1
|
Patauner F, Gallo R, Durante-Mangoni E, Bertolino L. Internists at the frontline of epidemic viral illnesses: From tiredness to preparedness. Eur J Intern Med 2025; 133:121-122. [PMID: 39794227 DOI: 10.1016/j.ejim.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Affiliation(s)
- Fabian Patauner
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', and Unit of Internal Medicine and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Raffaella Gallo
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', and Unit of Internal Medicine and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', and Unit of Internal Medicine and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy.
| | - Lorenzo Bertolino
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', and Unit of Internal Medicine and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| |
Collapse
|
2
|
Girmay BS, Ayele SA, Abbas SA, Jang SS, Jung E, Shin JS, Han SB, Kim H. Discovery and structure-activity relationship study of novel isoxazole-based small molecules targeting Zika virus infections. RSC Med Chem 2024; 15:2792-2805. [PMID: 39157190 PMCID: PMC11325340 DOI: 10.1039/d4md00240g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 08/20/2024] Open
Abstract
The Zika virus (ZIKV), a significant public health threat, is transmitted by Aedes aegypti mosquitoes and is associated with severe neurological disorders, particularly in newborns. Currently, there are no approved vaccines or specific therapeutics for ZIKV. Our study focuses on the identification and optimization of isoxazole-based small molecules, specifically through the structural modification of KR-26827, to combat ZIKV infections. Among the synthesized derivatives, 7l emerged as the most promising candidate, showing potent antiviral activity against ZIKV strains and an improved safety profile in vitro. This research underlines the potential of 7l for further development as a ZIKV therapeutic agent.
Collapse
Affiliation(s)
- Berehe Solomon Girmay
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Sileshi Abera Ayele
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Syed Azeem Abbas
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Su San Jang
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Hyejin Kim
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
3
|
Peng ZY, Yang S, Lu HZ, Wang LM, Li N, Zhang HT, Xing SY, Du YN, Deng SQ. A review on Zika vaccine development. Pathog Dis 2024; 82:ftad036. [PMID: 38192053 PMCID: PMC10901608 DOI: 10.1093/femspd/ftad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Zika virus (ZIKV), which belongs to the Flavivirus family, is mainly transmitted via the bite of Aedes mosquitoes. In newborns, ZIKV infection can cause severe symptoms such as microcephaly, while in adults, it can lead to Guillain‒Barré syndrome (GBS). Due to the lack of specific therapeutic methods against ZIKV, the development of a safe and effective vaccine is extremely important. Several potential ZIKV vaccines, such as live attenuated, inactivated, nucleic acid, viral vector, and recombinant subunit vaccines, have demonstrated promising outcomes in clinical trials involving human participants. Therefore, in this review, the recent developmental progress, advantages and disadvantages of these five vaccine types are examined, and practical recommendations for future development are provided.
Collapse
Affiliation(s)
- Zhe-Yu Peng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Song Yang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
| | - Hong-Zheng Lu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lin-Min Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ni Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hai-Ting Zhang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Xing
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yi-Nan Du
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Sheng-Qun Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
4
|
Wikan N, Potikanond S, Hankittichai P, Thaklaewphan P, Monkaew S, Smith DR, Nimlamool W. Alpinetin Suppresses Zika Virus-Induced Interleukin-1β Production and Secretion in Human Macrophages. Pharmaceutics 2022; 14:pharmaceutics14122800. [PMID: 36559293 PMCID: PMC9782830 DOI: 10.3390/pharmaceutics14122800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection has been recognized to cause adverse sequelae in the developing fetus. Specially, this virus activates the excessive release of IL-1β causing inflammation and altered physiological functions in multiple organs. Although many attempts have been invested to develop vaccine, antiviral, and antibody therapies, development of agents focusing on limiting ZIKV-induced IL-1β release have not gained much attention. We aimed to study the effects of alpinetin (AP) on IL-1β production in human macrophage upon exposure to ZIKV. Our study demonstrated that ZIKV stimulated IL-1β release in the culture supernatant of ZIKV-infected cells, and AP could effectively reduce the level of this cytokine. AP exhibited no virucidal activities against ZIKV nor caused alteration in viral production. Instead, AP greatly inhibited intracellular IL-1β synthesis. Surprisingly, this compound did not inhibit ZIKV-induced activation of NF-κB and its nuclear translocation. However, AP could significantly inhibit ZIKV-induced p38 MAPK activation without affecting the phosphorylation status of ERK1/2 and JNK. These observations suggest the possibility that AP may reduce IL-1β production, in part, through suppressing p38 MAPK signaling. Our current study sheds light on the possibility of using AP as an alternative agent for treating complications caused by ZIKV infection-induced IL-1β secretion.
Collapse
Affiliation(s)
- Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sathit Monkaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (D.R.S.); (W.N.); Tel.: +66-53-934597 (W.N.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (D.R.S.); (W.N.); Tel.: +66-53-934597 (W.N.)
| |
Collapse
|
5
|
Discovery of dehydroandrographolide derivatives with C19 hindered ether as potent anti-ZIKV agents with inhibitory activities to MTase of ZIKV NS5. Eur J Med Chem 2022; 243:114710. [DOI: 10.1016/j.ejmech.2022.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022]
|
6
|
Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42:1739-1780. [PMID: 35593443 PMCID: PMC9540820 DOI: 10.1002/med.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the flavivirus genus and is transmitted in Aedes mosquito vectors. Since its discovery in humans in 1952 in Uganda, ZIKV has been responsible for many outbreaks in South America, Africa, and Asia. Patients infected with ZIKV are usually asymptomatic; mild symptoms include fever, joint and muscle pain, and fatigue. However, severe infections may have neurological implications, such as Guillain-Barré syndrome and fetal microcephaly. To date, there are no existing approved therapeutic drugs or vaccines against ZIKV infections; treatments mainly target the symptoms of infection. Preventive measures against mosquito breeding are the main strategy for limiting the spread of the virus. Antiviral drug research for the treatment of ZIKV infection has been rapidly developing, with many drug candidates emerging from drug repurposing studies, and compound screening. In particular, several studies have demonstrated the potential of natural products as antivirals for ZIKV infection. Hence, this paper will review recent advances in natural products in ZIKV antiviral drug discovery.
Collapse
Affiliation(s)
- Yuhui Deborah Fong
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Justin Jang Hann Chu
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
7
|
Xiao Y, Yang J, Zou L, Wu P, Li W, Yan Y, Li Y, Li S, Song H, Zhong W, Qin Y. Synthesis of 10,10′-bis(trifluoromethyl) marinopyrrole A derivatives and evaluation of their antiviral activities in vitro. Eur J Med Chem 2022; 238:114436. [DOI: 10.1016/j.ejmech.2022.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
|
8
|
Qian W, Xue JX, Xu J, Li F, Zhou GF, Wang F, Luo RH, Liu J, Zheng YT, Zhou GC. Design, synthesis, discovery and SAR of the fused tricyclic derivatives of indoline and imidazolidinone against DENV replication and infection. Bioorg Chem 2022; 120:105639. [DOI: 10.1016/j.bioorg.2022.105639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
|
9
|
Kumar S, Sharma N, Dantas WM, do Nascimento JCF, Maus H, de Oliveira RN, Pandit U, Singh AP, Schirmeister T, Hazari PP, Pena L, Poonam, Rathi B. A potent candidate against Zika virus infection: Synthesis, bioactivity, radiolabeling and biodistribution studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj02482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compound VI exhibits potent activity against Zika virus infection combined with favorable cellular uptake and biodistribution without apparent cytotoxicity in a mouse model.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
| | - Neha Sharma
- Har Gobind Khorana Centre For Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Willyenne Marilia Dantas
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, 50670-420, Pernambuco, Brazil
- Department of Chemistry, Federal Rural University of Pernambuco, Dois Irmãos, 52171-900, Recife, Brazil
| | | | - Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | | | - Unnat Pandit
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences Institute of Nuclear Medicine and Allied Sciences, New Delhi, 110054, India
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, 50670-420, Pernambuco, Brazil
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007, India
| | - Brijesh Rathi
- Har Gobind Khorana Centre For Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007, India
| |
Collapse
|
10
|
Bhandari R, Gupta R, Vashishth A, Kuhad A. Transient Receptor Potential Vanilloid 1 (TRPV1) as a plausible novel therapeutic target for treating neurological complications in ZikaVirus. Med Hypotheses 2021; 156:110685. [PMID: 34592564 DOI: 10.1016/j.mehy.2021.110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Zika virus was declared a national emergency by WHO (World Health Organization) in 2016 when its widespread outbreaks and life-threatening complications were reported, especially in newborns and adults. Numerous studies reported that neuroinflammation is one of the significant root-causes behind its major neurological complications like microcephaly and Guillain-Barré syndrome (GBS). In this hypothesis, we propose Transient Receptor Potential Vanilloid 1 channel (TRPV1) as a major culprit in triggering positive inflammatory loop, ultimately leading to sustained neuroinflammation, one of the key clinical findings in Zika induced microcephalic and GBS patients. Opening of TRPV1 channel also leads to calcium influx and oxidative stress that ultimately results in cellular apoptosis (like Schwann cell in GBS and developing fetal nerve cells in microcephaly), ultimately leading to these complications. Currently, no specific cure exists for these complications. Most of the antiviral candidates are under clinical trials. Though there is no direct research on TRPV1 as a cause of Zika virus's neurological complications, but similarity in mechanisms is undeniable. Thus, exploring pathobiological involvement of TRPV1 channels and various TRPV1 modulators in these complications can possibly prove to be an effective futuristic therapeutic strategy for treatment and management of these life-threatening complications.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Reetrakshi Gupta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anushka Vashishth
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
11
|
Novel Nonnucleoside Inhibitors of Zika Virus Polymerase Identified through the Screening of an Open Library of Antikinetoplastid Compounds. Antimicrob Agents Chemother 2021; 65:e0089421. [PMID: 34152807 PMCID: PMC8370225 DOI: 10.1128/aac.00894-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen responsible for neurological disorders (Guillain-Barré syndrome) and congenital malformations (microcephaly). Its ability to cause explosive epidemics, such as that of 2015 to 2016, urges the identification of effective antiviral drugs. Viral polymerase inhibitors constitute one of the most successful fields in antiviral research. Accordingly, the RNA-dependent RNA polymerase activity of flavivirus nonstructural protein 5 (NS5) provides a unique target for the development of direct antivirals with high specificity and low toxicity. Here, we describe the discovery and characterization of two novel nonnucleoside inhibitors of ZIKV polymerase. These inhibitors, TCMDC-143406 (compound 6) and TCMDC-143215 (compound 15) were identified through the screening of an open-resource library of antikinetoplastid compounds using a fluorescence-based polymerization assay based on ZIKV NS5. The two compounds inhibited ZIKV NS5 polymerase activity in vitro and ZIKV multiplication in cell culture (half-maximal effective concentrations [EC50] values of 0.5 and 2.6 μM for compounds 6 and 15, respectively). Both compounds also inhibited the replication of other pathogenic flaviviruses, namely, West Nile virus (WNV; EC50 values of 4.3 and 4.6 μM for compounds 6 and 15, respectively) and dengue virus 2 (DENV-2; EC50 values of 3.4 and 9.6 μM for compounds 6 and 15, respectively). Enzymatic assays confirmed that the polymerase inhibition was produced by a noncompetitive mechanism. Combinatorial assays revealed an antagonistic effect between both compounds, suggesting that they would bind to the same region of ZIKV polymerase. The nonnucleoside inhibitors of ZIKV polymerase here described could constitute promising lead compounds for the development of anti-ZIKV therapies and, eventually, broad-spectrum antiflavivirus drugs.
Collapse
|
12
|
Kaur R, Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur J Med Chem 2021; 215:113220. [PMID: 33609889 PMCID: PMC7995244 DOI: 10.1016/j.ejmech.2021.113220] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
In current scenario, various heterocycles have come up exhibiting crucial role in various medicinal agents which are valuable for mankind. Out of diverse range of heterocycle, quinoline scaffold have been proved to play an important role in broad range of biological activities. Several drug molecules bearing a quinoline molecule with useful anticancer, antibacterial activities etc have been marketed such as chloroquine, saquinavir etc. Owing to their broad spectrum biological role, various synthetic strategies such as Skraup reaction, Combes reaction etc. has been developed by the researchers all over the world. But still the synthetic methods are associated with various limitations as formation of side products, use of expensive metal catalysts. Thus, several efforts to develop an efficient and cost effective synthetic protocol are still carried out till date. Moreover, quinoline scaffold displays remarkable antiviral activity. Therefore, in this review we have made an attempt to describe recent synthetic protocols developed by various research groups along with giving a complete explanation about the role of quinoline derivatives as antiviral agent. Quinoline derivatives were found potent against various strains of viruses like zika virus, enterovirus, herpes virus, human immunodeficiency virus, ebola virus, hepatitis C virus, SARS virus and MERS virus etc.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab, 142001, India
| | - Kapil Kumar
- School of Pharmacy and Technology Management, SVKM's NMIMS, Hyderabad, Telangana, 509301, India.
| |
Collapse
|
13
|
Extracellular Vesicles in Viral Pathogenesis: A Case of Dr. Jekyll and Mr. Hyde. Life (Basel) 2021; 11:life11010045. [PMID: 33450847 PMCID: PMC7828316 DOI: 10.3390/life11010045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Secretion of extracellular vesicles (EVs) is a fundamental property of living cells. EVs are known to transfer biological signals between cells and thus regulate the functional state of recipient cells. Such vesicles mediate the intercellular transport of many biologically active molecules (proteins, nucleic acids, specific lipids) and participate in regulation of key physiological processes. In addition, EVs are involved in the pathogenesis of multiple diseases: infectious, neurodegenerative, and oncological. The current EV classification into microvesicles, apoptotic bodies, and exosomes is based on their size, pathways of cellular biogenesis, and molecular composition. This review is focused on analysis of the role of EVs (mainly exosomes) in the pathogenesis of viral infection. We briefly characterize the biogenesis and molecular composition of various EV types. Then, we consider EV-mediated pro- and anti-viral mechanisms. EV secretion by infected cells can be an important factor of virus spread in target cell populations, or a protective factor limiting viral invasion. The data discussed in this review, on the effect of EV secretion by infected cells on processes in neighboring cells and on immune cells, are of high significance in the search for new therapeutic approaches and for design of new generations of vaccines.
Collapse
|
14
|
Xu B, Lee EM, Medina A, Sun X, Wang D, Tang H, Zhou GC. Inhibition of zika virus infection by fused tricyclic derivatives of 1,2,4,5-tetrahydroimidazo[1,5-a]quinolin-3(3aH)-one. Bioorg Chem 2020; 104:104205. [PMID: 32916389 PMCID: PMC7686041 DOI: 10.1016/j.bioorg.2020.104205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/24/2020] [Accepted: 08/02/2020] [Indexed: 01/04/2023]
Abstract
Zika virus (ZIKV) infection represents a significant threat to the global health system, and the search for efficient antivirals to ZIKV remains necessary and urgent. In this study, we extended the exploration of our previously discovered scaffold of 1H-pyrrolo[1,2-c]imidazol-1-one and revealed that two trans isomers of compounds 2 and 7 and one mixture with major trans isomer of compound 3 as novel tetrahydroquinoline-fused imidazolone derivatives are active against ZIKV infection but they are not virucidal. Western Blot and ELISA analyses of ZIKV NS5 and NS1 further demonstrate that compounds of (±)-2, (±)-3 and (±)-7 act as effective agents against ZIKV infection. We show that the N10's basicity is not the basic requirement for these compounds' antiviral activity in the current work. Importantly, tuning of some pharmacophores including substituents at arene can generate promising candidates for anti-ZIKV agents.
Collapse
Affiliation(s)
- Bin Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Emily M Lee
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Angelica Medina
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Xia Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, China.
| |
Collapse
|
15
|
Caobi A, Nair M, Raymond AD. Extracellular Vesicles in the Pathogenesis of Viral Infections in Humans. Viruses 2020; 12:E1200. [PMID: 33096825 PMCID: PMC7589806 DOI: 10.3390/v12101200] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Most cells can release extracellular vesicles (EVs), membrane vesicles containing various proteins, nucleic acids, enzymes, and signaling molecules. The exchange of EVs between cells facilitates intercellular communication, amplification of cellular responses, immune response modulation, and perhaps alterations in viral pathogenicity. EVs serve a dual role in inhibiting or enhancing viral infection and pathogenesis. This review examines the current literature on EVs to explore the complex role of EVs in the enhancement, inhibition, and potential use as a nanotherapeutic against clinically relevant viruses, focusing on neurotropic viruses: Zika virus (ZIKV) and human immunodeficiency virus (HIV). Overall, this review's scope will elaborate on EV-based mechanisms, which impact viral pathogenicity, facilitate viral spread, and modulate antiviral immune responses.
Collapse
Affiliation(s)
| | | | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine at Florida International University, Miami, FL 33199, USA; (A.C.); (M.N.)
| |
Collapse
|
16
|
Kim JH, Koh B, Ahn DG, Lee SJ, Park TJ, Park JP. A screening study of high affinity peptide as molecular binder for AXL, tyrosine kinase receptor involving in Zika virus entry. Bioelectrochemistry 2020; 137:107670. [PMID: 32971483 DOI: 10.1016/j.bioelechem.2020.107670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
The recent extensive spread of Zika virus has led to increased interest in the development of early diagnostic tests. To the best of our knowledge, this is the first study to demonstrate the successful use of phage display to identify affinity peptides for quantitative analysis of AXL, a tyrosine kinase receptor involved in Zika virus entry. Biopanning of M13 phage library successfully identified a high affinity peptide, with the sequence AHNHTPIKQKYL. To study the feasibility of using free peptides for molecular recognition, we synthesized a series of amino acid-substituted peptides and examined their binding affinity for AXL using electrochemical impedance spectroscopy and square wave voltammetry. Most synthetic peptides had non-identical random coil structures based on circular dichroism spectroscopy. Of the peptides tested, AXL BP1 exhibited nanomolar binding affinity for AXL. To verify whether AXL BP1 could be used as a peptide inhibitor at the cellular level, two functional tests were carried out: a WST assay for cell viability and qRT-PCR for quantification of RNA levels in Zika virus-infected Huh7 cells. The results showed that AXL BP1 had low cytotoxicity and could block Zika virus entry. These results indicate that newly identified affinity peptides could potentially be used for the development of Zika virus entry inhibitors.
Collapse
Affiliation(s)
- Ji Hong Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byumseok Koh
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
17
|
Karwal P, Vats ID, Sinha N, Singhal A, Sehgal T, Kumari P. Therapeutic Applications of Peptides against Zika Virus: A Review. Curr Med Chem 2020; 27:3906-3923. [DOI: 10.2174/0929867326666190111115132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 01/27/2023]
Abstract
Zika Virus (ZIKV) belongs to the class of flavivirus that can be transmitted by Aedes
mosquitoes. The number of Zika virus caused cases of acute infections, neurological disorders and
congenital microcephaly are rapidly growing and therefore, in 2016, the World Health Organization
declared a global “Public Health Emergency of International Concern”. Anti-ZIKV therapeutic and
vaccine development strategies are growing worldwide in recent years, however, no specific and safe
treatment is available till date to save the human life. Currently, development of peptide therapeutics
against ZIKV has attracted rising attention on account of their high safety concern and low development
cost, in comparison to small therapeutic molecules and antibody-based anti-viral drugs. In present
review, an overview of ZIKV inhibition by peptide-based inhibitors including E-protein derived
peptides, antimicrobial peptides, frog skin peptides and probiotic peptides has been discussed. Peptides
inhibitors have also been reported to act against NS5, NS2B-NS3 protease and proteasome in
order to inhibit ZIKV infection. Recent advances in peptide-based therapeutics and vaccine have
been reviewed and their future promise against ZIKV infections has been explored.
Collapse
Affiliation(s)
- Preeti Karwal
- Department of Biochemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Ishwar Dutt Vats
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Niharika Sinha
- Drug Development Laboratory Group, Gautam Buddha University, Noida, India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College, Bengaluru, Karnataka, India
| | - Teena Sehgal
- Department of Chemistry, HMRITM, GGSIP University, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| |
Collapse
|
18
|
Li F, Lee EM, Sun X, Wang D, Tang H, Zhou GC. Design, synthesis and discovery of andrographolide derivatives against Zika virus infection. Eur J Med Chem 2020; 187:111925. [PMID: 31838328 PMCID: PMC6980694 DOI: 10.1016/j.ejmech.2019.111925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022]
Abstract
The Zika endemic established by imported and local transmission is of significant concern and effective anti-ZIKV drugs remain an urgent unmet need. As andrographolide was identified to be an inhibitor of DENV and CHIKV and the importance of quinoline structure against infectious diseases was considered, we are interested in studying its andrographolide derivatives with quinoline moiety against Zika virus infection. In addition to screening eight in-house derivatives of andrographolide, sixteen new derivatives were designed, synthesized and tested against Zika virus infection. Among these compounds, two most potent anti-Zika compounds of 19-acetylated 14α-(5',7'-dichloro-8'-quinolyloxy) derivative 17b and 14β-(8'-quinolyloxy)-3,19- diol derivative 3 with the highest selectivity were discovered. The SAR analysis indicates that rational and optimal combined modification/s at 3-, 14-, or 19-positions can make derivatives less toxic and more potent against Zika infection, and both of 3 and 17b are suitable as leads for designing new generation of andrographolide derivatives with quinoline or its structure- and property-related moieties against Zika virus and other arboviruses.
Collapse
Affiliation(s)
- Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211800, China
| | - Emily M Lee
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Xia Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211800, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211800, China
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211800, China.
| |
Collapse
|
19
|
Lipase is associated with deltamethrin resistance in Culex pipiens pallens. Parasitol Res 2019; 119:23-30. [PMID: 31760499 DOI: 10.1007/s00436-019-06489-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
The wide application of pyrethroids has led to the rapid development of insecticide resistance in mosquitoes, leading to a rise in mosquito-borne diseases. We previously identified five differentially expressed lipase family genes upon evaluating the transcriptomes of deltamethrin-resistant and deltamethrin-susceptible strains of Culex pipiens pallens. Herein, the gene expression levels were verified by quantitative real-time PCR, and two lipase family genes, lipase A and pancreatic triacylglycerol lipase A, were chosen for further investigations. Using cell viability assays and Centers for Disease Control and Prevention bottle bioassays, lipase A was found to increase the resistance of mosquitoes against deltamethrin both in vitro and in vivo. Our findings indicate that lipase A is involved in conferring deltamethrin resistance in Cx. pipiens pallens.
Collapse
|
20
|
Cataneo AHD, Kuczera D, Koishi AC, Zanluca C, Silveira GF, Arruda TBD, Suzukawa AA, Bortot LO, Dias-Baruffi M, Verri WA, Robert AW, Stimamiglio MA, Duarte Dos Santos CN, Wowk PF, Bordignon J. The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus. Sci Rep 2019; 9:16348. [PMID: 31705028 PMCID: PMC6841724 DOI: 10.1038/s41598-019-52626-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication. Among the natural compounds recognized for their medical properties, flavonoids, which can be found in fruits and vegetables, have been found to possess biological activity against a variety of viruses. Here, we demonstrate that the citrus flavanone naringenin (NAR) prevented ZIKV infection in human A549 cells in a concentration-dependent and ZIKV-lineage independent manner. NAR antiviral activity was also observed when primary human monocyte-derived dendritic cells were infected by ZIKV. NAR displayed its antiviral activity when the cells were treated after infection, suggesting that NAR acts on the viral replication or assembly of viral particles. Moreover, a molecular docking analysis suggests a potential interaction between NAR and the protease domain of the NS2B-NS3 protein of ZIKV which could explain the anti-ZIKV activity of NAR. Finally, the results support the potential of NAR as a suitable candidate molecule for developing anti-ZIKV treatments.
Collapse
Affiliation(s)
| | - Diogo Kuczera
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | | | - Thais Bonato de Arruda
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Andréia Akemi Suzukawa
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Leandro Oliveira Bortot
- Laboratório de Física Biológica, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Laboratório de Glicoimunologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Brazil
| | - Anny Waloski Robert
- Laboratório de Células Tronco, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | | | | | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil.
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil.
| |
Collapse
|
21
|
Azar SR, Weaver SC. Vector Competence: What Has Zika Virus Taught Us? Viruses 2019; 11:E867. [PMID: 31533267 PMCID: PMC6784050 DOI: 10.3390/v11090867] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
The unprecedented outbreak of Zika virus (ZIKV) infection in the Americas from 2015 to 2017 prompted the publication of a large body of vector competence data in a relatively short period of time. Although differences in vector competence as a result of disparities in mosquito populations and viral strains are to be expected, the limited competence of many populations of the urban mosquito vector, Aedes aegypti, from the Americas (when its susceptibility is viewed relative to other circulating/reemerging mosquito-borne viruses such as dengue (DENV), yellow fever (YFV), and chikungunya viruses (CHIKV)) has proven a paradox for the field. This has been further complicated by the lack of standardization in the methodologies utilized in laboratory vector competence experiments, precluding meta-analyses of this large data set. As the calls for the standardization of such studies continue to grow in number, it is critical to examine the elements of vector competence experimental design. Herein, we review the various techniques and considerations intrinsic to vector competence studies, with respect to contemporary findings for ZIKV, as well as historical findings for other arboviruses, and discuss potential avenues of standardization going forward.
Collapse
Affiliation(s)
- Sasha R Azar
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
22
|
Cabral-Miranda G, Lim SM, Mohsen MO, Pobelov IV, Roesti ES, Heath MD, Skinner MA, Kramer MF, Martina BEE, Bachmann MF. Zika Virus-Derived E-DIII Protein Displayed on Immunologically Optimized VLPs Induces Neutralizing Antibodies without Causing Enhancement of Dengue Virus Infection. Vaccines (Basel) 2019; 7:vaccines7030072. [PMID: 31340594 PMCID: PMC6789886 DOI: 10.3390/vaccines7030072] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) is a flavivirus similar to Dengue virus (DENV) in terms of transmission and clinical manifestations, and usually both viruses are found to co-circulate. ZIKV is usually transmitted by mosquitoes bites, but may also be transmitted by blood transfusion, via the maternal–foetal route, and sexually. After 2015, when the most extensive outbreak of ZIKV had occurred in Brazil and subsequently spread throughout the rest of South America, it became evident that ZIKV infection during the first trimester of pregnancy was associated with microcephaly and other neurological complications in newborns. As a result, the development of a vaccine against ZIKV became an urgent goal. A major issue with DENV vaccines, and therefore likely also with ZIKV vaccines, is the induction of antibodies that fail to neutralize the virus properly and cause antibody-dependent enhancement (ADE) of the infection instead. It has previously been shown that antibodies against the third domain of the envelope protein (EDIII) induces optimally neutralizing antibodies with no evidence for ADE for other viral strains. Therefore, we generated a ZIKV vaccine based on the EDIII domain displayed on the immunologically optimized Cucumber mosaic virus (CuMVtt) derived virus-like particles (VLPs) formulated in dioleoyl phosphatidylserine (DOPS) as adjuvant. The vaccine induced high levels of specific IgG after a single injection. The antibodies were able to neutralise ZIKV without enhancing infection by DENV in vitro. Thus, the here described vaccine based on EDIII displayed on VLPs was able to stimulate production of antibodies specifically neutralizing ZIKV without potentially enhancing disease caused by DENV.
Collapse
Affiliation(s)
- Gustavo Cabral-Miranda
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), University of Oxford, Oxford OX1 2JD, UK.
- Immunology, RIA, Inselspital, University of Bern, 3010 Bern, Switzerland.
| | - Stephanie M Lim
- Artemis Bio-Support, Molengraaffsingel, 2629 Delft, The Netherlands
| | - Mona O Mohsen
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), University of Oxford, Oxford OX1 2JD, UK
- Immunology, RIA, Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Ilya V Pobelov
- Department of Chemistry and Biochemistry, University of Bern, 3010 Bern, Switzerland
| | - Elisa S Roesti
- Immunology, RIA, Inselspital, University of Bern, 3010 Bern, Switzerland
| | | | | | | | - Byron E E Martina
- Artemis Bio-Support, Molengraaffsingel, 2629 Delft, The Netherlands
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Martin F Bachmann
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), University of Oxford, Oxford OX1 2JD, UK.
- Immunology, RIA, Inselspital, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
23
|
Abstract
Mosquito-transmitted diseases represent one of the greatest health risks when traveling to tropical and sub-tropical countries. Only Japanese encephalitis and yellow fever can be avoided by inoculation, and only malaria can be prevented by chemoprophylaxis. Exposure prophylaxis is the only protection against all other mosquito-born diseases. These infections need to be carefully considered in the differential diagnosis of returning travelers, taking current epidemiology into account. This review discusses common infectious diseases and the options for their diagnosis and therapy.
Collapse
|
24
|
Palanichamy K, Joshi A, Mehmetoglu-Gurbuz T, Bravo MF, Shlain MA, Schiro F, Naeem Y, Garg H, Braunschweig AB. Anti-Zika Activity of a Library of Synthetic Carbohydrate Receptors. J Med Chem 2019; 62:4110-4119. [PMID: 30925051 DOI: 10.1021/acs.jmedchem.9b00142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a global health concern because of its association with severe neurological disorders. Currently, there are no antiviral therapies that have been specifically approved to treat ZIKV, and there is an urgent need to develop effective anti-ZIKV agents. Here, we report anti-ZIKV activity of 16 synthetic carbohydrate receptors (SCRs) that inhibit ZIKV infection in Vero and HeLa cells. Using a ZIKV reporter virus particle-based infection assay, our data demonstrates these SCRs are highly potent with IC50s as low as 0.16 μM and negligible toxicity at several-fold higher concentrations. Time-of-addition studies showed that these SCRs inhibit the early stages of the virus infection, which is consistent with the proposed mode of action, where the SCRs likely inhibit binding between the virus and cell-surface glycans, thereby preventing viral entry into the cells and, as such, this study demonstrates a potential new strategy against ZIKV.
Collapse
Affiliation(s)
- Kalanidhi Palanichamy
- Nanoscience Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York , 85 St. Nicholas Terrace , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States
| | - Anjali Joshi
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences , Texas Tech University Health Sciences Center in El Paso , 5001 El Paso Drive , El Paso , Texas 79905 , United States
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences , Texas Tech University Health Sciences Center in El Paso , 5001 El Paso Drive , El Paso , Texas 79905 , United States
| | - M Fernando Bravo
- Nanoscience Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York , 85 St. Nicholas Terrace , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Milan A Shlain
- Nanoscience Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York , 85 St. Nicholas Terrace , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States
| | - Frank Schiro
- Nanoscience Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York , 85 St. Nicholas Terrace , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States
| | - Yasir Naeem
- Nanoscience Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York , 85 St. Nicholas Terrace , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States
| | - Himanshu Garg
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences , Texas Tech University Health Sciences Center in El Paso , 5001 El Paso Drive , El Paso , Texas 79905 , United States
| | - Adam B Braunschweig
- Nanoscience Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York , 85 St. Nicholas Terrace , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States.,The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|
25
|
Lei J, Vermillion MS, Jia B, Xie H, Xie L, McLane MW, Sheffield JS, Pekosz A, Brown A, Klein SL, Burd I. IL-1 receptor antagonist therapy mitigates placental dysfunction and perinatal injury following Zika virus infection. JCI Insight 2019; 4:122678. [PMID: 30944243 DOI: 10.1172/jci.insight.122678] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2019] [Indexed: 12/25/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes significant adverse sequelae in the developing fetus, and results in long-term structural and neurologic defects. Most preventive and therapeutic efforts have focused on the development of vaccines, antivirals, and antibodies. The placental immunologic response to ZIKV, however, has been largely overlooked as a target for therapeutic intervention. The placental inflammatory response, specifically IL-1β secretion and signaling, is induced by ZIKV infection and represents an environmental factor that is known to increase the risk of perinatal developmental abnormalities. We show in a mouse model that maternally administrated IL-1 receptor antagonist (IRA; Kineret, or anakinra), following ZIKV exposure, can preserve placental function (by improving trophoblast invasion and placental vasculature), increase fetal viability, and reduce neurobehavioral deficits in the offspring. We further demonstrate that while ZIKV RNA is highly detectable in placentas, it is not correlated with fetal viability. Beyond its effects in the placenta, we show that IL-1 blockade may also directly decrease fetal neuroinflammation by mitigating fetal microglial activation in a dose-dependent manner. Our studies distinguish the role of placental inflammation during ZIKV-infected pregnancies, and demonstrate that maternal IRA may attenuate fetal neuroinflammation and improve perinatal outcomes.
Collapse
Affiliation(s)
- Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meghan S Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Molecular and Comparative Pathobiology
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeanne S Sheffield
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Brown
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Gratton R, Agrelli A, Tricarico PM, Brandão L, Crovella S. Autophagy in Zika Virus Infection: A Possible Therapeutic Target to Counteract Viral Replication. Int J Mol Sci 2019; 20:ijms20051048. [PMID: 30823365 PMCID: PMC6429311 DOI: 10.3390/ijms20051048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) still constitutes a public health concern, however, no vaccines or therapies are currently approved for treatment. A fundamental process involved in ZIKV infection is autophagy, a cellular catabolic pathway delivering cytoplasmic cargo to the lysosome for degradation—considered as a primordial form of innate immunity against invading microorganisms. ZIKV is thought to inhibit the Akt-mTOR signaling pathway, which causes aberrant activation of autophagy promoting viral replication and propagation. It is therefore appealing to study the role of autophagic molecular effectors during viral infection to identify potential targets for anti-ZIKV therapeutic intervention.
Collapse
Affiliation(s)
- Rossella Gratton
- Department of Advanced Diagnostics, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137 Trieste, Italy.
| | - Almerinda Agrelli
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, 50670-901 Recife, Brazil.
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137 Trieste, Italy.
| | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, 50670-901 Recife, Brazil.
| | - Sergio Crovella
- Department of Advanced Diagnostics, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137 Trieste, Italy.
- Department of Medical Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
| |
Collapse
|
27
|
Muniz Júnior RL, Godói IP, Reis EA, Garcia MM, Guerra-Júnior AA, Godman B, Ruas CM. Consumer willingness to pay for a hypothetical Zika vaccine in Brazil and the implications. Expert Rev Pharmacoecon Outcomes Res 2018; 19:473-482. [PMID: 30468095 DOI: 10.1080/14737167.2019.1552136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT Background: Zika virus is a newly emerging infection, associated with increasingly large outbreaks especially in tropical countries such as Brazil. A future Zika vaccine can contribute to decreasing the number of cases and associated complications. Information about consumers' willingness to pay (WTP) for a hypothetical Zika vaccine can help price setting discussions in the future in Brazil, starting with the private market. METHODS A cross-sectional study conducted among residents of Minas Gerais, Brazil, regarding their WTP for a hypothetical Zika Vaccine. The mean effective protection was 80%, with the possibility of some local and systemic side- effects. RESULTS 517 people were interviewed. However, 28 would not be vaccinated even if the vaccine was free. Most of the resultant interviewees (489) were female (58.2%), had completed high school (49.7%), were employed (71.2%), had private health insurance (52.7%), and did not have Zika (96.9%). The median individual maximum WTP for this hypothetical Zika vaccine (one dose) was US$31.34 (BRL100.00). CONCLUSION Such discussions regarding WTP can contribute to decision-making about prices once a Zika vaccine becomes available in Brazil alongside other ongoing programs to control the virus.
Collapse
Affiliation(s)
- Roberto Lúcio Muniz Júnior
- a College of Pharmacy - Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 , Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901 , Brazil
| | - Isabella Piassi Godói
- b Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, sala 1023, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 , Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901 , Minas Gerais , Brazil.,c SUS Collaborating Centre for Technology Assessment and Excellence in Health, sala 1042, Faculdade de Farmácia , Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901 , Brazil.,d Institute of Health and Biological Studies - Universidade Federal do Sul e Sudeste do Pará, Avenida dos Ipês , s/n, Cidade Universitária, Cidade Jardim, Marabá , Pará , Brazil
| | - Edna Afonso Reis
- e Department of Statistics - Exact Sciences Institute - Universidade Federal de Minas Gerais (UFMG) - Av. Presidente Antônio Carlos 6627 - Pampulha - CEP 31.270-901 - Belo Horizonte , Brazil
| | - Marina Morgado Garcia
- f Strathclyde Institute of Pharmacy and Biomedical Sciences , Strathclyde University , Glasgow , United Kington.,g Division of Clinical Pharmacology , Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Augusto Afonso Guerra-Júnior
- b Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, sala 1023, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 , Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901 , Minas Gerais , Brazil.,c SUS Collaborating Centre for Technology Assessment and Excellence in Health, sala 1042, Faculdade de Farmácia , Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901 , Brazil
| | - Brian Godman
- f Strathclyde Institute of Pharmacy and Biomedical Sciences , Strathclyde University , Glasgow , United Kington.,g Division of Clinical Pharmacology , Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden.,h Health Economics Centre , Liverpool University Management School , Liverpool , UK.,i Department of Public Health Pharmacy and Management, School of Pharmacy , Sefako Makgatho Health Sciences University , Garankuwa , South Africa
| | - Cristina Mariano Ruas
- b Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, sala 1023, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 , Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901 , Minas Gerais , Brazil
| |
Collapse
|
28
|
|
29
|
Azar SR, Rossi SL, Haller SH, Yun R, Huang JH, Plante JA, Zhou J, Olano JP, Roundy CM, Hanley KA, Weaver SC, Vasilakis N. ZIKV Demonstrates Minimal Pathologic Effects and Mosquito Infectivity in Viremic Cynomolgus Macaques. Viruses 2018; 10:v10110661. [PMID: 30469417 PMCID: PMC6267344 DOI: 10.3390/v10110661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
To evaluate the effects of ZIKV infection on non-human primates (NHPs), as well as to investigate whether these NHPs develop sufficient viremia to infect the major urban vector mosquito, Aedes aegypti, four cynomolgus macaques (Macaca fascicularis) were subcutaneously infected with 5.0 log10 focus-forming units (FFU) of DNA clone-derived ZIKV strain FSS13025 (Asian lineage, Cambodia, 2010). Following infection, the animals were sampled (blood, urine, tears, and saliva), underwent daily health monitoring, and were exposed to Ae. aegypti at specified time points. All four animals developed viremia, which peaked 3⁻4 days post-infection at a maximum value of 6.9 log10 genome copies/mL. No virus was detected in urine, tears, or saliva. Infection by ZIKV caused minimal overt disease: serum biochemistry and CBC values largely fell within the normal ranges, and cytokine elevations were minimal. Strikingly, the minimally colonized population of Ae. aegypti exposed to viremic animals demonstrated a maximum infection rate of 26% during peak viremia, with two of the four macaques failing to infect a single mosquito at any time point. These data indicate that cynomolgus macaques may be an effective model for ZIKV infection of humans and highlights the relative refractoriness of Ae. aegypti for ZIKV infection at the levels of viremia observed.
Collapse
Affiliation(s)
- Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Sherry H Haller
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ruimei Yun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jing H Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jiehua Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Juan P Olano
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Christopher M Roundy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Scott C Weaver
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
30
|
Zhu X, Li C, Afridi SK, Zu S, Xu JW, Quanquin N, Yang H, Cheng G, Xu Z. E90 subunit vaccine protects mice from Zika virus infection and microcephaly. Acta Neuropathol Commun 2018; 6:77. [PMID: 30097059 PMCID: PMC6086021 DOI: 10.1186/s40478-018-0572-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022] Open
Abstract
Zika virus (ZIKV) became a global threat due to its unprecedented outbreak and its association with congenital malformations such as microcephaly in developing fetuses and neonates. There are currently no effective vaccines or drugs available for the prevention or treatment of ZIKV infection. Although multiple vaccine platforms have been established, their effectiveness in preventing congenital microcephaly has not been addressed. Herein, we tested a subunit vaccine containing the 450 amino acids at the N-terminus of the ZIKV envelope protein (E90) in mouse models for either in utero or neonatal ZIKV infection. In one model, embryos of vaccinated dams were challenged with a contemporary ZIKV strain at embryonic day 13.5. The other model infects neonatal mice from vaccinated dams by direct injection of ZIKV into the developing brains. The vaccine led to a substantial reduction of ZIKV-infected cells measured in the brains of fetal or suckling mice, and successfully prevented the onset of microcephaly compared to unvaccinated controls. Furthermore, E90 could protect mice from ZIKV infection even at 140 days post-immunization. This work directly demonstrates that immunization of pregnant mice protects the developing brains of offspring both in utero and in the neonatal period from subsequent ZIKV infection and microcephaly. It also supports the further development of the E90 subunit vaccine towards clinical trials.
Collapse
Affiliation(s)
- Xingliang Zhu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunfeng Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shabbir Khan Afridi
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulong Zu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jesse W Xu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Natalie Quanquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Heng Yang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Genhong Cheng
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, 100101, China.
| |
Collapse
|
31
|
To accelerate the Zika beat: Candidate design for RNA interference-based therapy. Virus Res 2018; 255:133-140. [DOI: 10.1016/j.virusres.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
|
32
|
Establishment of Baculovirus-Expressed VLPs Induced Syncytial Formation Assay for Flavivirus Antiviral Screening. Viruses 2018; 10:v10070365. [PMID: 29997331 PMCID: PMC6071280 DOI: 10.3390/v10070365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022] Open
Abstract
The baculovirus-insect cell expression system has been widely used for heterologous protein expression and virus-like particles (VLPs) expression. In this study, we established a new method for antiviral screening targeting to glycoprotein E of flaviviruses based on the baculovirus expression system. ZIKV is a mosquito-borne flavivirus and has posed great threat to the public health. It has been reported that ZIKV infection was associated with microcephaly and serious neurological complications. Our study showed that either ZIKV E or prME protein expressed in insect cells can form VLPs and induce membrane fusion between insect cells. Therefore, the E protein, which is responsible for receptor binding, attachment, and virus fusion during viral entry, achieved proper folding and retained its fusogenic ability in VLPs when expressed in this system. The syncytia in insect cells were significantly reduced by the anti-ZIKV-E specific polyclonal antibody in a dose-dependent manner. AMS, a thiol-conjugating reagent, was also shown to have an inhibitory effect on the E protein induced syncytia and inhibited ZIKV infection by blocking viral entry. Indeed the phenomenon of syncytial formation induced by E protein expressed VLPs in insect cells is common among flaviviruses, including Japanese encephalitis virus (JEV), Dengue virus type 2 (DENV-2), and tick-borne encephalitis virus (TBEV). This inhibition effect on syncytial formation can be developed as a novel, safe, and simple antiviral screening approach for inhibitory antibodies, peptides, or small molecules targeting to E protein of ZIKV and other flaviviruses.
Collapse
|
33
|
Asturias KM, Tercero E, Tuna MA. Determinación in silico de las propiedades inmunogénicas de la glicoproteína E de Zika virus. REVISTA DE LA FACULTAD DE MEDICINA 2018. [DOI: 10.37345/23045329.v1i25.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Introducción: La infección por Zika virus (ZIKV) ha sido asociada a múltiples complicaciones y nuevas formas de transmisión. La descripción del genoma y la estructura cristalizada permiten desarrollar análisis moleculares, incluyendo las propiedades inmunológicas. Objetivos: En este trabajo, se analiza a la glicoproteína E de ZIKV, con el fin de determinar su utilidad en la creación de una vacuna proteica recombinante. Métodos: Se analizó la glicoproteína E, por medio del software DNASTAR, en base a su antigenicidad de epítopos de células B y MHC-II, estructura secundaria, hidrofilizada, flexibilidad y accesibilidad a solvente en el virión maduro e hidratado. Resultados: Se identificaron 14 sitios antigénicos para células B, de los cuales, 7 comparten su antigenicidad para MHC-II. Al tomar en cuenta los demás parámetros analizados, los sitios se reducen a 3, con longitudes de 13, 9 y 5 aminoácidos. Conclusiones: La glicoproteína E de ZIKV podría desencadenar una respuesta inmune T-dependiente, por tanto, ser útil para la creación de una vacuna proteica recombinante.
Collapse
|
34
|
Stassen L, Armitage CW, van der Heide DJ, Beagley KW, Frentiu FD. Zika Virus in the Male Reproductive Tract. Viruses 2018; 10:v10040198. [PMID: 29659541 PMCID: PMC5923492 DOI: 10.3390/v10040198] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) are resurging across the globe. Zika virus (ZIKV) has caused significant concern in recent years because it can lead to congenital malformations in babies and Guillain-Barré syndrome in adults. Unlike other arboviruses, ZIKV can be sexually transmitted and may persist in the male reproductive tract. There is limited information regarding the impact of ZIKV on male reproductive health and fertility. Understanding the mechanisms that underlie persistent ZIKV infections in men is critical to developing effective vaccines and therapies. Mouse and macaque models have begun to unravel the pathogenesis of ZIKV infection in the male reproductive tract, with the testes and prostate gland implicated as potential reservoirs for persistent ZIKV infection. Here, we summarize current knowledge regarding the pathogenesis of ZIKV in the male reproductive tract, the development of animal models to study ZIKV infection at this site, and prospects for vaccines and therapeutics against persistent ZIKV infection.
Collapse
Affiliation(s)
- Liesel Stassen
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| | - Charles W Armitage
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| | - David J van der Heide
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| | - Francesca D Frentiu
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| |
Collapse
|