1
|
Cappato S, Divizia MT, Menta L, Rosti G, Puliti A, Martinheira Da Silva JS, Santamaria G, Di Duca M, Ronchetto P, Faravelli F, Zara F, Bocciardi R. LMX1B haploinsufficiency due to variants in the 5'UTR as a cause of Nail-Patella syndrome. NPJ Genom Med 2025; 10:10. [PMID: 39939609 PMCID: PMC11822002 DOI: 10.1038/s41525-024-00460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/20/2024] [Indexed: 02/14/2025] Open
Abstract
Nail-Patella syndrome (NPS) is a rare autosomal dominant condition due to haploinsufficiency of LMX1B, caused by loss-of-function variants affecting the coding sequence, or partial/whole deletions of the gene. In here, we describe two familial cases of NPS, carrying novel variants of the LMX1B 5'UTR region (-174C>T and -226G>A). To verify their pathogenic role, we carried out a functional characterization, both by reporter gene assays in heterologous systems and in patient's derived cells. We demonstrated that both variants impair LMX1B expression at post-transcriptional level. They introduce two upstream open reading frames (uORFs), out-of-frame with the main LMX1B coding sequence, generating transcripts detected by the non-sense mediated decay (NMD). We also demonstrated that the escape of the altered mRNA from NMD, if any, may lead to the synthesis of an aberrant LMX1B protein.
Collapse
Affiliation(s)
- Serena Cappato
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Teresa Divizia
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ludovica Menta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Giulia Rosti
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Aldamaria Puliti
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Joana Soraia Martinheira Da Silva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Giuseppe Santamaria
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Francesca Faravelli
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Renata Bocciardi
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
2
|
Khatun S, Dasgupta I, Sen S, Amin SA, Qureshi IA, Jha T, Gayen S. Histone deacetylase 8 in focus: Decoding structural prerequisites for innovative epigenetic intervention beyond hydroxamates. Int J Biol Macromol 2025; 284:138119. [PMID: 39608552 DOI: 10.1016/j.ijbiomac.2024.138119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Histone deacetylase 8 (HDAC8) inhibitors play a pivotal role in epigenetic regulation. Numerous HDAC8 inhibitors (HDAC8is), that are non-hydroxamates have been identified to date, and a few of them exhibit antiproliferative activity that is on par with hydroxamates. While many non-hydroxamate-based HDAC8is have demonstrated selectivity, hydroxamate-based HDAC8is, like Vorinostat and TSA, have a tendency of non-specificity among the different HDAC isoforms. Moreover, because of the unfavorable toxic side effects, there are significant concerns surrounding the use of hydroxamate derivatives as therapeutic agents in cancer as well as other chronic diseases. Consequently, the research on non-hydroxamate-based HDAC8is is of utmost priority. In the present study, a comprehensive study was presented to unravel the structural requirements of non-hydroxamate-based HDAC8is from a diverse set of 866 compounds. The study utilized Classification-based Quantitative Structure-Activity Relationship (QSAR) analysis, incorporating Bayesian classification, Recursive partitioning, and other machine learning methods to pinpoint the key structural features essential for HDAC8 inhibition. To underscore and gain deeper insights into the identified structural features, molecular docking, and molecular dynamic (MD) simulation studies were conducted. The integration of these computational approaches unveiled key structural motifs essential for potent HDAC8 inhibitory activity, shedding light on the molecular basis of HDAC8 inhibition using non-hydroxamates.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Indrasis Dasgupta
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sourish Sen
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata 700109, West Bengal, India; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
3
|
Bortolami FP, Zuma AA, de Souza W, Motta MCM. Plant-derived compounds that target histone acetyltransferases inhibit Trypanosoma cruzi proliferation and viability and affect parasite ultrastructure. Micron 2025; 188:103729. [PMID: 39432977 DOI: 10.1016/j.micron.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, exhibits a chromatin structure and organization similar to that of other eukaryotes, undergoing certain epigenetic modifications, such as histone acetylation and deacetylation. Histone acetyltransferase inhibitors have been frequently applied as therapy agents against tumor cells, but their effects on protozoa have not yet been adequately explored. In this study, the effects of three acetyltransferase inhibitors, curcumin, triptolide and anacardic acid, were investigated on T. cruzi. Curcumin was able to inhibit epimastigote and amastigote proliferation and was the most effective compound. Triptolide also impaired T. cruzi proliferation and, along with curcumin, promoted the unpacking of nuclear heterochromatin and nucleolus disorganization. Anacardic acid did not alter parasite growth or viability, but caused ultrastructural changes, such as mitochondrial swelling and cristae enlargement. None of these compounds affected the microtubule cytoskeleton. These findings indicate that histone acetyltransferase inhibitors, especially curcumin, display the potential to be applied in chemotherapeutic studies against T. cruzi. Our results reinforce the necessity of developing new compounds that can be used successfully in therapy against neglected diseases.
Collapse
Affiliation(s)
- Fernanda Pereira Bortolami
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil.
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| |
Collapse
|
4
|
Wei W, Cheng B, Yang X, Chu X, He D, Qin X, Zhang N, Zhao Y, Shi S, Cai Q, Hui J, Wen Y, Liu H, Jia Y, Zhang F. Single-cell multiomics analysis reveals cell/tissue-specific associations in bipolar disorder. Transl Psychiatry 2024; 14:323. [PMID: 39107272 PMCID: PMC11303399 DOI: 10.1038/s41398-024-03044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
This study investigates the cellular origin and tissue heterogeneity in bipolar disorder (BD) by integrating multiomics data. Four distinct datasets were employed, including single-cell RNA sequencing (scRNA-seq) data (embryonic and fetal brain, n = 8, 1,266 cells), BD Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data (adult brain, n = 210), BD bulk RNA-seq data (adult brain, n = 314), and BD genome-wide association study (GWAS) summary data (n = 413,466). The integration of scRNA-seq data with multiomics data relevant to BD was accomplished using the single-cell disease relevance score (scDRS) algorithm. We have identified a novel brain cell cluster named ADCY1, which exhibits distinct genetic characteristics. From a high-resolution genetic perspective, glial cells emerge as the primary cytopathology associated with BD. Specifically, astrocytes were significantly related to BD at the RNA-seq level, while microglia showed a strong association with BD across multiple panels, including the transcriptome-wide association study (TWAS), ATAC-seq, and RNA-seq. Additionally, oligodendrocyte precursor cells displayed a significant association with BD in both ATAC-seq and RNA-seq panel. Notably, our investigation of brain regions affected by BD revealed significant associations between BD and all three types of glial cells in the dorsolateral prefrontal cortex (DLPFC). Through comprehensive analyses, we identified several BD-associated genes, including CRMP1, SYT4, UCHL1, and ZBTB18. In conclusion, our findings suggest that glial cells, particularly in specific brain regions such as the DLPFC, may play a significant role in the pathogenesis of BD. The integration of multiomics data has provided valuable insights into the etiology of BD, shedding light on potential mechanisms underlying this complex psychiatric disorder.
Collapse
Affiliation(s)
- Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 2024; 41:84. [PMID: 38438564 DOI: 10.1007/s12032-024-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
6
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
7
|
Ellis SLS, Dada S, Nohara LL, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Morova T, Williams DE, Cheng P, Lack NA, Andersen RJ, Jefferies WA. Curcuphenol possesses an unusual histone deacetylase enhancing activity that counters immune escape in metastatic tumours. Front Pharmacol 2023; 14:1119620. [PMID: 37637416 PMCID: PMC10449465 DOI: 10.3389/fphar.2023.1119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.
Collapse
Affiliation(s)
- Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - David E. Williams
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A. Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Shen Z, Bei Y, Lin H, Wei T, Dai Y, Hu Y, Zhang C, Dai H. The role of class IIa histone deacetylases in regulating endothelial function. Front Physiol 2023; 14:1091794. [PMID: 36935751 PMCID: PMC10014714 DOI: 10.3389/fphys.2023.1091794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Vascular endothelial cells (ECs) are monolayer cells located in the inner layer of the blood vessel. Endothelial function is crucial in maintaining local and systemic homeostasis and is precisely regulated by sophisticated signaling pathways and epigenetic regulation. Endothelial dysfunctions are the main factors for the pathophysiological process of cardiovascular and cerebrovascular diseases like atherosclerosis, hypertension, and stroke. In these pathologic processes, histone deacetylases (HDACs) involve in epigenetic regulation by removing acetyl groups from lysine residues of histones and regulating downstream gene expression. Among all HDACs, Class IIa HDACs (HDAC4, 5, 7, 9) contain only an N-terminal regulatory domain, exert limited HDAC activity, and present tissue-specific gene regulation. Here, we discuss and summarize the current understanding of this distinct subfamily of HDACs in endothelial cell functions (such as angiogenesis and immune response) with their molecular underpinnings. Furthermore, we also present new thoughts for further investigation of HDAC inhibitors as a potential treatment in several vascular diseases.
Collapse
Affiliation(s)
- Zexu Shen
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Bei
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haoran Lin
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Taofeng Wei
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjian Dai
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangmin Hu
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Zhang
- Department of Pharmacy, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Haibin Dai
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Haibin Dai,
| |
Collapse
|
9
|
Rahman ML, Sarjadi MS, Sarkar SM, Walsh DJ, Hannan JJ. Poly(hydroxamic acid) resins and their applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Sakakibara Y, Kojima A, Asai Y, Nadai M, Katoh M. Changes in uridine 5'-diphospho-glucuronosyltransferase 1A6 expression by histone deacetylase inhibitor valproic acid. Biopharm Drug Dispos 2022; 43:175-182. [PMID: 36000181 DOI: 10.1002/bdd.2328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Valproic acid (VPA) is well-known as a histone deacetylase (HDAC) inhibitor. It has been reported that HDAC inhibitors enhance basal and aryl hydrocarbon receptor (AhR) ligand-induced aryl hydrocarbon receptor-responsive gene expression. Other studies suggested that HDAC inhibition might significantly activate the NF-E2-related factor-2 (Nrf2). Moreover, VPA activates mitogen-activated protein kinases (MAPKs). MAPK pathways regulate Nrf2 transactivation domain activity. Uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A6 is one of the important isoforms to affect drug pharmacokinetics. UGT1A6 gene is regulated transcriptionally by AhR and Nrf2. The present study aimed to investigate whether UGT1A6 expression was changed by VPA and to elucidate the mechanism of the alteration. Following VPA treatment for 72 h in Caco-2 cells, UGT1A6 mRNA was increased by 7.9-fold. Moreover, UGT1A6 mRNA was increased by other HDAC inhibitors, suggesting that HDAC inhibition caused the UGT1A6 mRNA induction. AhR and Nrf2 proteins in the nucleus of Caco-2 cells were increased by 1.5- and 1.7-fold, respectively, following the VPA treatment. However, VPA treatment did not activate the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways in Caco-2 cells. In conclusion, we observed that VPA induced UGT1A6 mRNA expression via AhR and Nrf2 pathways, but not via the ERK or JNK pathways.
Collapse
Affiliation(s)
| | - Ayaka Kojima
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Asai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | - Miki Katoh
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
11
|
Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies. iScience 2022; 25:104542. [PMID: 35754737 PMCID: PMC9218437 DOI: 10.1016/j.isci.2022.104542] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 06/02/2022] [Indexed: 12/28/2022] Open
Abstract
Intestinal organoids are physiologically relevant tools used for cellular models. However, the suitability of organoids to examine biological functions over existing established cell lines lacks sufficient evidence. Cytochrome P450 3A4 (CYP3A4) induction by pregnane X receptor ligands, glucose uptake via sodium/glucose cotransporter 1, and microsomal triglyceride transfer protein-dependent ApoB-48 secretion, which are critical for human intestinal metabolism, were observed in organoid-derived two-dimensional cells but little in Caco-2 cells. CYP3A4 induction evaluation involved a simplified method of establishing organoids that constitutively expressed a reporter gene. Compound screening identified several anticancer drugs with selective activities toward Caco-2 cells, highlighting their characteristics as cancer cells. Another compound screening revealed a decline in N-(4-hydroxyphenyl)retinamide cytotoxicity upon rifampicin treatment in organoid-derived cells, under CYP3A4-induced conditions. This study shows that organoid-derived intestinal epithelial cells (IECs) possess similar physiological properties as intestinal epithelium and can serve as tools for enhancing the prediction of biological activity in humans. Comparison of mRNA expression between organoid-derived intestinal epithelial cells (IECs) and Caco-2 cells Evaluation of CYP3A4, SGLT1, and MTP protein function in organoid-derived IECs Identification of anti-cancer drugs as selective cytotoxicity against Caco-2 cells Reduction of N-(4-hydroxyphenyl)retinamide (4-HPR) cytotoxicity by rifampicin in organoid-derived IECs
Collapse
|
12
|
Identifying the Potential Role and Prognostic Value of the Platelet-Derived Growth Factor Pathway in Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9498010. [PMID: 35342405 PMCID: PMC8947876 DOI: 10.1155/2022/9498010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
The platelet-derived growth factor (PDGF) pathway is important in angiogenesis, which can accelerate the formation of vessels in tumor tissues and promote the progression of malignant tumors. To clarify the role of PDGF in the occurrence of renal cell carcinoma and targeted drug resistance, we explored the pathway in kidney renal clear cell carcinoma (KIRC) through bioinformatics analysis with the aim of supporting comprehensive and individualized therapy. First, we found 40 genes related to the PDGF pathway through gene set enrichment analysis and then obtained their expressions and clinical data in 32 different cancers from The Cancer Genome Atlas (TCGA). Mutations in these genes (including copy number and single-nucleotide variation) and mRNA expression were also detected. Next, we conducted a hazard ratio analysis to determine whether the PDGF pathway genes were risk or protective factors in tumors. Although PDGF-related genes acted as traditional oncogenes and were closely related to tumor angiogenesis in many cancers, our results indicated that most genes had a protective role in KIRC. We further analyzed the methylation modification of PDGF pathway genes and found that they were prevalent in 32 different cancers. Furthermore, 539 KIRC samples obtained from TCGA were divided into three clusters based on the mRNA expression of PDGF genes, including normal, inactive, and active PDGF gene expressions. The results from survival curve analysis indicated that the active PDGF cluster of patients had the best survival rate. Using the three clusters, we studied the correlation between the PDGF pathway and 12 common targeted drugs, as well as classical oncogenes and infiltrating immune cells. A prognostic risk model was constructed based on the PDGF score using LASSO-Cox regression analysis to analyze the value of the model in predicting the prognosis of patients with KIRC. Finally, 11 genes were selected for LASSO regression analysis, and the results demonstrated the high predictive value of this risk model and its close relationship with the pathological characteristics of KIRC (metastasis, size, grade, stage, etc.). In addition, we found that the risk score was an independent risk factor correlated with overall survival through univariate and multivariate analyses and a nomogram was built to assess patient prognosis. In conclusion, the occurrence and development of KIRC may be associated with an abnormally activated PDGF pathway, which may be a potential drug target in the treatment of KIRC.
Collapse
|
13
|
Kim HJ, An J, Ha EM. Lactobacillus plantarum-derived metabolites sensitize the tumor-suppressive effects of butyrate by regulating the functional expression of SMCT1 in 5-FU-resistant colorectal cancer cells. J Microbiol 2021; 60:100-117. [PMID: 34964946 DOI: 10.1007/s12275-022-1533-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
A critical obstacle to the successful treatment of colorectal cancer (CRC) is chemoresistance. Chemoresistant CRC cells contribute to treatment failure by providing a mechanism of drug lethargy and modifying chemoresistance-associated molecules. The gut microbiota provide prophylactic and therapeutic effects by targeting CRC through anticancer mechanisms. Among them, Lactobacillus plantarum contributes to the health of the host and is clinically effective in treating CRC. This study confirmed that 5-fluorouracil (5-FU)-resistant CRC HCT116 (HCT116/5FUR) cells acquired butyrate-insensitive properties. To date, the relationship between 5-FU-resistant CRC and butyrate resistance has not been elucidated. Here, we demonstrated that the acquisition of butyrate resistance in HCT116/5FUR cells was strongly correlated with the inhibition of the expression and function of SMCT1, a major transporter of butyrate in colonocytes. L. plantarum-cultured cell-free supernatant (LP) restored the functional expression of SMCT1 in HCT116/5FUR cells, leading to butyrate-induced antiproliferative effect and apoptosis. These results suggest that LP has a synergistic effect on the SMCT1/butyrate-mediated tumor suppressor function and is a potential chemosensitizer to overcome dual 5-FU and butyrate resistance in HCT116 cells.
Collapse
Affiliation(s)
- Hye-Ju Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea
| | - JaeJin An
- Medical Convergence Textile Center, Gyeongbuk Techno Park, Gyeongsan, 38408, Republic of Korea
| | - Eun-Mi Ha
- College of Pharmacy, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea.
| |
Collapse
|
14
|
Hu L, Chen F, Wu C, Wang J, Chen SS, Li XR, Wang J, Wu L, Ding JP, Wang JC, Huang C, Zheng H, Rao Y, Sun Y, Chang Z, Deng W, Luo C, Chin YE. Rapamycin recruits SIRT2 for FKBP12 deacetylation during mTOR activity modulation in innate immunity. iScience 2021; 24:103177. [PMID: 34712915 PMCID: PMC8529501 DOI: 10.1016/j.isci.2021.103177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine-threonine kinase involved in cellular innate immunity, metabolism, and senescence. FK506-binding protein 12 (FKBP12) inhibits mTOR kinase activity via direct association. The FKBP12-mTOR association can be strengthened by the immunosuppressant rapamycin, but the underlying mechanism remains elusive. We show here that the FKBP12-mTOR association is tightly regulated by an acetylation–deacetylation cycle. FKBP12 is acetylated on the lysine cluster (K45/K48/K53) by CREB-binding protein (CBP) in mammalian cells in response to nutrient treatment. Acetyl-FKBP12 associates with CBP acetylated Rheb. Rapamycin recruits SIRT2 with a high affinity for FKBP12 association and deacetylation. SIRT2-deacetylated FKBP12 then switches its association from Rheb to mTOR. Nutrient-activated mTOR phosphorylates IRF3S386 for the antiviral response. In contrast, rapamycin strengthening FKBP12-mTOR association blocks mTOR antiviral activity by recruiting SIRT2 to deacetylate FKBP12. Hence, on/off mTOR activity in response to environmental nutrients relies on FKBP12 acetylation and deacetylation status in mammalian cells. FKBP12-mTOR association is tightly regulated by an acetylation–deacetylation cycle SIRT2 is responsible for FKBP12 deacetylation Acetylation of Rheb is indispensable to mTOR activation mTOR phosphorylates IRF3 S386 for type-I interferon gene expression
Collapse
Affiliation(s)
- Lin Hu
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Fuxian Chen
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chao Wu
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jun Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Si-Si Chen
- Institute of Biochemistry and Cell Biology and Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiang-Rong Li
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jing Wang
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Linpeng Wu
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jian-Ping Ding
- Institute of Biochemistry and Cell Biology and Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jian-Chuan Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chao Huang
- Institute of Biochemistry and Cell Biology and Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hui Zheng
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yu Rao
- Laboratory of Membrane Biology, School of Medicine and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Sun
- Institute of Biochemistry and Cell Biology and Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhijie Chang
- Laboratory of Membrane Biology, School of Medicine and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Deng
- Hematology center, cyrus Tang medical institute, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Y Eugene Chin
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
15
|
Che X, Su W, Li X, Liu N, Wang Q, Wu G. Angiogenesis Pathway in Kidney Renal Clear Cell Carcinoma and Its Prognostic Value for Cancer Risk Prediction. Front Med (Lausanne) 2021; 8:731214. [PMID: 34778292 PMCID: PMC8581140 DOI: 10.3389/fmed.2021.731214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, a process highly regulated by pro-angiogenic and anti-angiogenic factors, is disrupted and dysregulated in cancer. Despite the increased clinical use of angiogenesis inhibitors in cancer therapy, most molecularly targeted drugs have been less effective than expected. Therefore, an in-depth exploration of the angiogenesis pathway is warranted. In this study, the expression of angiogenesis-related genes in various cancers was explored using The Cancer Genome Atlas datasets, whereupon it was found that most of them were protective genes in the patients with kidney renal clear cell carcinoma (KIRC). We divided the samples from the KIRC dataset into three clusters according to the mRNA expression levels of these genes, with the enrichment scores being in the order of Cluster 2 (upregulated expression) > Cluster 3 (normal expression) > Cluster 1 (downregulated expression). The survival curves plotted for the three clusters revealed that the patients in Cluster 2 had the highest overall survival rates. Via a sensitivity analysis of the drugs listed on the Genomics of Drug Sensitivity in Cancer database, we generated IC50 estimates for 12 commonly used molecularly targeted drugs for KIRC in the three clusters, which can provide a more personalized treatment plan for the patients according to angiogenesis-related gene expression. Subsequently, we investigated the correlation between the angiogenesis pathway and classical cancer-related genes as well as that between the angiogenesis score and immune cell infiltration. Finally, we used the least absolute shrinkage and selection operator (LASSO)-Cox regression analysis to construct a risk score model for predicting the survival of patients with KIRC. According to the areas under the receiver operating characteristic (ROC) curves, this new survival model based on the angiogenesis-related genes had high prognostic prediction value. Our results should provide new avenues for the clinical diagnosis and treatment of patients with KIRC.
Collapse
Affiliation(s)
- Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenyan Su
- Department of Nephrology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaowei Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nana Liu
- Department of Breast Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. Cell Discov 2021; 7:90. [PMID: 34608123 PMCID: PMC8490369 DOI: 10.1038/s41421-021-00301-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
Pathogenic mycobacteria induce the formation of hypoxic granulomas during latent tuberculosis (TB) infection, in which the immune system contains, but fails to eliminate the mycobacteria. Fatty acid metabolism-related genes are relatively overrepresented in the mycobacterial genome and mycobacteria favor host-derived fatty acids as nutrient sources. However, whether and how mycobacteria modulate host fatty acid metabolism to drive granuloma progression remains unknown. Here, we report that mycobacteria under hypoxia markedly secrete the protein Rv0859/MMAR_4677 (Fatty-acid degradation A, FadA), which is also enriched in tuberculous granulomas. FadA acts as an acetyltransferase that converts host acetyl-CoA to acetoacetyl-CoA. The reduced acetyl-CoA level suppresses H3K9Ac-mediated expression of the host proinflammatory cytokine Il6, thus promoting granuloma progression. Moreover, supplementation of acetate increases the level of acetyl-CoA and inhibits the formation of granulomas. Our findings suggest an unexpected mechanism of a hypoxia-induced mycobacterial protein suppressing host immunity via modulation of host fatty acid metabolism and raise the possibility of a novel therapeutic strategy for TB infection.
Collapse
|
17
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
de Oliveira Santos J, Zuma AA, de Souza W, Motta MCM. Tubastatin A, a deacetylase inhibitor, as a tool to study the division, cell cycle and microtubule cytoskeleton of trypanosomatids. Eur J Protistol 2021; 80:125821. [PMID: 34144311 DOI: 10.1016/j.ejop.2021.125821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
Trypanosoma cruzi is a protozoan of great medical interest since it is the causative agent of Chagas disease, an endemic condition in Latin America. This parasite undergoes epigenetic events, such as phosphorylation, methylation and acetylation, which play a role in several cellular processes including replication, transcription and gene expression. Histone deacetylases (HDAC) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. Tubastatin A (TST) is a specific HDAC6 inhibitor that affects cell growth and promotes structural modifications in cancer cells and parasites. In the present study, we demonstrated that T. cruzi epimastigote cell proliferation and viability are reduced after 72 h of TST treatment. The results obtained through different microscopy methodologies suggest that this inhibitor impairs the polymerization dynamics of cytoskeleton microtubules, generating protozoa displaying atypical morphology and cellular patterns that include polynucleated parasites. Furthermore, the microtubules of treated protozoa were more intensely acetylated, especially at the anterior portion of the cell body. A cell cycle analysis demonstrated an increase in the number of trypanosomatids in the G2/M phase. Together, our results suggest that TST should be explored as a tool to study trypanosomatid cell biology, including microtubule cytoskeleton dynamics, and as an antiparasitic drug.
Collapse
Affiliation(s)
- Jean de Oliveira Santos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil.
| |
Collapse
|
19
|
Wang J, Huang J, Yao S, Wu JH, Li HB, Gao F, Wang Y, Huang GB, You QL, Li J, Chen X, Sun XD. The ketogenic diet increases Neuregulin 1 expression via elevating histone acetylation and its anti-seizure effect requires ErbB4 kinase activity. Cell Biosci 2021; 11:93. [PMID: 34020711 PMCID: PMC8139023 DOI: 10.1186/s13578-021-00611-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background The ketogenic diet (KD)has been considered an effective treatment for epilepsy, whereas its underlying mechanisms remain obscure. We have previously reported that the KD feeding increased Neuregulin 1 (NRG1) expression in the hippocampus; disruption of NRG1 signaling by genetically deleting its receptor-ErbB4 abolished KDs effects on inhibitory synaptic activity and seizures. However, it is still unclear about the mechanisms underlying the effect of KD on NRG1 expression and whether the effects of KD require ErbB4 kinase activity. Methods The effects of the KD on NRG1 expression were assessed via western blotting and real-time PCR. Acetylation level at the Nrg1 promoter locus was examined using the chromatin immunoprecipitation technique. Kainic acid (KA)-induced acute seizure model was utilized to examine the effects of KD and histone deacetylase inhibitor-TSA on seizures. Synaptic activities in the hippocampus were recorded with the technique of electrophysiology. The obligatory role of ErbB4 kinase activity in KDs effects on seizures and inhibitory synaptic activity was evaluated by using ErbB kinase antagonist and transgenic mouse-T796G. Results We report that KD specifically increases Type I NRG1 expression in the hippocampus. Using the chromatin immunoprecipitation technique, we observe increased acetylated-histone occupancy at the Nrg1 promoter locus of KD-fed mice. Treatment of TSA dramatically elevates NRG1 expression and diminishes the difference between the effects of the control diet (CD) and KD. These data indicate that KD increases NRG1 expression via up-regulating histone acetylation. Moreover, both pharmacological and genetic inhibitions of ErbB4 kinase activity significantly block the KDs effects on inhibitory synaptic activity and seizure, suggesting an essential role of ErbB4 kinase activity. Conclusion These results strengthen our understanding of the role of NRG1/ErbB4 signaling in KD and shed light on novel therapeutic interventions for epilepsy. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00611-7.
Collapse
Affiliation(s)
- Jin Wang
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jie Huang
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Shan Yao
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jia-Hui Wu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Hui-Bin Li
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Feng Gao
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Ying Wang
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Guo-Bin Huang
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Qiang-Long You
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jianhua Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Chen
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| | - Xiang-Dong Sun
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
20
|
Nakamura A, Rampersaud YR, Sundararajan K, Nakamura S, Wu B, Matip E, Haroon N, Krawetz RJ, Rossomacha E, Gandhi R, Kotlyar M, Rockel JS, Jurisica I, Kapoor M. Zinc finger protein-440 promotes cartilage degenerative mechanisms in human facet and knee osteoarthritis chondrocytes. Osteoarthritis Cartilage 2021; 29:372-379. [PMID: 33347923 DOI: 10.1016/j.joca.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate the role of zinc finger protein 440 (ZNF440) in the pathophysiology of cartilage degeneration during facet joint (FJ) and knee osteoarthritis (OA). METHODS Expression of ZNF440 in FJ and knee cartilage was determined by immunohistochemistry, quantitative (q)PCR, and Western blotting (WB). Human chondrocytes isolated from FJ and knee OA cartilage were cultured and transduced with ZNF440 or control plasmid, or transfected with ZNF440 or control small interfering RNA (siRNA), with/without interleukin (IL)-1β. Gene and protein levels of catabolic, anabolic and apoptosis markers were determined by qPCR or WB, respectively. In silico analyses were performed to determine compounds with potential to inhibit expression of ZNF440. RESULTS ZNF440 expression was increased in both FJ and knee OA cartilage compared to control cartilage. In vitro, overexpression of ZNF440 significantly increased expression of MMP13 and PARP p85, and decreased expression of COL2A1. Knockdown of ZNF440 with siRNA partially reversed the catabolic and cell death phenotype of human knee and FJ OA chondrocytes stimulated with IL-1β. In silico analysis followed by validation assays identified scriptaid as a compound with potential to downregulate the expression of ZNF440. Validation experiments showed that scriptaid reduced the expression of ZNF440 in OA chondrocytes and concomitantly reduced the expression of MMP13 and PARP p85 in human knee OA chondrocytes overexpressing ZNF440. CONCLUSIONS The expression of ZNF440 is significantly increased in human FJ and knee OA cartilage and may regulate cartilage degenerative mechanisms. Furthermore, scriptaid reduces the expression of ZNF440 and inhibits its destructive effects in OA chondrocytes.
Collapse
Affiliation(s)
- A Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Department of Medicine, University of Toronto, Ontario, Canada; Department of Rheumatology, University of Toronto, Ontario, Canada
| | - Y R Rampersaud
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada
| | - K Sundararajan
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - S Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - B Wu
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - E Matip
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - N Haroon
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Department of Medicine, University of Toronto, Ontario, Canada; Department of Rheumatology, University of Toronto, Ontario, Canada
| | - R J Krawetz
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada
| | - E Rossomacha
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - R Gandhi
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada
| | - M Kotlyar
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - J S Rockel
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - I Jurisica
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - M Kapoor
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Zuma AA, de Souza W. Chagas Disease Chemotherapy: What Do We Know So Far? Curr Pharm Des 2021; 27:3963-3995. [PMID: 33593251 DOI: 10.2174/1381612827666210216152654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Chagas disease is a Neglected Tropical Disease (NTD), and although endemic in Latin America, affects around 6-7 million people infected worldwide. The treatment of Chagas disease is based on benznidazole and nifurtimox, which are the only available drugs. However, they are not effective during the chronic phase and cause several side effects. Furthermore, BZ promotes cure in 80% of the patients in the acute phase, but the cure rate drops to 20% in adults in the chronic phase of the disease. In this review, we present several studies published in the last six years, which describes the antiparasitic potential of distinct drugs, from the synthesis of new compounds aiming to target the parasite, as well as the repositioning and the combination of drugs. We highlight several compounds for having shown results that are equivalent or superior to BZ, which means that they should be further studied, either in vitro or in vivo. Furthermore, we stand out the differences in the effects of BZ on the same strain of T. cruzi, which might be related to methodological differences such as parasite and cell ratios, host cell type and the time of adding the drug. In addition, we discuss the wide variety of strains and also the cell types used as a host cell, which makes it difficult to compare the trypanocidal effect of the compounds.
Collapse
Affiliation(s)
- Aline Araujo Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| |
Collapse
|
22
|
Lee MH, Lee J, Choi SH, Jie EY, Jeong JC, Kim CY, Kim SW. The Effect of Sodium Butyrate on Adventitious Shoot Formation Varies among the Plant Species and the Explant Types. Int J Mol Sci 2020; 21:E8451. [PMID: 33182800 PMCID: PMC7696800 DOI: 10.3390/ijms21228451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022] Open
Abstract
Histone acetylation plays an important role in plant growth and development. Here, we investigated the effect of sodium butyrate (NaB), a histone deacetylase inhibitor, on adventitious shoot formation from protoplast-derived calli and cotyledon explants of tobacco (Nicotiana benthamiana) and tomato (Solanum lycopersicum). The frequency of adventitious shoot formation from protoplast-derived calli was higher in shoot induction medium (SIM) containing NaB than in the control. However, the frequency of adventitious shoot formation from cotyledon explants of tobacco under the 0.1 mM NaB treatment was similar to that in the control, but it decreased with increasing NaB concentration. Unlike in tobacco, NaB decreased adventitious shoot formation in tomato explants in a concentration-dependent manner, but it did not have any effect on adventitious shoot formation in calli. NaB inhibited or delayed the expression of D-type cyclin (CYCD3-1) and shoot-regeneration regulatory gene WUSCHEL (WUS) in cotyledon explants of tobacco and tomato. However, compared to that in control SIM, the expression of WUS was promoted more rapidly in tobacco calli cultured in NaB-containing SIM, but the expression of CYCD3-1 was inhibited. In conclusion, the effect of NaB on adventitious shoot formation and expression of CYCD3-1 and WUS genes depended on the plant species and whether the effects were tested on explants or protoplast-derived calli.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (M.H.L.); (J.L.); (S.H.C.); (E.Y.J.); (J.C.J.); (C.Y.K.)
| |
Collapse
|
23
|
Xu P, Xu S, He C, Khetan A. Applications of small molecules in modulating productivity and product quality of recombinant proteins produced using cell cultures. Biotechnol Adv 2020; 43:107577. [PMID: 32540474 DOI: 10.1016/j.biotechadv.2020.107577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Mammalian cell cultures have been used extensively for production of recombinant protein therapeutics such as monoclonal antibodies, fusion proteins and enzymes for decades. Small molecules have been investigated as media supplements to improve process productivity and reduce cost of goods. Those chemicals can lead to significant yield improvement through different mechanisms such as cell cycle modulation, cellular redox regulation, etc. In addition to productivity, small molecules have also been routinely used to regulate post-translational modifications of recombinant proteins. This review summarizes key applications of small molecules in protein productivity improvement and product quality control.
Collapse
Affiliation(s)
- Ping Xu
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb Company, New Brunswick, NJ 08903, United States of America.
| | - Sen Xu
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb Company, New Brunswick, NJ 08903, United States of America
| | - Chunyan He
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb Company, New Brunswick, NJ 08903, United States of America
| | - Anurag Khetan
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb Company, New Brunswick, NJ 08903, United States of America
| |
Collapse
|
24
|
Eslami M, Sadrifar S, Karbalaei M, Keikha M, Kobyliak NM, Yousefi B. Importance of the Microbiota Inhibitory Mechanism on the Warburg Effect in Colorectal Cancer Cells. J Gastrointest Cancer 2020; 51:738-747. [PMID: 31735976 DOI: 10.1007/s12029-019-00329-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
METHODS AND RESULTS Colorectal cancer (CRC) is the third most common cancer in the world. Genetic backgrounds, lifestyle, and diet play an important role in CRC risk. The human gut microbiota has an influence on many features of human physiology such as metabolism, nutrient absorption, and immune function. Imbalance of the microbiota has been implicated in many disorders including CRC. It seems Warburg effect hypothesis corresponds to the early beginning of carcinogenesis because of eventual failure in the synthesis of a pyruvate dehydrogenase complex in cooperation with a supply of glucose in carbohydrates rich diets. From investigation among previous publications, we attempted to make it clear importance of Warburg effect in tumors; it also discusses the mechanisms of probiotics in inhibiting tumor progression and reverse Warburg effect of probiotics in modulating the microbiota and CRC therapies. These effects were observed in some clinical trials, the application of probiotics as a therapeutic agent against CRC still requirements further investigation. CONCLUSION Fiber is fermented by colonic bacteria into SCFAs such as butyrate/acetate, which may play a vital role in normal homeostasis by promoting turnover of the colonic epithelium. Butyrate enters the nucleus and functions as a histone deacetylase inhibitor (HDACi). Because cancerous colonocytes undertake the Warburg effect pathway, their favored energy source is glucose instead of butyrate. Therefore, accumulation of moderate concentrations of butyrate in cancerous colonocytes and role as HDACi. Probiotics have been shown to play a protective role against cancer development by modulating intestinal microbiota and immune response.
Collapse
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sina Sadrifar
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazarii M Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
25
|
Identification of novel class I and class IIb histone deacetylase inhibitor for Alzheimer's disease therapeutics. Life Sci 2020; 256:117912. [PMID: 32504755 DOI: 10.1016/j.lfs.2020.117912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023]
Abstract
Histone deacetylase enzymes were prominent chromatin remodeling drug that targets in the pathophysiology of Alzheimer's disease associated with transcriptional dysregulation. In vitro and in vivo models of AD have demonstrated overexpression of HDAC activity. Non-specificity and non-selectivity of HDAC are the major problems of existing HDAC inhibitors. Hence, we aim to set up a methodology describing the rational development of isoform-selective HDAC inhibitor targeting class, I and class IIb. A convenient multistage virtual screening followed by machine learning and IC50 screenings were used to classify the 5064 compounds into inhibitors and non-inhibitors classes retrieved from the ChEMBL database. ADMET analysis identified the pharmacokinetics and pharmacodynamics properties of selected compounds. Molecular docking, along with mutational analysis of eleven compounds, characterized the inhibiting potency. Herein, for the first time, we reported ChEMBL1834473 (2-[[5-(4-chlorophenyl)-1,3,4-thiadiazol-2-yl]amino]-N-hydroxypyrimidine-5-carboxamide) as the isoform-selective HDAC inhibitor, which interact central Zn2+ atom. The negative energy and interacting residue of the ChEMBL1834473 with six HDAC isoform has also been tabulated and mapped. Moreover, our findings concluded histidine, glycine, phenylalanine, and aspartic acid as key residues in protein-ligand interaction and classify 2347 compounds as HDAC inhibitors. Later, a protein-protein interaction network of six HDAC with the key proteins involved in the progression of an AD and signaling pathway, which describes the relationship between ChEMBL1834473 and AD, has been demonstrated using PPI network where the chosen inhibitor will work. Altogether, we conclude that the compound ChEMBL1834473 may be capable of inhibiting all isoforms of class I and class IIb HDAC based on computational analysis for AD therapeutics.
Collapse
|
26
|
Zhao N, Yang F, Han L, Qu Y, Ge D, Zhang H. Development of Coumarin-Based Hydroxamates as Histone Deacetylase Inhibitors with Antitumor Activities. Molecules 2020; 25:E717. [PMID: 32046013 PMCID: PMC7036849 DOI: 10.3390/molecules25030717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) have been proved to be promising targets for the treatment of cancer, and five histone deacetylase inhibitors (HDACis) have been approved on the market for the treatment of different lymphomas. In our previous work, we designed a series of novel coumarin-containing hydroxamate HDACis, among which compounds 6 and 7 displayed promising activities against tumor growth. Based on a molecular docking study, we further developed 26 additional analogues with the aim to improve activity of designed compounds. Several of these new derivatives not only showed excellent HDAC1 inhibitory effects, but also displayed significant growth inhibitory activities against four human cancer cell lines. Representative compounds, 13a and 13c, showed potent anti-proliferative activities against solid tumor cell lines with IC50 values of 0.36-2.91 M and low cytotoxicity against Beas-2B and L-02 normal cells. Immunoblot analysis revealed that 13a and 13c dose-dependently increased the acetylation of histone H3 and H4. Importantly, the two compounds displayed much better anti-metastatic effects than SAHA against the MDA-MB-231 cell line. Moreover, 13a and 13c arrested MDA-MB-231 cells at G2/M phase and induced MDA-MB-231 cell apoptosis. Finally, the molecular docking study rationalized the high potency of compound 13c.
Collapse
Affiliation(s)
- Na Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Lina Han
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Yuhua Qu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| |
Collapse
|
27
|
Sharma MC, Sharma S. Molecular modeling study of uracil-based hydroxamic acids-containing histone deacetylase inhibitors. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Design, synthesis and evaluation of belinostat analogs as histone deacetylase inhibitors. Future Med Chem 2019; 11:2765-2778. [PMID: 31702394 DOI: 10.4155/fmc-2018-0587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Histone deacetylase (HDAC) is an attractive target for antitumor therapy. Therefore, the development of novel HDAC inhibitors is warranted. Materials & methods: A series of HDAC inhibitors based on N-hydroxycinnamamide fragment was designed as the clinically used belinostat analog using amide as the connecting unit. All target compounds were evaluated for their in vitro HDAC inhibitory activities and some selected compounds were tested for their antiproliferative activities. Conclusion: Among them, compound 7e showed an IC50 value of 11.5 nM in inhibiting the HDAC in a pan-HDAC assay, being the most active compound of the series.
Collapse
|
29
|
Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019; 42:1192-1230. [PMID: 30982989 DOI: 10.1002/jimd.12100] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Lindner
- University Children's Hospital, Frankfurt am Main, Germany
| | - Hanna Mandel
- Institute of Human Genetics and metabolic disorders, Western Galilee Medical Center, Nahariya, Israel
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
- CIBERER_GCV08, Research Institute IGTP, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, Paris, France
| | - Galit Tal
- The Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Valencia, Spain
| | - Martina Huemer
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | |
Collapse
|
30
|
Zhao LM, Zhang JH. Histone Deacetylase Inhibitors in Tumor Immunotherapy. Curr Med Chem 2019; 26:2990-3008. [PMID: 28762309 DOI: 10.2174/0929867324666170801102124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/26/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND With an increasing understanding of the antitumor immune response, considerable progress has been made in the field of tumor immunotherapy in the last decade. Inhibition of histone deacetylases represents a new strategy in tumor therapy and histone deacetylase inhibitors have been recently developed and validated as potential antitumor drugs. In addition to the direct antitumor effects, histone deacetylase inhibitors have been found to have the ability to improve tumor recognition by immune cells that may contribute to their antitumor activity. These immunomodolutory effects are desirable, and their in-depth comprehension will facilitate the design of novel regimens with improved clinical efficacy. OBJECTIVE Our goal here is to review recent developments in the application of histone deacetylase inhibitors as immune modulators in cancer treatment. METHODS Systemic compilation of the relevant literature in this field. RESULTS & CONCLUSION In this review, we summarize recent advances in the understanding of how histone deacetylase inhibitors alter immune process and discuss their effects on various cytokines. We also discuss the challenges to optimize the use of these inhibitors as immune modulators in cancer treatment. Information gained from this review will be valuable to this field and may be helpful for designing tumor immunotherapy trials involving histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Jie-Huan Zhang
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
31
|
Doherty W, Dürr EM, Baddock HT, Lee SY, McHugh PJ, Brown T, Senge MO, Scanlan EM, McGouran JF. A hydroxamic-acid-containing nucleoside inhibits DNA repair nuclease SNM1A. Org Biomol Chem 2019; 17:8094-8105. [PMID: 31380542 PMCID: PMC6984127 DOI: 10.1039/c9ob01133a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022]
Abstract
Nine modified nucleosides, incorporating zinc-binding pharmacophores, have been synthesised and evaluated as inhibitors of the DNA repair nuclease SNM1A. The series included oxyamides, hydroxamic acids, hydroxamates, a hydrazide, a squarate ester and a squaramide. A hydroxamic acid-derived nucleoside inhibited the enzyme, offering a novel approach for potential therapeutic development through the use of rationally designed nucleoside derived inhibitors.
Collapse
Affiliation(s)
- William Doherty
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Eva-Maria Dürr
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sook Y Lee
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK and Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Mathias O Senge
- Molecular Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| |
Collapse
|
32
|
Voskou S, Phylactides M, Afantitis A, Melagraki G, Tsoumanis A, Koutentis PA, Mitsidi T, Mirallai SI, Kleanthous M. MS-275 Chemical Analogues Promote Hemoglobin Production and Erythroid Differentiation of K562 Cells. Hemoglobin 2019; 43:116-121. [PMID: 31280628 DOI: 10.1080/03630269.2019.1626740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
β-Thalassemia (β-thal) is a hemoglobinopathy characterized by reduced or absent β-globin production. Pharmacological reactivation of the γ-globin gene for the production of fetal hemoglobin (Hb F) presents an attractive treatment strategy. In an effort to identify promising therapeutic agents, we evaluated 80 analogues of the histone deacetylase inhibitor MS-275, a known Hb F inducer. The chemical analogues were identified via molecular modeling and targeted chemical modifications. Nine novel agents exhibited significant hemoglobin (Hb)-inducing and erythroid differentiation activities in the human K562 erythroleukemia cell line. Five of them appeared to be stronger inducers than the lead compound, MS-275, demonstrating the effectiveness of our method.
Collapse
Affiliation(s)
- Stella Voskou
- a Molecular Genetics Thalassaemia Department , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus.,b Department of Biological Sciences , University of Cyprus , Nicosia , Cyprus
| | - Marios Phylactides
- a Molecular Genetics Thalassaemia Department , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus
| | - Andreas Afantitis
- c Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus
| | - Georgia Melagraki
- c Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus
| | - Andreas Tsoumanis
- c Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus
| | | | - Tina Mitsidi
- d Department of Chemistry , University of Cyprus , Nicosia , Cyprus
| | | | - Marina Kleanthous
- a Molecular Genetics Thalassaemia Department , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus
| |
Collapse
|
33
|
Alsawalha M, Rao Bolla S, Kandakatla N, Srinivasadesikan V, Veeraraghavan VP, Surapaneni KM. Molecular docking and ADMET analysis of hydroxamic acids as HDAC2 inhibitors. Bioinformation 2019; 15:380-387. [PMID: 31312074 PMCID: PMC6614126 DOI: 10.6026/97320630015380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylase (HDAC2) belongs to the hydrolase family and a promising target for cancers. We reported 96 hydroxamic compounds optimized using hydrogen-donors, hydrophobic and electron withdrawing groups followed by molecular docking studies. The optimized compounds show good LibDock score and H-bond interaction in the active site of HDAC2. We selected 20 compounds as the best HDAC2 inhibitors based on the LibDock score, binding energy and hydrogen bonding. ADMET predictions on these compounds show good absorption, BBB penetration and no liver toxicity. We subsequently report four compounds selected as best HDAC2 inhibitors based on the LibDock, binding energy, H-bonding and ADMET properties.
Collapse
Affiliation(s)
- Murad Alsawalha
- Department of Chemical and Process Engineering Technology, Jubail Industrial College (JIC), P.O. Box 10099, Jubail Industrial City 31961,Kingdom of Saudi Arabia
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O.Box 2114,Dammam 31451, Kingdom of Saudi Arabia
| | - Naresh Kandakatla
- Department of Chemistry, Sathyabama University, Jeppiaar Nagar, Chennai - 600 119, Tamil Nadu, India, 600119
| | - Venkatesan Srinivasadesikan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
- 5Division of Chemistry,Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research University, Vadlamudi, 522 213,Guntur, Andhra Pradesh, India
| | - Vishnu Priya Veeraraghavan
- 6Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, 162, P. H. Road, Velappanchavadi, Chennai - 600 077, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- 7Department of Medical Biochemistry, College of Applied Medical Sciences in Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University, Jubail Industrial City 35816, Kingdom
| |
Collapse
|
34
|
Jia X, Zheng Y, Guo Y, Chen K. Sodium butyrate and panobinostat induce apoptosis of chronic myeloid leukemia cells via multiple pathways. Mol Genet Genomic Med 2019; 7:e613. [PMID: 30891950 PMCID: PMC6503025 DOI: 10.1002/mgg3.613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/05/2019] [Accepted: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose Histone deacetylase inhibitor (HDACI) is a novel therapeutic option for cancer. However, the effects of HDACIs on chronic myeloid leukemia (CML) and the underlying mechanisms are still unknown. The aim of this study was to investigate the effect and the mechanism‐of‐action of two HDACI members, sodium butyrate (NaBu) and panobinostat (LBH589) in K562 and the adriamycin–resistant cell line K562/ADR. Methods Cell viability was assessed using MTT assay. Cell apoptosis was detected with flow cytometry. Cell cycle analysis and western blot were performed to explore the possible molecules related to HDACIs effects. Results The effect of NaBu was more powerful on K562/ADR than on K562 cells. LBH589 triggered apoptosis and inhibited the growth of K562 cells. Both HDACIs inhibited K562 and K562/ADR cells via activation of intrinsic/extrinsic apoptotic pathways and inhibition of AKT‐mTOR pathway while NaBu also activated endoplasmic reticulum stress (ERS) mediated apoptotic pathway in K562/ADR cells. LBH589 reduced the expression of drug–resistant related proteins in K562 cells. However, neither NaBu nor LBH589 could significantly influence the expression of the drug–resistant related proteins in K562/ADR cells. Conclusion The combination of HDACI and other therapeutic strategies are likely required to overcome drug resistance in CML therapy.
Collapse
Affiliation(s)
- Xiaoyuan Jia
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yinsuo Zheng
- Department of Hematology, Baoji Central Hospital, Baoji, China
| | - Yanzi Guo
- The Second Affiliated Hospital of Shaanxi Traditional University, Xianyang, China
| | - Kan Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
35
|
Pardo-Jiménez V, Navarrete-Encina P, Díaz-Araya G. Synthesis and Biological Evaluation of Novel Thiazolyl-Coumarin Derivatives as Potent Histone Deacetylase Inhibitors with Antifibrotic Activity. Molecules 2019; 24:molecules24040739. [PMID: 30791388 PMCID: PMC6412891 DOI: 10.3390/molecules24040739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/04/2023] Open
Abstract
New histone deacetylases (HDAC) inhibitors with low toxicity to non-cancerous cells, are a prevalent issue at present because these enzymes are actively involved in fibrotic diseases. We designed and synthesized a novel series of thiazolyl-coumarins, substituted at position 6 (R = H, Br, OCH3), linked to classic zinc binding groups, such as hydroxamic and carboxylic acid moieties and alternative zinc binding groups such as disulfide and catechol. Their in vitro inhibitory activities against HDACs were evaluated. Disulfide and hydroxamic acid derivatives were the most potent ones. Assays with neonatal rat cardiac fibroblasts demonstrated low cytotoxic effects for all compounds. Regarding the parameters associated to cardiac fibrosis development, the compounds showed antiproliferative effects, and triggered a strong decrease on the expression levels of both α-SMA and procollagen I. In conclusion, the new thiazolyl-coumarin derivatives inhibit HDAC activity and decrease profibrotic effects on cardiac fibroblasts.
Collapse
Affiliation(s)
- Viviana Pardo-Jiménez
- Laboratory of Advanced Organic Chemistry, Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
| | - Patricio Navarrete-Encina
- Laboratory of Advanced Organic Chemistry, Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
- Advanced Center of Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380000, Chile.
| |
Collapse
|
36
|
Thomas M, Alsarraf J, Araji N, Tranoy-Opalinski I, Renoux B, Papot S. The Lossen rearrangement from free hydroxamic acids. Org Biomol Chem 2019; 17:5420-5427. [DOI: 10.1039/c9ob00789j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During more than a century, the Lossen rearrangement was supposed to occur exclusively in the presence of stochiometric amount of activating reagents. Very recently, it was demonstrated that the Lossen rearrangement can take place directly from free hydroxamic acids offering a renewal of interest for this reaction.
Collapse
Affiliation(s)
- Mikaël Thomas
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| | - Jérôme Alsarraf
- Chaire de recherche sur les agents anticancéreux d'origine naturelle
- Laboratoire d'analyse et de séparation des essences végétales (LASEVE)
- Département des Sciences Fondamentales
- Université du Québec à Chicoutimi
- Chicoutimi
| | - Nahla Araji
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| | - Isabelle Tranoy-Opalinski
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| | - Brigitte Renoux
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| | - Sébastien Papot
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| |
Collapse
|
37
|
Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur J Med Chem 2018; 164:214-240. [PMID: 30594678 DOI: 10.1016/j.ejmech.2018.12.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 01/08/2023]
Abstract
The histone deacetylases (HDACs) enzymes provided crucial role in transcriptional regulation of cells through deacetylation of nuclear histone proteins. Discoveries related to the HDAC8 enzyme activity signified the importance of HDAC8 isoform in cell proliferation, tumorigenesis, cancer, neuronal disorders, parasitic/viral infections and other epigenetic regulations. The pan-HDAC inhibitors can confront these conditions but have chances to affect epigenetic functions of other HDAC isoforms. Designing of selective HDAC8 inhibitors is a key feature to combat the pathophysiological and diseased conditions involving the HDAC8 activity. This review is concerned about the structural and positional aspects of HDAC8 in the HDAC family. It also covers the contributions of HDAC8 in the pathophysiological conditions, a preliminary discussion about the recent scenario of HDAC8 inhibitors. This review might help to deliver the structural, functional and computational information in order to identify and design potent and selective HDAC8 inhibitors for target specific treatment of diseases involving HDAC8 enzymatic activity.
Collapse
|
38
|
Trichostatin A induces Trypanosoma cruzi histone and tubulin acetylation: effects on cell division and microtubule cytoskeleton remodelling. Parasitology 2018; 146:543-552. [PMID: 30421693 DOI: 10.1017/s0031182018001828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.
Collapse
|
39
|
Al-Keilani MS, Alzoubi KH, Jaradat SA. The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cells. Clin Pharmacol 2018; 10:135-140. [PMID: 30349406 PMCID: PMC6186900 DOI: 10.2147/cpaa.s174074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Chemotherapy resistance is the main cause of the marginal clinical benefit of platinum-based chemotherapy and tyrosine kinase inhibitors in advanced non-small-cell lung cancer (NSCLC). Thus, the identification of new therapeutic agents that can enhance the sensitivity of these drugs is of clinical importance. Histone deacetylase inhibitors (HDACIs) are emerging as new promising agents with strong antiproliferative effects against different types of cancers. This study investigates the synergistic potential of sodium phenylbutyrate (NaPB) added on top of standard chemotherapy used against NSCLC. Objective The objective of this study was to evaluate the ability of NaPB to overcome the resistance of NSCLC cell lines to cisplatin, gefitinib, and erlotinib. Methods MTT cell proliferation assay was used to measure the anticancer effects of cisplatin, erlotinib, or gefitinib alone or combined with various concentrations of NaPB against A549, Calu1, and H1650 NSCLC cell lines. Synergism was estimated by measuring synergy value (R), which is equal to the ratio of IC50 of each primary drug alone divided by combination IC50s. Student’s t-test analysis was used to evaluate the potential differences between IC50 values. ANOVA followed by Tukey’s post hoc was used to evaluate the potential differences among monotherapy and combination treatment groups. Analyses were performed using R 3.3.2 software. P-value <0.05 was considered to be statistically significant. Results NaPB was shown to inhibit the growth of A549, Calu1, and H1650 cell lines in a dose-dependent manner (IC50 10, 8.53, and 4.53 mM, respectively). Furthermore, the addition of NaPB along with cisplatin, erlotinib, or gefitinib to A549, Calu1, and H1650 cell lines resulted in a synergistic antiproliferative effect against the three NSCLC cell lines (R>1.6, P-value <0.05), thus suggesting that NaPB can potentiate the effect of cisplatin, erlotinib, and gefitinib on A549, Calu1, and H1650 cell lines. Conclusion Current results suggest a potential role of NaPB as a sensitizing agent in NSCLC.
Collapse
Affiliation(s)
- Maha S Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan,
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan,
| | - Saied A Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.,Princess Haya Center for Biotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
40
|
Verçoza BRF, Godinho JLP, de Macedo-Silva ST, Huber K, Bracher F, de Souza W, Rodrigues JCF. KH-TFMDI, a novel sirtuin inhibitor, alters the cytoskeleton and mitochondrial metabolism promoting cell death in Leishmania amazonensis. Apoptosis 2018; 22:1169-1188. [PMID: 28685254 DOI: 10.1007/s10495-017-1397-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatment of leishmaniasis involves the use of antimonials, miltefosine, amphotericin B or pentamidine. However, the side effects of these drugs and the reports of drug-resistant parasites demonstrate the need for new treatments that are safer and more efficacious. Histone deacetylase inhibitors are a new class of compounds with potential to treat leishmaniasis. Herein, we evaluated the effects of KH-TFMDI, a novel histone deacetylase inhibitor, on Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values of this compound for promastigotes and intracellular amastigotes were 1.976 and 1.148 μM, respectively, after 72 h of treatment. Microscopic analyses revealed that promastigotes became elongated and thinner in response to KH-TFMDI, indicating changes in cytoskeleton organization. Immunofluorescence microscopy, western blotting and flow cytometry using an anti-acetylated tubulin antibody revealed an increase in the expression of acetylated tubulin. Furthermore, transmission electron microscopy revealed several ultrastructural changes, such as (a) mitochondrial swelling, followed by the formation of many vesicles inside the matrix; (b) presence of lipid bodies randomly distributed through the cytoplasm; (c) abnormal chromatin condensation; and (d) formation of blebs on the plasma membrane. Physiological studies for mitochondrial function, flow cytometry with propidium iodide and TUNEL assay confirmed the alterations in the mitochondrial metabolism, cell cycle, and DNA fragmentation, respectively, which could result to cell death by mechanisms related to apoptosis-like. All these together indicate that histone deacetylases are promising targets for the development of new drugs to treat Leishmania, and KH-TFMDI is a promising drug candidate that should be tested in vivo.
Collapse
Affiliation(s)
- Brunno Renato Farias Verçoza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Joseane Lima Prado Godinho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Sara Teixeira de Macedo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Kilian Huber
- Departament of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franz Bracher
- Departament of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil. .,Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil. .,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Scriven M, Dinan TG, Cryan JF, Wall M. Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases 2018; 6:E78. [PMID: 30200574 PMCID: PMC6163507 DOI: 10.3390/diseases6030078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
The microbiome gut brain (MGB) axis consists of bidirectional routes of communication between the gut and the brain. It has emerged as a potential therapeutic target for multiple medical specialties including psychiatry. Significant numbers of preclinical trials have taken place with some transitioning to clinical studies in more recent years. Some positive results have been reported secondary to probiotic administration in both healthy populations and specific patient groups. This review aims to summarise the current understanding of the MGB axis and the preclinical and clinical findings relevant to psychiatry. Significant differences have been identified between the microbiome of patients with a diagnosis of depressive disorder and healthy controls. Similar findings have occurred in patients diagnosed with bipolar affective disorder and irritable bowel syndrome. A probiotic containing Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum produced a clinically measurable symptom improvement in patients with depressive disorder. To date, some promising results have suggested that probiotics could play a role in the treatment of stress-related psychiatric disease. However, more well-controlled clinical trials are required to determine which clinical conditions are likely to benefit most significantly from this novel approach.
Collapse
Affiliation(s)
- Mary Scriven
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland.
| | - Mary Wall
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
| |
Collapse
|
42
|
Huang Y, Yang W, Zeng H, Hu C, Zhang Y, Ding N, Fan G, Shao L, Kuang B. Droxinostat sensitizes human colon cancer cells to apoptotic cell death via induction of oxidative stress. Cell Mol Biol Lett 2018; 23:34. [PMID: 30065760 PMCID: PMC6064062 DOI: 10.1186/s11658-018-0101-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023] Open
Abstract
Upregulation of histone acetylation plays a critical role in the dysregulation of transcription. It alters the structure of chromatin, which leads to the onset of cancer. Histone deacetylase inhibitors may therefore be a promising way to limit cancer progression. In this study, we examined the effects of droxinostat on the growth of HT-29 colon cancer cells. Our results show that droxinostat effectively inhibited cell growth and colony-forming ability by inducing cellular apoptosis and ROS production in HT-29 cells. Notably, the apoptotic inhibitor Z-VAD-FMK significantly decreased the levels of cellular apoptosis and the antioxidant γ-tocotrienol (GT3) significantly decreased ROS production induced by droxinostat treatment. Z-VAD-FMK and GT3 also partially reversed the negative growth effects of droxinstat on HT-29 cells. GT3 treatment decreased cellular apoptosis and increased colony-forming ability upon droxinostat administration. Z-VAD-FMK treatment also partially decreased droxinostat-induced ROS production. Our findings suggest that the effects of droxinostat on colon cancer cells are mediated by the induction of oxidative stress and apoptotic cell death.
Collapse
Affiliation(s)
- Ying Huang
- 1Jiangxi provincial key laboratory of preventive medicine, Nanchang University, Nanchang, 330006 China.,2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Wuping Yang
- 1Jiangxi provincial key laboratory of preventive medicine, Nanchang University, Nanchang, 330006 China.,2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Huihong Zeng
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Chuan Hu
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Yaqiong Zhang
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Nanhua Ding
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Guangqin Fan
- 1Jiangxi provincial key laboratory of preventive medicine, Nanchang University, Nanchang, 330006 China.,3School of Public Health, Nanchang University, Nanchang, 330006 China
| | - Lijian Shao
- 1Jiangxi provincial key laboratory of preventive medicine, Nanchang University, Nanchang, 330006 China.,3School of Public Health, Nanchang University, Nanchang, 330006 China
| | - Bohai Kuang
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| |
Collapse
|
43
|
Histone deacetylases as targets for antitrypanosomal drugs. Future Sci OA 2018; 4:FSO325. [PMID: 30271613 PMCID: PMC6153458 DOI: 10.4155/fsoa-2018-0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/17/2018] [Indexed: 12/29/2022] Open
Abstract
Parasitic protozoa comprise several species that are causative agents of important diseases. These diseases are distributed throughout the world and include leishmaniasis, Chagas disease and sleeping sickness, malaria and toxoplasmosis. Treatment is based on drugs that were developed many years ago, which have side effects and produce resistant parasites. One approach for the development of new drugs is the identification of new molecular targets. We summarize the data on histone deacetylases, a class of enzymes that act on histones, which are closely associated with DNA and its regulation. These enzymes may constitute new targets for the development of antiparasitic protozoa drugs. Although several protozoan species are mentioned, members of the Trypanosomatidae family are the main focus of this short review. Parasitic protozoa comprise species that are causative agents of important diseases distributed throughout the world. The available drugs for treatment were developed many years ago, might cause side effects and produce resistant parasites. The identification of new molecular targets is required for the development of new drugs. Histone deacetylases act on histones, are closely associated with DNA and thus may constitute new targets for antiparasitic therapy, especially that against trypanosomatid protozoa.
Collapse
|
44
|
Jin L, Guo Q, Zhang GL, Xing XX, Xuan MF, Luo QR, Luo ZB, Wang JX, Yin XJ, Kang JD. The Histone Deacetylase Inhibitor, CI994, Improves Nuclear Reprogramming and In Vitro Developmental Potential of Cloned Pig Embryos. Cell Reprogram 2018; 20:205-213. [PMID: 29782192 DOI: 10.1089/cell.2018.0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic reprogramming and somatic cell nuclear transfer (SCNT) cloning efficiency were recently enhanced using histone deacetylase inhibitors (HDACis). In this study, we investigated the time effect of CI994, an HDACi, on the blastocyst formation rate, acetylation levels of H3K9 and H4K12, DNA methylation levels of anti-5-methylcytosine (5mC), and some mRNA expression of pluripotency-related genes in pig SCNT embryos. Treatment with 10 μM CI994 for 24 hours significantly improved the blastocyst formation rate of SCNT embryos in comparison with the untreated group (p < 0.05). Moreover, average fluorescence intensities of H3K9 and H4K12 in CI994-treated embryos were remarkably increased at the pseudo-pronuclear stage, but not at the blastocyst stage. The intensity of POU5F1 was higher in CI994-treated blastocysts than in control blastocysts, whereas that of 5mC did not differ between the two groups. The percentage of apoptotic cells in blastocysts was significantly higher in the untreated group than in the CI994-treated group. mRNA levels of POU5F1 and SOX2 were significantly increased in the CI994-treated group. These observations suggest that optimum exposure (10 μM for 24 hours) to CI994 after activation elevates the level of histone acetylation and subsequently improves the in vitro development of pig SCNT embryos.
Collapse
Affiliation(s)
- Long Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Guang-Lei Zhang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Xiao-Xu Xing
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Qi-Rong Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Jun-Xia Wang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| |
Collapse
|
45
|
Ding D, Chen LL, Zhai YZ, Hou CJ, Tao LL, Lu SH, Wu J, Liu XP. Trichostatin A inhibits the activation of Hepatic stellate cells by Increasing C/EBP-α Acetylation in vivo and in vitro. Sci Rep 2018. [PMID: 29535398 PMCID: PMC5849734 DOI: 10.1038/s41598-018-22662-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reversal of activated hepatic stellate cells (HSCs) to a quiescent state and apoptosis of activated HSCs are key elements in the reversion of hepatic fibrosis. CCAAT/enhancer binding protein α (C/EBP-α) has been shown to inhibit HSC activation and promote its apoptosis. This study aims to investigate how C/EBP-α acetylation affects the fate of activated HSCs. Effects of a histone deacetylation inhibitor trichostatin A (TSA) on HSC activation were evaluated in a mouse model of liver fibrosis caused by carbon tetrachloride (CCl4) intoxication. TSA was found to ameliorate CCl4-induced hepatic fibrosis and improve liver function through increasing the protein level and enhancing C/EBP-α acetylation in the mouse liver. C/EBP-α acetylation was determined in HSC lines in the presence or absence of TSA, and the lysine residue K276 was identified as a main acetylation site in C/EBP-α protein. C/EBP-α acetylation increased its stability and protein level, and inhibited HSC activation. The present study demonstrated that C/EBP-α acetylation increases the protein level by inhibiting its ubiquitination-mediated degradation, and may be involved in the fate of activated HSCs. Use of TSA may confer an option in minimizing hepatic fibrosis by suppressing HSC activation, a key process in the initiation and progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Di Ding
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin-Lin Chen
- Department of Pathology, The Fifth People's Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Zhen Zhai
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Jian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li-Li Tao
- Department of Pathology, Peking University, Shenzhen Hospital, Shenzhen, 518036, China
| | - Shu-Han Lu
- Department of Nutrition, University of California at Davis, Davis, California, USA
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Disease, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Pathology, The Fifth People's Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
46
|
Zilifdar F, Foto E, Ertan-Bolelli T, Aki-Yalcin E, Yalcin I, Diril N. Biological evaluation and pharmacophore modeling of some benzoxazoles and their possible metabolites. Arch Pharm (Weinheim) 2018; 351. [DOI: 10.1002/ardp.201700265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Fatma Zilifdar
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| | - Egemen Foto
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| | - Tugba Ertan-Bolelli
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Esin Aki-Yalcin
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Ismail Yalcin
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Nuran Diril
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| |
Collapse
|
47
|
Bayat S, Shekari Khaniani M, Choupani J, Alivand MR, Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother 2018; 97:1445-1453. [DOI: 10.1016/j.biopha.2017.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
|
48
|
Balliu M, Cellai C, Lulli M, Laurenzana A, Torre E, Vannucchi AM, Paoletti F. HDAC1 controls CIP2A transcription in human colorectal cancer cells. Oncotarget 2017; 7:25862-71. [PMID: 27029072 PMCID: PMC5041950 DOI: 10.18632/oncotarget.8406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/10/2016] [Indexed: 12/03/2022] Open
Abstract
This work describes the effectiveness of HDAC-inhibitor (S)-2 towards colorectal cancer (CRC) HCT116 cells in vitro by inducing cell cycle arrest and apoptosis, and in vivo by contrasting tumour growth in mice xenografts. Among the multifaceted drug-induced events described herein, an interesting link has emerged between the oncoprotein histone deacetylase HDAC1 and the oncogenic Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) which is overexpressed in several cancers including CRCs. HDAC1 inhibition by (S)-2 or specific siRNAs downregulates CIP2A transcription in three different CRC cell lines, thus restoring the oncosuppressor phosphatase PP2A activity that is reduced in most cancers. Once re-activated, PP2A dephosphorylates pGSK-3β(ser9) which phosphorylates β-catenin that remains within the cytosol where it undergoes degradation. The decreased amount/activity of β-catenin transcription factor prompts cell growth arrest by diminishing c-Myc and cyclin D1 expression and abrogating the prosurvival Wnt/β-catenin signaling pathway. These results are the first evidence that the inhibition of HDAC1 by (S)-2 downregulates CIP2A transcription and unleashes PP2A activity, thus inducing growth arrest and apoptosis in CRC cells.
Collapse
Affiliation(s)
- Manjola Balliu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| | - Cristina Cellai
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| | - Matteo Lulli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| | - Anna Laurenzana
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| | - Eugenio Torre
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| | | | - Francesco Paoletti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| |
Collapse
|
49
|
Uba AI, Yelekçi K. Identification of potential isoform-selective histone deacetylase inhibitors for cancer therapy: a combined approach of structure-based virtual screening, ADMET prediction and molecular dynamics simulation assay. J Biomol Struct Dyn 2017; 36:3231-3245. [PMID: 28938863 DOI: 10.1080/07391102.2017.1384402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) have gained increased attention as targets for anticancer drug design and development. HDAC inhibitors have proven to be effective for reversing the malignant phenotype in HDAC-dependent cancer cases. However, lack of selectivity of the many HDAC inhibitors in clinical use and trials contributes to toxicities to healthy cells. It is believed that, the continued identification of isoform-selective inhibitors will eliminate these undesirable adverse effects - a task that remains a major challenge to HDAC inhibitor designs. Here, in an attempt to identify isoform-selective inhibitors, a large compound library containing 2,703,000 compounds retrieved from Otava database was screened against class I HDACs by exhaustive approach of structure-based virtual screening using rDOCK and Autodock Vina. A total of 41 compounds were found to show high-isoform selectivity and were further redocked into their respective targets using Autodock4. Thirty-six compounds showed remarkable isoform selectivity and passed drug-likeness and absorption, distribution, metabolism, elimination and toxicity prediction tests using ADMET Predictor™ and admetSAR. Furthermore, to study the stability of ligand binding modes, 10 ns-molecular dynamics (MD) simulations of the free HDAC isoforms and their complexes with respective best-ranked ligands were performed using nanoscale MD software. The inhibitors remained bound to their respective targets over time of the simulation and the overall potential energy, root-mean-square deviation, root-mean-square fluctuation profiles suggested that the detected compounds may be potential isoform-selective HDAC inhibitors or serve as promising scaffolds for further optimization towards the design of selective inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- a Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences , Kadir Has University , Fatih, Istanbul 34083 , Turkey.,b Center for Biotechnology Research , Bayero University , P.M.B. 3011, B.U.K. Road, Kano , Nigeria
| | - Kemal Yelekçi
- a Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences , Kadir Has University , Fatih, Istanbul 34083 , Turkey
| |
Collapse
|
50
|
Sepulveda H, Villagra A, Montecino M. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment. Mol Cell Biol 2017; 37:e00177-17. [PMID: 28784721 PMCID: PMC5615189 DOI: 10.1128/mcb.00177-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/15/2017] [Accepted: 07/22/2017] [Indexed: 12/22/2022] Open
Abstract
Here we assess histone modification, chromatin remodeling, and DNA methylation processes that coordinately control the expression of the bone master transcription factor Sp7 (osterix) during mesenchymal lineage commitment in mammalian cells. We find that Sp7 gene silencing is mediated by DNA methyltransferase1/3 (DNMT1/3)-, histone deacetylase 1/2/4 (HDAC1/2/4)-, Setdb1/Suv39h1-, and Ezh1/2-containing complexes. In contrast, Sp7 gene activation involves changes in histone modifications, accompanied by decreased nucleosome enrichment and DNA demethylation mediated by SWI/SNF- and Tet1/Tet2-containing complexes, respectively. Inhibition of DNA methylation triggers changes in the histone modification profile and chromatin-remodeling events leading to Sp7 gene expression. Tet1/Tet2 silencing prevents Sp7 expression during osteoblast differentiation as it impairs DNA demethylation and alters the recruitment of histone methylase (COMPASS)-, histone demethylase (Jmjd2a/Jmjd3)-, and SWI/SNF-containing complexes to the Sp7 promoter. The dissection of these interconnected epigenetic mechanisms that govern Sp7 gene activation reveals a hierarchical process where regulatory components mediating DNA demethylation play a leading role.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|