote the process of LM in CRC, which in turn promotes tumour development. This provides a new perspective on the treatment and diagnosis of CRC.
Collapse
Affiliation(s)
- Tianlong Ling
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cheng Zhang
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Wang Z, Lin W, Shi M, Hou Y, Liu J, Huang Z, Zhang X, Yang Y, Liu B, Yang Z, Ma W. Involucrasin B Inhibits the Proliferation of Caco-2 Cells by Regulating the TGFβ/SMAD2-3-4 Pathway. Molecules 2024; 29:686. [PMID: 38338430 PMCID: PMC10856266 DOI: 10.3390/molecules29030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the second most common cause of cancer death. However, effective anti-CRC drugs are still lacking in clinical settings. This article investigated the anti-proliferative effect of involucrasin B on CRC Caco-2 cells. (2) Methods: This study employed a sulforhodamine B (SRB) method, colony formation experiments, flow cytometry, FastFUCCI assay, dual luciferase assay, and Western blot analysis for the investigation. (3) Results: The SRB method and colony formation experiments showed that involucrasin B exhibited an inhibitory effect on the Caco-2 cells cultured in vitro. Subsequently, the flow cytometry, FastFUCCI assay, and Western blotting results showed that involucrasin B induced cell cycle arrest in the G1 phase dose-dependently. Involucrasin B significantly enhanced the TGFβ RII protein level and SMAD3 phosphorylation, thus inhibiting the expression of CDK4 and cyclin D1 and causing G1 cell cycle arrest. (4) Conclusion: This study shows that involucrasin B exerts its anti-proliferative effect by regulating the TGFβ/SMAD2-3-4 pathway to cause G1 cycle arrest in Caco-2 cells.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Meina Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Yu Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Jiachen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Zifeng Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Xuening Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Yanchao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Beijia Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Zhuya Yang
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| |
Collapse
|
3
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
4
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
5
|
Relationship between Epithelial-to-Mesenchymal Transition and Tumor-Associated Macrophages in Colorectal Liver Metastases. Int J Mol Sci 2022; 23:ijms232416197. [PMID: 36555840 PMCID: PMC9783529 DOI: 10.3390/ijms232416197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The liver is the most common metastatic site in colorectal cancer (CRC) patients. Indeed, 25-30% of the cases develop colorectal liver metastasis (CLM), showing an extremely poor 5-year survival rate and resistance to conventional anticancer therapies. Tumor-associated macrophages (TAMs) provide a nurturing microenvironment for CRC metastasis, promoting epithelial-to-mesenchymal transition (EMT) through the TGF-β signaling pathway, thus driving tumor cells to acquire mesenchymal properties that allow them to migrate from the primary tumor and invade the new metastatic site. EMT is known to contribute to the disruption of blood vessel integrity and the generation of circulating tumor cells (CTCs), thus being closely related to high metastatic potential in numerous solid cancers. Despite the fact that it is well-recognized that the crosstalk between tumor cells and the inflammatory microenvironment is crucial in the EMT process, the association between the EMT and the role of TAMs is still poorly understood. In this review, we elaborated on the role that TAMs exert in the induction of EMT during CLM development. Since TAMs are the major source of TGF-β in the liver, we also focused on novel insights into their role in TGF-β-induced EMT.
Collapse
|
6
|
TGF-β, to target or not to target; to prevent thyroid cancer progression? Biochim Biophys Acta Rev Cancer 2022; 1877:188752. [PMID: 35728736 DOI: 10.1016/j.bbcan.2022.188752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
Thyroid cancer (TC) is a common endocrine cancer with a rising incidence. Current treatment fails to eliminate aggressive thyroid tumours, prompting an investigation into the processes that cause disease progression. In this review, we provide insight into TGF-β driven epithelial to mesenchymal transition (EMT), summarizing the current literature surrounding thyroid carcinogenesis, and discuss the potential for therapeutic strategies targeting the TGF-β signalling pathway. Understanding the underlying mechanisms that regulate cancer stem cell (CSC) growth and TGF-β signalling may provide novel therapeutic approaches for highly resistant TCs.
Collapse
|
7
|
Ágoston EI, Acs B, Herold Z, Fekete K, Kulka J, Nagy A, Mühl D, Mohacsi R, Dank M, Garay T, Harsanyi L, Győrffy B, Szasz AM. Deconstructing Immune Cell Infiltration in Human Colorectal Cancer: A Systematic Spatiotemporal Evaluation. Genes (Basel) 2022; 13:589. [PMID: 35456394 PMCID: PMC9024576 DOI: 10.3390/genes13040589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer-related immunity has been identified as playing a key role in the outcome of colorectal cancer (CRC); however, the exact mechanisms are only partially understood. In this study, we evaluated a total of 242 surgical specimen of CRC patients using tissue microarrays and immunohistochemistry to evaluate tumor infiltrating immune cells (CD3, CD4, CD8, CD20, CD23, CD45 and CD56) and immune checkpoint markers (CTLA-4, PD-L1, PD-1) in systematically selected tumor regions and their corresponding lymph nodes, as well as in liver metastases. Additionally, an immune panel gene expression assay was performed on 12 primary tumors and 12 consecutive liver metastases. A higher number of natural killer cells and more mature B cells along with PD-1+ expressing cells were observed in the main tumor area as compared to metastases. A higher number of metastatic lymph nodes were associated with significantly lower B cell counts. With more advanced lymph node metastatic status, higher leukocyte-particularly T cell numbers-were observed. Eleven differentially expressed immune-related genes were found between primary tumors and liver metastases. Also, alterations of the innate immune response and the tumor necrosis factor superfamily pathways had been identified.
Collapse
Affiliation(s)
- Emese Irma Ágoston
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (E.I.Á.); (K.F.); (L.H.)
| | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (Z.H.); (D.M.); (R.M.); (M.D.); (T.G.)
| | - Krisztina Fekete
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (E.I.Á.); (K.F.); (L.H.)
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary;
| | - Akos Nagy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Dorottya Mühl
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (Z.H.); (D.M.); (R.M.); (M.D.); (T.G.)
| | - Reka Mohacsi
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (Z.H.); (D.M.); (R.M.); (M.D.); (T.G.)
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (Z.H.); (D.M.); (R.M.); (M.D.); (T.G.)
| | - Tamas Garay
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (Z.H.); (D.M.); (R.M.); (M.D.); (T.G.)
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, 1083 Budapest, Hungary
| | - Laszlo Harsanyi
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (E.I.Á.); (K.F.); (L.H.)
| | - Balazs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary;
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (Z.H.); (D.M.); (R.M.); (M.D.); (T.G.)
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary;
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary;
- Department of Tumor Biology, Korányi National Institute of Pulmonology, 1122 Budapest, Hungary
| |
Collapse
|
8
|
Ahluwalia P, Mondal AK, Ahluwalia M, Sahajpal NS, Jones K, Jilani Y, Gahlay GK, Barrett A, Kota V, Rojiani AM, Kolhe R. Clinical and molecular assessment of an onco-immune signature with prognostic significance in patients with colorectal cancer. Cancer Med 2022; 11:1573-1586. [PMID: 35137551 PMCID: PMC8921909 DOI: 10.1002/cam4.4568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex tumor microenvironment is key to the development of personalized therapies for the treatment of cancer including colorectal cancer (CRC). In the past decade, significant advances in the field of immunotherapy have changed the paradigm of cancer treatment. Despite significant improvements, tumor heterogeneity and lack of appropriate classification tools for CRC have prevented accurate risk stratification and identification of a wider patient population that may potentially benefit from targeted therapies. To identify novel signatures for accurate prognostication of CRC, we quantified gene expression of 12 immune‐related genes using a medium‐throughput NanoString quantification platform in 93 CRC patients. Multivariate prognostic analysis identified a combined four‐gene prognostic signature (TGFB1, PTK2, RORC, and SOCS1) (HR: 1.76, 95% CI: 1.05–2.95, *p < 0.02). The survival trend was captured in an independent gene expression data set: GSE17536 (177 patients; HR: 3.31, 95% CI: 1.99–5.55, *p < 0.01) and GSE14333 (226 patients; HR: 2.47, 95% CI: 1.35–4.53, *p < 0.01). Further, gene set enrichment analysis of the TCGA data set associated higher prognostic scores with epithelial–mesenchymal transition (EMT) and inflammatory pathways. Comparatively, a lower prognostic score was correlated with oxidative phosphorylation and MYC and E2F targets. Analysis of immune parameters identified infiltration of T‐reg cells, CD8+ T cells, M2 macrophages, and B cells in high‐risk patient groups along with upregulation of immune exhaustion genes. This molecular study has identified a novel prognostic gene signature with clinical utility in CRC. Therefore, along with prognostic features, characterization of immune cell infiltrates and immunosuppression provides actionable information that should be considered while employing personalized medicine.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Kimya Jones
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yasmeen Jilani
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amyn M Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Abdulla N, Vincent CT, Kaur M. Mechanistic Insights Delineating the Role of Cholesterol in Epithelial Mesenchymal Transition and Drug Resistance in Cancer. Front Cell Dev Biol 2021; 9:728325. [PMID: 34869315 PMCID: PMC8640133 DOI: 10.3389/fcell.2021.728325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the significant advancements made in targeted anti-cancer therapy, drug resistance constitutes a multifaceted phenomenon leading to therapy failure and ultimately mortality. Emerging experimental evidence highlight a role of cholesterol metabolism in facilitating drug resistance in cancer. This review aims to describe the role of cholesterol in facilitating multi-drug resistance in cancer. We focus on specific signaling pathways that contribute to drug resistance and the link between these pathways and cholesterol. Additionally, we briefly discuss the molecular mechanisms related to the epithelial-mesenchymal transition (EMT), and the documented link between EMT, metastasis and drug resistance. We illustrate this by specifically focusing on hypoxia and the role it plays in influencing cellular cholesterol content following EMT induction. Finally, we provide a proposed model delineating the crucial role of cholesterol in EMT and discuss whether targeting cholesterol could serve as a novel means of combatting drug resistance in cancer progression and metastasis.
Collapse
Affiliation(s)
- Naaziyah Abdulla
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - C Theresa Vincent
- Department of Immunology, Genetics and Pathology, Uppsala, Sweden.,Department of Microbiology, New York University School of Medicine, New York, NY, United States
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Lv X, Xu G. Regulatory role of the transforming growth factor-β signaling pathway in the drug resistance of gastrointestinal cancers. World J Gastrointest Oncol 2021; 13:1648-1667. [PMID: 34853641 PMCID: PMC8603464 DOI: 10.4251/wjgo.v13.i11.1648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer, including esophageal, gastric, and colorectal cancer, is one of the most prevalent types of malignant carcinoma and the leading cause of cancer-related deaths. Despite significant advances in therapeutic strategies for GI cancers in recent decades, drug resistance with various mechanisms remains the prevailing cause of therapy failure in GI cancers. Accumulating evidence has demonstrated that the transforming growth factor (TGF)-β signaling pathway has crucial, complex roles in many cellular functions related to drug resistance. This review summarizes current knowledge regarding the role of the TGF-β signaling pathway in the resistance of GI cancers to conventional chemotherapy, targeted therapy, immunotherapy, and traditional medicine. Various processes, including epithelial-mesenchymal transition, cancer stem cell development, tumor microenvironment alteration, and microRNA biogenesis, are proposed as the main mechanisms of TGF-β-mediated drug resistance in GI cancers. Several studies have already indicated the benefit of combining antitumor drugs with agents that suppress the TGF-β signaling pathway, but this approach needs to be verified in additional clinical studies. Moreover, the identification of potential biological markers that can be used to predict the response to TGF-β signaling pathway inhibitors during anticancer treatments will have important clinical implications in the future.
Collapse
Affiliation(s)
- Xiaoqun Lv
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Xu Y, Li Y, Qiu Y, Sun F, Zhu G, Sun J, Cai G, Lin W, Fu Y, Wu H, Jiang S, Wen Z, Feng F, Luo J, Yang Y, Zhang Q. LncRNA NEAT1 Promotes Gastric Cancer Progression Through miR-17-5p/TGFβR2 Axis Up-Regulated Angiogenesis. Front Cell Dev Biol 2021; 9:705697. [PMID: 34552925 PMCID: PMC8452045 DOI: 10.3389/fcell.2021.705697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been indicated to play critical roles in gastric cancer (GC) tumorigenesis and progression. However, their roles in GC remain to be further elucidated. Methods RT-qPCR and fluorescence in situ hybridzation (FISH) were conducted to detect the expression of lncRNA NEAT1 in GC tissues and cell lines. Gene Set Enrichment Analysis (GSEA) was performed to screen out potential phenotypes and pathways that NEAT1 may participate in. NEAT1-silenced AGS and MGC803 cells were constructed and a series of functional experiments to investigate the roles of NEAT1 in GC angiogenesis both in vitro and in vivo. RNA pull down and luciferase reporter assays were utilized to illustrate the mechanisms underlying the functions of NEAT1 in GC. Results We observed that NEAT1 was upregulated in most GC specimens and cell lines. NEAT1 high was correlated with poor prognosis of GC patients. In vitro experiments showed that NEAT1 promoted GC angiogenesis by enhancing proliferation, migration, and tube formation ability of endothelial cells. Mechanism researches revealed that NEAT1 could competitively sponge miR-17-5p which targeted TGFβR2 directly. Subsequently, activate TGFβ/Smad pathway by following with upregulation of a series of classical proangiogenic factors especially VEGF. Conclusion The study unveiled that the LncRNA NEAT1/miR-17-5p/TGFβR2 axis is a novel mechanism in GC angiogenesis. Disrupting this axis may be a potential strategy for GC treatment.
Collapse
Affiliation(s)
- Yangwei Xu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanyan Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yue Qiu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fei Sun
- Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Guifang Zhu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingbo Sun
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guixing Cai
- Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Wanmei Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Yun Fu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongmei Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shanshan Jiang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhihui Wen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Feiyan Feng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junjie Luo
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuqin Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qingling Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
12
|
Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal 2021; 19:90. [PMID: 34479599 PMCID: PMC8414775 DOI: 10.1186/s12964-021-00771-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the overexpression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable attention has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. MicroRNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of TLR4 and miR-155 on CAC development.![]() Video abstract
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. .,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
PLOD3 Is Associated with Immune Cell Infiltration and Genomic Instability in Colon Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4714526. [PMID: 34239923 PMCID: PMC8235962 DOI: 10.1155/2021/4714526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) are a family of enzymes. However, the clinical and functional roles of PLOD3 in colon adenocarcinoma (COAD) have not been investigated. The present study found that PLOD3 was highly upregulated in COAD, which may be resulted from its aberrant DNA methylation. The upregulation of both PLOD3 mRNA and protein was confirmed in our tissue samples. Moreover, high PLOD3 was identified to be associated with unfavorable prognosis in COAD. As genome instability is a hallmark of cancer, PLOD3 was expressed higher in COAD samples with high chromosomal instability (CIN-high) than those with low CIN (CIN-low) and higher in those with low MSI than high MSI, indicating that PLOD3 expression was associated with tumor genomic instability. Furthermore, immune cells showed significantly different infiltrating levels between the high and low PLOD3 expression groups, and the immune score was negatively correlated with PLOD3 expression and higher in samples with low PLOD3 expression, suggesting that high PLOD3 expression was associated with reduced immune cell infiltrating levels in COAD. To further uncover the underlying mechanism of PLOD3 in PLOD3, we compared the COAD samples of high PLOD3 expression with those of low PLOD3 expression and found that high expression of PLOD3 was associated with reduced expression of immune regulators and enhanced activities of two tumor-promoting pathways, including gluconeogenesis and TGF-beta signaling in epithelial-mesenchymal transition (EMT), suggesting that high expression of PLOD3 causes poor prognosis in COAD by weakening the immune cell infiltration and enhancing activities of tumor-promoting pathways. In summary, the present study highlights the importance of PLOD3 and provides the evidence about the functional role of PLOD3 in COAD.
Collapse
|
14
|
Wang Z, Wang L, Shi B, Sun X, Xie Y, Yang H, Zi C, Wang X, Sheng J. Demethyleneberberine promotes apoptosis and suppresses TGF-β/Smads induced EMT in the colon cancer cells HCT-116. Cell Biochem Funct 2021; 39:763-770. [PMID: 34028068 DOI: 10.1002/cbf.3638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumours in the world. Recent reports have revealed natural products displayed inhibition on colon cancer potential by suppressing transforming growth factor-β/Smads induced epidermal-mesenchymal transition (EMT). In this article, 12 kinds of natural berberine analogues were screened for their effects on the inhibition of the colon cancer cells, the results showed that demethyleneberberine (DM-BBR) exhibited an interesting and potential effect on inducing the apoptosis of HCT-116 cells with drug concentrations of 6, 12 and 18 μM. Particularly, DM-BBR reversed the EMT process by inhibiting the expression of p-Smad2 and p-Smad3 in the transforming growth factor-β/Smads signal pathway, up-regulated pro-apoptotic protein cleaved caspase-9, and blocked cell cycle at the S phase and increasing the expression of cyclin proteins P27 and P21. Taken together, these findings suggested that DM-BBR could promote apoptosis and suppress TGF-β/Smads induced EMT in the colon cancer cells HCT-116.
Collapse
Affiliation(s)
- Zehao Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lixia Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Boya Shi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiuli Sun
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yinrong Xie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haonan Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chengting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Arai H, Millstein J, Loupakis F, Stintzing S, Wang J, Battaglin F, Kawanishi N, Jayachandran P, Soni S, Zhang W, Mumenthaler SM, Cremolini C, Heinemann V, Falcone A, Lenz HJ. Germ line polymorphisms of genes involved in pluripotency transcription factors predict efficacy of cetuximab in metastatic colorectal cancer. Eur J Cancer 2021; 150:133-142. [PMID: 33901792 DOI: 10.1016/j.ejca.2021.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are primarily maintained by a network of pluripotency transcription factors (PTFs). Given a close relationship of CSC regulation with epidermal growth factor receptor and vascular endothelial growth factor signalling, we investigated whether single-nucleotide polymorphisms (SNPs) in PTF genes are related to the efficacy of cetuximab and/or bevacizumab in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Genomic and clinical data from three independent clinical trial cohorts were tested: cetuximab cohort (FOLFIRI/cetuximab arm in FIRE-3, n = 129), bevacizumab cohort 1 (FOLFIRI/bevacizumab arm in FIRE-3, n = 107) and bevacizumab cohort 2 (FOLFIRI/bevacizumab arm in TRIBE, n = 215). Genomic DNA extracted from blood samples was genotyped, and ten SNPs were tested for association with clinical outcomes. RESULTS In the cetuximab cohort, four SNPs were significantly associated with progression-free survival in univariate analysis: NANOG rs11055767 (any A allele vs C/C, hazard ratio [HR] = 0.62, 95% confidence interval [CI] = 0.42-0.94, p = 0.02), NANOG rs10744044 (any A allele vs G/G, HR = 0.59, 95% CI = 0.39-0.90, p = 0.01), NANOGP8 rs2168958 (any C allele vs A/A, HR = 2.12, 95% CI = 1.36-3.29, p < 0.001) and NANOGP8 rs2279066 (any C allele vs T/T, HR = 1.80, 95% CI = 1.06-1.68, p = 0.03). Multivariate analysis confirmed the significant associations for NANOGP8 rs2168958 and NANOGP8 rs2279066. In either bevacizumab cohort, no significant associations were observed in univariate analysis. CONCLUSIONS Germ line polymorphisms in the PTF genes could be predictive markers for cetuximab in mCRC.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fotios Loupakis
- Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology, and Tumour Immunology (CCM), Charité - Universitaetsmedizin, Berlin, Germany
| | - Jingyuan Wang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Priya Jayachandran
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Chiara Cremolini
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, Pisa, Italy
| | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, Pisa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
16
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:E3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
17
|
Destruction of the blood-retina barrier in diabetic retinopathy depends on angiotensin-converting enzyme-mediated TGF-β1/Smad signaling pathway activation. Int Immunopharmacol 2020; 85:106686. [PMID: 32531714 DOI: 10.1016/j.intimp.2020.106686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/04/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is a systemic, chronic metabolic disease that is related to heredity and autoimmunity and is often accompanied by complications of retinopathy. However, the causative mechanism involved in the pathological process remains unclear. In this research, treatment with fosinopril or LY2109761 was found to be responsible for the improvement of the pathological processes, serum biochemical indexes and retinopathy in rats with streptozotocin-induced diabetes. In addition, the upregulation of angiotensin-converting enzyme (ACE) in the serum and the increased expression of TGF-β1 in the pathological outer nuclear layer (ONL) and inner nuclear layer (INL) of the retina were also reduced. In vitro experiments demonstrated that ACE enhanced cell damage and TGF-β1/Smad signaling pathway activation in retinal capillary endothelial cells (RCECs) under high glucose conditions. In addition, the activity of ACE was also considered to be related to the increasing levels of activated TGF-β1 in both rat retinal Müller cells (RMCs) and RCECs, but ACE activity had no effect on the high glucose-mediated upregulation of total TGF-β1 in RMCs. Coculture experiments with RCECs and RMCs showed that the barrier that was established under normal conditions was significantly impaired when exposed to high glucose combined with ACE, and damage of barrier can be prevented by adding fosinopril or LY2109761. Finally, a similar auxiliary effect of ACE was also observed in the activated TGF-β1-mediated barrier damage in blood-retinal barrier model in vitro. In summary, ACE-mediated TGF-β1/Smad signaling pathway activation was found to be involved in the destruction of the blood-retina barrier during diabetic retinopathy in a model of streptozotocin-induced diabetes, and these data may provide evidence to guide the treatment of the complications of diabetes mellitus.
Collapse
|
18
|
Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39:100. [PMID: 32493501 PMCID: PMC7268627 DOI: 10.1186/s13046-020-01584-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
- Saito Laboratory of Cell Technology Institute, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
19
|
Guo L, Wang C, Qiu X, Pu X, Chang P. Colorectal Cancer Immune Infiltrates: Significance in Patient Prognosis and Immunotherapeutic Efficacy. Front Immunol 2020; 11:1052. [PMID: 32547556 PMCID: PMC7270196 DOI: 10.3389/fimmu.2020.01052] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer occurrence and progression involve multiple aspects of host immune deficiencies. In these events, immune cells vary their phenotypes and functions over time, thus enabling the immune microenvironment to be “tumor-inhibiting” as well as “tumor-promoting” as a whole. Because of the association of tumoricidal T cell infiltration with favorable survival in cancer patients, the Immunoscore system was established. Critically, the tumoral Immunoscore serves as an indicator of CRC patient prognosis independent of patient TNM stage and suggests that patients with high Immunoscores in their tumors have prolonged survival in general. Accordingly, stratifications according to tumoral Immunoscores provide new insights into CRC in terms of comparing disease severity, forecasting disease progression, and making treatment decisions. An important application of this system will be to shed light on candidate selection in immunotherapy for CRC, because the T cells responsible for determining the Immunoscore serve as responders to immune checkpoint inhibitors. However, the Immunoscore system merely provides a standard procedure for identifying the tumoral infiltration of cytotoxic and memory T cells, while information concerning the survival and function of these cells is still absent. Moreover, other infiltrates, such as dendritic cells, macrophages, and B cells, can still influence CRC prognosis, implying that those might also influence the therapeutic efficacy of immune checkpoint inhibitors. On these bases, this review is designed to introduce the Immunoscore system by presenting its clinical significance and application in CRC.
Collapse
Affiliation(s)
- Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Chuanlei Wang
- Department of Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiang Qiu
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Pu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Pengyu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Qu Y, Feng J, Wang L, Wang H, Liu H, Sun X, Li J, Yu H. Association Between Head and Neck Cancers and Polymorphisms 869T/C, 509C/T, and 915G/C of the Transforming Growth Factor-β1 Gene: A Meta-Analysis of Case-Control Studies. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019; 25:8389-8402. [PMID: 31698408 PMCID: PMC6857353 DOI: 10.12659/msm.917506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Worldwide, head and neck cancers are the eighth most common malignancy. Single nucleotide polymorphisms (SNPs) are associated with susceptibility to cancer and sensitivity to radiotherapy and chemotherapy. The inflammatory cytokine, transforming growth factor-β1 (TGF-β1), is involved in the progression of malignancy. This study aimed to systematically review the literature and undertake a meta-analysis of case-control studies on the association between 869T/C, 509C/T, and 915G/C polymorphisms of the TGF-β1 gene and head and neck cancers. Material/Methods The published literature in the English and Chinese languages were searched to identify relevant studies reporting TGF-β1 gene polymorphisms and head and neck cancer. The PubMed, Embase, Wanfang Data, and CNKI databases were searched. Data were extracted from eligible studies, and meta-analysis was performed using Stata version 12.0 software. Results Ten case-control studies were identified. There was a significant association between the 869T/C polymorphism of the TGF-β1 gene and susceptibility to head and neck cancer. Subgroup analysis showed that the 869T/C polymorphism was not significantly associated with the histological type of head and neck cancer, but was significantly associated with susceptibility to head and neck cancer in the Asian population. The 509C/T polymorphism of the TGF-β1 gene was not significantly associated with susceptibility to nasopharyngeal cancer (NPC), but the 915G/C polymorphism was associated with susceptibility to oral cancer. Conclusions Data from this meta-analysis showed that the 869T/C and 915G/C polymorphisms of the TGF-β1 gene might be associated with susceptibility to head and neck cancer.
Collapse
Affiliation(s)
- Yanli Qu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Jilong Feng
- Department of Radiation Oncology, Fifth Peoples' Hospital of Shenyang, Shenyang, Liaoning, China (mainland)
| | - Lijun Wang
- Department of Radiation Oncology, Fifth Peoples' Hospital of Shenyang, Shenyang, Liaoning, China (mainland)
| | - Huan Wang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Hangyu Liu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Xiaohu Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Ji Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Hong Yu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
21
|
Afifi AM, El-Husseiny AM, Tabashy RH, Khalil MA, El-Houseini ME. Sorafenib- Taurine Combination Model for Hepatocellular Carcinoma Cells: Immunological Aspects. Asian Pac J Cancer Prev 2019; 20:3007-3013. [PMID: 31653148 PMCID: PMC6982677 DOI: 10.31557/apjcp.2019.20.10.3007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/29/2022] Open
Abstract
Sorafenib (Sor) is a multi-kinase inhibitor. It is recommended for the treatment of advanced hepatocellular carcinoma (HCC). However, Sor has severe and marked side effects. On the other hand, taurine (Tau) has been shown to enhance the therapeutic effects of cancer chemotherapy and also to enhance the function of leukocytes. Here, we aimed to investigate the enhancing efficacy of Sor as well as minimizing its marked side effects by using Tau in combination in an immunological aspect. We evaluated the influence of Sor and Tau combination on the expression pattern of FOXP3 gene in HepG2 cells compared to peripheral blood mononuclear leukocytes (PBMCs) as control normal cells. Also, the levels of TGF-β and IL-10 released in culture media of both cells were determined. Our results revealed that, Tau reduced cytotoxicity of Sor on PBMC indicated by lactic dehyrogenase (LDH) release assay. In addition, Sor-Tau combination led to FOXP3 down-regulation in hepatic cancer cells (HepG2). The results showed also that, TGF-β levels decreased significantly in their culture media. In contrary, the cytokine increased in PBMCs culture media. Moreover, IL-10 was significantly elevated in the culture media of both cells. This study could open new avenues for the improvement of therapeutic efficacy of Sorafenib treated HCC patients by using Tau in combination.
Collapse
Affiliation(s)
- Ahmed M Afifi
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M El-Husseiny
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt.,Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reda H Tabashy
- Department of Diagnostic Radiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed A Khalil
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Motawa E El-Houseini
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Bu HQ, Shen F, Cui J. The inhibitory effect of oridonin on colon cancer was mediated by deactivation of TGF-β1/Smads-PAI-1 signaling pathway in vitro and vivo. Onco Targets Ther 2019; 12:7467-7476. [PMID: 31686852 PMCID: PMC6752205 DOI: 10.2147/ott.s220401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Background Oridonin, the main active component of Rabdosia rubescens, has been demonstrated to have anti-tumor effect on all kinds of cancer cells through various mechanisms and it has shown antitumor activity in some tumors partially via the suppression of TGF-β/Smads signaling pathway. The aim of this study was to explore the anticancer effect of oridonin on human colon carcinoma and underlying mechanism in vitro and vivo. Methods CCK-8 assay was employed to assess cell viability. The key target genes and proteins involved in TGF-β/Smads pathway was detected by RT-PCR, Western blotting and immunohistochemistry. The orthotopic transplantation tumor model of colon cance LOVO cell was introduced to detect anti-cancer effects in vivo. Results Oridonin inhibited the proliferation of colon cancer LOVO cells in a concentration and time dependent manner. In addition, oridonin reduced the levels of Smad2, Smad3, Smad4, PAI-1 and the phosphorylation of Smad2 and Smad3 induced by TGF-β1 in vitro. Subsequently, we established an orthotopically implanted tumor model in nude mice and found that oridonin treatment significantly suppressed tumor growth, and which was accompanied by the down-regulation of Smad2, Smad3, Smad4, PAI-1 and p-Smad2, p-Smad3 expression levels. Conclusion Our present study demonstrated that the growth inhibition of colon cancer by oridonin could be partially mediated through discontinuing TGF-β1/Smads-PAI-1 signaling pathway, suggesting it as a promising agent in treating colorectal cancer.
Collapse
Affiliation(s)
- He-Qi Bu
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| | - Feng Shen
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| | - Junhui Cui
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| |
Collapse
|
23
|
Chen Y, Di C, Zhang X, Wang J, Wang F, Yan JF, Xu C, Zhang J, Zhang Q, Li H, Yang H, Zhang H. Transforming growth factor β signaling pathway: A promising therapeutic target for cancer. J Cell Physiol 2019; 235:1903-1914. [PMID: 31332789 DOI: 10.1002/jcp.29108] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Transforming growth factor β (TGF-β) is part of the transforming growth factor β superfamily which is involved in many physiological processes and closely related to the carcinogenesis. Here, we discuss the TGF-β structure, function, and its canonical Smads signaling pathway. Importantly, TGF-β has been proved that it plays both tumor suppressor as well as an activator role in tumor progression. In an early stage, TGF-β inhibits cell proliferation and is involved in cell apoptosis. In an advanced tumor, TGF-β signaling pathway induces tumor invasion and metastasis through promoting angiogenesis, epithelial-mesenchymal transition, and immune escape. Furthermore, we are centered on updated research results into the inhibitors as drugs which have been studied in preclinical or clinical trials in tumor carcinogenesis to prevent the TGF-β synthesis and block its signaling pathways such as antibodies, antisense molecules, and small-molecule tyrosine kinase inhibitors. Thus, it is highlighting the crucial role of TGF-β in tumor therapy and may provide opportunities for the new antitumor strategies in patients with cancer.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuetian Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fang Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Fang Yan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Caipeng Xu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Hongying Yang
- Medical College of Soochow University, Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Li S, Liu Z, Fang XD, Wang XY, Fei BY. MicroRNA (miR)-597-5p Inhibits Colon Cancer Cell Migration and Invasion by Targeting FOS-Like Antigen 2 ( FOSL2). Front Oncol 2019; 9:495. [PMID: 31245295 PMCID: PMC6581747 DOI: 10.3389/fonc.2019.00495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Our previous work had shown that FOS-like antigen 2 (FOSL2) is regulated by miR-143-5p in colorectal cancer (CRC). Given that it has been shown by others that FOSL2 is also a target of miR-597-5p in breast adenocarcinoma, the objective of the current work was to determine whether FOSL2 is regulated by miR-597-5p in CRC and the role of miR-597-5p in CRC. MiR-597-5p expression was determined in RNA obtained from 30 paired samples of colon cancer and tumor adjacent normal tissue, as well as in the LoVo (CRC cell line) and FHC (normal colonic epithelial cells) by quantitative real time polymerase chain reaction (qRT-PCR). MiR-597-5p expression was significantly downregulated in both CRC tissue and LoVo cells. Reporter assays using wild-type and miR-597-5p seed mutant FOSL2 confirmed that FOSL2 is a bona fide target of miR-597-5p. Modulating miR-597-5p expression levels in FHC and LoVo cells using antagomir and mimic, respectively, impacted expression of epithelial and mesenchymal cell markers as well as in vitro migration and invasion, without any effect on cell proliferation, showing that miR-597-5p functions as a suppressor of epithelial to mesenchymal transition. Restoration of FOSL2 expression rescued pro-metastatic functional properties of LoVo cells conforming that effect of miR-597-5p was being mediated by targeting FOSL2. Xenograft assays in athymic nude mice showed that miR-597-5p mimic did not reduce tumor incidence or growth in LoVo cells. However, using a hepatic metastasis model showed that miR-597-5p mimic can significantly prevent hepatic metastatic nodule formation as well as FOSL2 expression in these metastatic nodules. Importantly, FOSL2 mRNA and miR-597-5p expression was found to be inversely correlated in an independent cohort of 21 CRC patients Cumulatively our results show that miR-597-5p functions as a suppressor of metastatic progression in CRC by targeting FOSL2. Replenishment of miR-597-5p can be a potential therapeutic target where its expression along with FOSL2 can serve as potential diagnostic markers in CRC.
Collapse
Affiliation(s)
- Shuo Li
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiu-Ying Wang
- Medical Record Department, China Japan Union Hospital of Jilin University, Changchun, China
| | - Bing-Yuan Fei
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Liu J, Ke F, Cheng H, Zhou J. Traditional Chinese medicine as targeted treatment for epithelial-mesenchymal transition-induced cancer progression. J Cell Biochem 2019; 120:1068-1079. [PMID: 30431663 DOI: 10.1002/jcb.27588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 01/24/2023]
Abstract
The epithelial-mesenchymal transition (EMT) program, which loosens cell-cell adhesion complexes, endows cells with enhanced migratory and invasive properties. Furthermore, this process facilitates both the development of drug resistance and immunosuppression by tumor cells, which preclude the successful treatment of cancer. Recent research has demonstrated that many signaling pathways are involved in EMT progression. In addition, cancer stem cells (CSCs), vasculogenic mimicry (VM) and the tumor-related immune microenvironment all play important roles in tumor formation. However, there are few reports on the relationships between EMT and these factors. In addition, in recent years, traditional Chinese medicine (TCM) has developed a unique system for treating cancer. In this review, we summarize the crucial signaling pathways associated with the EMT process in cancer patients and discuss the interconnections between EMT and other molecular factors (such as CSCs, VM, and the tumor-related immune microenvironment). We attempt to identify common regulators that might be potential therapeutic targets to thereby optimize tumor treatment. In addition, we outline recent research on TCM approaches that target EMT and thereby provide a foundation for further research on the exact mechanisms by which TCMs affect EMT in cancer.
Collapse
Affiliation(s)
- Jianrong Liu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Ke
- Department of Pathology, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Jinrong Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
26
|
Terry S, Faouzi Zaarour R, Hassan Venkatesh G, Francis A, El-Sayed W, Buart S, Bravo P, Thiery J, Chouaib S. Role of Hypoxic Stress in Regulating Tumor Immunogenicity, Resistance and Plasticity. Int J Mol Sci 2018; 19:ijms19103044. [PMID: 30301213 PMCID: PMC6213127 DOI: 10.3390/ijms19103044] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxia, or gradients of hypoxia, occurs in most growing solid tumors and may result in pleotropic effects contributing significantly to tumor aggressiveness and therapy resistance. Indeed, the generated hypoxic stress has a strong impact on tumor cell biology. For example, it may contribute to increasing tumor heterogeneity, help cells gain new functional properties and/or select certain cell subpopulations, facilitating the emergence of therapeutic resistant cancer clones, including cancer stem cells coincident with tumor relapse and progression. It controls tumor immunogenicity, immune plasticity, and promotes the differentiation and expansion of immune-suppressive stromal cells. In this context, manipulation of the hypoxic microenvironment may be considered for preventing or reverting the malignant transformation. Here, we review the current knowledge on how hypoxic stress in tumor microenvironments impacts on tumor heterogeneity, plasticity and resistance, with a special interest in the impact on immune resistance and tumor immunogenicity.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Amirtharaj Francis
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Walid El-Sayed
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Pamela Bravo
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Jérome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| |
Collapse
|
27
|
High expression levels of SMAD3 and SMAD7 at diagnosis predict poor prognosis in acute myeloid leukemia patients undergoing chemotherapy. Cancer Gene Ther 2018; 26:119-127. [DOI: 10.1038/s41417-018-0044-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
|
28
|
Li S, Fang XD, Wang XY, Fei BY. Fos-like antigen 2 (FOSL2) promotes metastasis in colon cancer. Exp Cell Res 2018; 373:57-61. [PMID: 30114390 DOI: 10.1016/j.yexcr.2018.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 01/02/2023]
Abstract
Among different cancers, incidence and mortality of colorectal cancer (CRC) is one of the highest. KRAS mutation is one of the underlying features in the pathogenesis of CRC with CRC tumors harboring mutant KRAS exhibiting a more aggressive behavior compared to CRC tumors with wild type KRAS. We had earlier shown that the microRNA-143 (miR-143) replenishment not only chemosensitizers CRC cell line with mutant KRAS instead of wild-type KRAS gene, to paclitaxel-mediated cytotoxicity, but also inhibits cell migration and invasion ability. Hence, the study aimed to determine how miR-143 replenishment is inhibiting pre-metastatic behavior in CRC cells with mutant KRAS. Top ten mRNA targets of miR-143 as predicted by TargetScan were evaluated by qRT-PCR in LoVo cells which were performed mock transfection or miR-143 mimic transfection. Evaluation of the changes in cognate mRNA target(s) was done in 30 paired CRC tissue and tumor adjacent normal tissue specimens and in LoVo cells by western blot. Effect of the mRNA target on pro-metastatic behavior was assayed by gain- and loss-of-function studies using a combination of western blotting and in vitro cell proliferation and transwell migration/invasion assay in LoVo cells and in the normal colonic epithelium cell line FHC. In vivo effect of the cognate mRNA target on CRC metastasis was assayed by xenograft assay. Of the 10 predicted mRNA targets, FOSL2 (P < 0.05) and IGFBP5 (P > 0.05) was down regulated in LoVo cells transfected with the miR-143 mimic. FOSL2 mRNA levels were significantly downregulated in CRC tissue specimens compared with adjacent normal tissue (P < 0.05). Immunoblot analysis showed that FOSL2, but not IGFBP5, protein expression is down regulated in LoVo cells after the miR-143 mimic transfection. FOSL2 overexpression in the normal colonic epithelial cell line FHC or siRNA-mediated silencing in LoVo cells induced and repressed, respectively, pro-mesenchymal cell features. Whereas manipulation of FOSL2 expression did not have any effect on cell proliferation rates, silencing its expression inhibited cell migration and invasion ability in vitro. In addition, silencing of FOSL2 expression in the LoVo cells can significantly inhibited invasion of hepatic, while no effect was found for tumorigenic potential. Our results suggest that FOSL2 is a critical regulator of CRC metastasis and might be an important marker for prognostic in CRC patients.
Collapse
Affiliation(s)
- Shuo Li
- Department of Hepatobiliary & Pancreatic Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Xiu-Ying Wang
- Medical Record Department, The China Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Bing-Yuan Fei
- Department of Gastrointestinal Colorectal and anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
29
|
Variances in the mRNA expression profile of TGF-β1-3 isoforms and its TGF-βRI-III receptors during cyclosporin a treatment of psoriatic patients. Postepy Dermatol Alergol 2018; 35:502-509. [PMID: 30429710 PMCID: PMC6232546 DOI: 10.5114/ada.2018.77242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Introduction Psoriasis is a chronic, immunologic, multi-factor inflammatory skin disease, strongly associated with a higher level of a number of cytokines, such as isoforms of transforming growth factor β (TGF-β1–3) and its receptors (TGF-βRI–III). One of the most popular and important drugs used to treat this disease is cyclosporin A (CsA). Aim The aim of this study was to investigate the expression of genes encoding the transforming growth factor (TGF)-β isoforms and receptors of the cytokine TGF-βRs in psoriatic patients during an 84-day long observation of the effects of cyclosporin A therapy. It made an attempt to determine the usefulness of testing mRNA expression of TGF-β1–3 and its receptors TGF-βRI–III as the supplementary molecular markers of lost sensitivity to the medicine. Material and methods The study group consisted of 32 patients with psoriasis (20 men and 12 women) treated with cyclosporin A. The changes in expression patterns of TGF-β1-3 and TGF-βRI-III were performed by real-time quantitative reverse transcription PCR (RTqPCR). Results The expression of TGF-β1-3 and TGF-βRI-III were detected in the whole period of therapy with CsA. Changes in transcriptional activities of TGF-β1–3 and TGF-βRI–III during pharmacotherapy were observed. Differences in the expression of these genes were found before and after 42 and 84 days of using CsA. Conclusions The changes in expression profiles of TGF-β1-3 and TGF-βRI-III during CsA therapy can be a useful molecular marker of lost sensitivity to the medicine.
Collapse
|
30
|
Wilson RB. Hypoxia, cytokines and stromal recruitment: parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum 2018; 3:20180103. [PMID: 30911653 PMCID: PMC6405013 DOI: 10.1515/pp-2018-0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Peritoneal response to various kinds of injury involves loss of peritoneal mesothelial cells (PMC), danger signalling, epithelial-mesenchymal transition and mesothelial-mesenchymal transition (MMT). Encapsulating peritoneal sclerosis (EPS), endometriosis (EM) and peritoneal metastasis (PM) are all characterized by hypoxia and formation of a vascularized connective tissue stroma mediated by vascular endothelial growth factor (VEGF). Transforming growth factor-β1 (TGF-β1) is constitutively expressed by the PMC and plays a major role in the maintenance of a transformed, inflammatory micro-environment in PM, but also in EPS and EM. Persistently high levels of TGF-β1 or stimulation by inflammatory cytokines (interleukin-6 (IL-6)) induce peritoneal MMT, adhesion formation and fibrosis. TGF-β1 enhances hypoxia inducible factor-1α expression, which drives cell growth, extracellular matrix production and cell migration. Disruption of the peritoneal glycocalyx and exposure of the basement membrane release low molecular weight hyaluronan, which initiates a cascade of pro-inflammatory mediators, including peritoneal cytokines (TNF-α, IL-1, IL-6, prostaglandins), growth factors (TGF-α, TGF-β, platelet-derived growth factor, VEGF, epidermal growth factor) and the fibrin/coagulation cascade (thrombin, Tissue factor, plasminogen activator inhibitor [PAI]-1/2). Chronic inflammation and cellular transformation are mediated by damage-associated molecular patterns, pattern recognition receptors, AGE-RAGE, extracellular lactate, pro-inflammatory cytokines, reactive oxygen species, increased glycolysis, metabolomic reprogramming and cancer-associated fibroblasts. The pathogenesis of EPS, EM and PM shows similarities to the cellular transformation and stromal recruitment of wound healing.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- Upper GI Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, 2170, NSW, Australia
| |
Collapse
|