1
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
2
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
3
|
Albino SL, da Silva Moura WC, dos Reis MML, Sousa GLS, da Silva PR, de Oliveira MGC, Borges TKDS, Albuquerque LFF, de Almeida SMV, de Lima MDCA, Kuckelhaus SAS, Nascimento IJDS, Junior FJBM, da Silva TG, de Moura RO. ACW-02 an Acridine Triazolidine Derivative Presents Antileishmanial Activity Mediated by DNA Interaction and Immunomodulation. Pharmaceuticals (Basel) 2023; 16:204. [PMID: 37259353 PMCID: PMC9967605 DOI: 10.3390/ph16020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2024] Open
Abstract
The present study proposed the synthesis of a novel acridine derivative not yet described in the literature, chemical characterization by NMR, MS, and IR, followed by investigations of its antileishmanial potential. In vitro assays were performed to assess its antileishmanial activity against L. amazonensis strains and cytotoxicity against macrophages through MTT assay and annexin V-FITC/PI, and the ability to perform an immunomodulatory action using CBA. To investigate possible molecular targets, its interaction with DNA in vitro and in silico targets were evaluated. As results, the compound showed good antileishmanial activity, with IC50 of 6.57 (amastigotes) and 94.97 (promastigotes) µg mL-1, associated with non-cytotoxicity to macrophages (CC50 > 256.00 µg mL-1). When assessed by flow cytometry, 99.8% of macrophages remained viable. The compound induced an antileishmanial effect in infected macrophages and altered TNF-α, IL-10 and IL-6 expression, suggesting a slight immunomodulatory activity. DNA assay showed an interaction with the minor grooves due to the hyperchromic effect of 47.53% and Kb 1.17 × 106 M-1, and was sustained by docking studies. Molecular dynamics simulations and MM-PBSA calculations propose cysteine protease B as a possible target. Therefore, this study demonstrates that the new compound is a promising molecule and contributes as a model for future works.
Collapse
Affiliation(s)
- Sonaly Lima Albino
- Programa de Pós Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Willian Charles da Silva Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Malu Maria Lucas dos Reis
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Gleyton Leonel Silva Sousa
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Química, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil
| | - Pablo Rayff da Silva
- Programa de Pós Graduação em Produtos Naturais, Sintéticos e Bioativos, Universidade Federal da Paraiba, João Pessoa 58051-900, Brazil
| | | | - Tatiana Karla dos Santos Borges
- Laboratório de Imunologia Celular, Área de Patologia, Faculdade de Medicina, Campus Darcy Ribeiro, Brasília 70910-900, Brazil
| | - Lucas Fraga Friaça Albuquerque
- Laboratório de Imunologia Celular, Área de Patologia, Faculdade de Medicina, Campus Darcy Ribeiro, Brasília 70910-900, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica, Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Selma Aparecida Souza Kuckelhaus
- Área de Morfologia, Faculdade de Medicina—UnB, Universidade de Brasília, Campus Darcy Ribeiro/Asa Norte, Brasília 70910-900, Brazil
| | - Igor José dos Santos Nascimento
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | | | | | - Ricardo Olímpio de Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| |
Collapse
|
4
|
Jilani NAK, Zakariah EI, Ariffin EY, Sapari S, Nokarajoo D, Yamin B, Hasbullah SA. Highly sensitive pork meat detection using copper(ii) tetraaza complex by electrochemical biosensor. RSC Adv 2023; 13:2104-2114. [PMID: 36712615 PMCID: PMC9832347 DOI: 10.1039/d2ra05701h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Three copper(ii) tetraaza complexes [Cu(ii)LBr]Br (1a), [Cu(ii)L(CIO4)](CIO4) (2a) and [Cu(ii)L](CIO4)2 (2b), where L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-diene were prepared and confirmed by FTIR, 1HNMR and 13CNMR. The binding interaction of complex (1a, 2a, 2b) with calf thymus DNA (CT-DNA) was investigated using UV-vis absorption, luminescence titrations, viscosity measurements and molecular docking. The findings suggested that complex 1a, 2a and 2b bind to DNA by electrostatic interaction, and the strengths of the interaction were arranged according to 2b > 1a > 2a. The differences in binding strengths were certainly caused by the complexes' dissimilar charges and counter anions. Complex 2b, with the biggest binding strength towards the DNA, was further applied in developing the porcine sensor. The developed sensor exhibits a broad linear dynamic range, low detection limit, good selectivity, and reproducibility. Analysis of real samples showed that the biosensor had excellent selectivity towards the pork meat compared to chicken and beef meat.
Collapse
Affiliation(s)
- Noraisyah Abdul Kadir Jilani
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Emma Izzati Zakariah
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Eda Yuhana Ariffin
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Suhaila Sapari
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Devika Nokarajoo
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Bohari Yamin
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| |
Collapse
|
5
|
Acridine Based N-Acylhydrazone Derivatives as Potential Anticancer Agents: Synthesis, Characterization and ctDNA/HSA Spectroscopic Binding Properties. Molecules 2022; 27:molecules27092883. [PMID: 35566236 PMCID: PMC9100673 DOI: 10.3390/molecules27092883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
A series of novel acridine N-acylhydrazone derivatives have been synthesized as potential topoisomerase I/II inhibitors, and their binding (calf thymus DNA—ctDNA and human serum albumin—HSA) and biological activities as potential anticancer agents on proliferation of A549 and CCD-18Co have been evaluated. The acridine-DNA complex 3b (-F) displayed the highest Kb value (Kb = 3.18 × 103 M−1). The HSA-derivatives interactions were studied by fluorescence quenching spectra. This method was used for the calculation of characteristic binding parameters. In the presence of warfarin, the binding constant values were found to decrease (KSV = 2.26 M−1, Kb = 2.54 M−1), suggesting that derivative 3a could bind to HSA at Sudlow site I. The effect of tested derivatives on metabolic activity of A549 cells evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assay decreased as follows 3b(-F) > 3a(-H) > 3c(-Cl) > 3d(-Br). The derivatives 3c and 3d in vitro act as potential dual inhibitors of hTopo I and II with a partial effect on the metabolic activity of cancer cells A594. The acridine-benzohydrazides 3a and 3c reduced the clonogenic ability of A549 cells by 72% or 74%, respectively. The general results of the study suggest that the novel compounds show potential for future development as anticancer agents.
Collapse
|
6
|
K.M. PK, B.C. VK, M.N. SK, P. RK, S. D, R.J. B, H.D. R. Synthesis, structural characterization, CT-DNA interaction study and antithrombotic activity of new ortho-vanillin-based chiral (Se,N,O) donor ligands and their Pd complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Goldmeier MN, Katz S, Glaser F, Belakhov V, Khononov A, Baasov T. Toward Catalytic Antibiotics: Redesign of Fluoroquinolones to Catalytically Fragment Chromosomal DNA. ACS Infect Dis 2021; 7:608-623. [PMID: 33448785 DOI: 10.1021/acsinfecdis.0c00777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A library of ciprofloxacin-nuclease conjugates was designed and synthesized to investigate their potential as catalytic antibiotics. The Cu(II) complexes of the new designer compounds (i) showed excellent in vitro hydrolytic and oxidative DNase activity, (ii) showed good antibacterial activity against both Gram-negative and Gram-positive bacteria, and (iii) proved to be highly potent bacterial DNA gyrase inhibitors via a mechanism that involves stabilization of the fluoroquinolone-topoisomerase-DNA ternary complex. Furthermore, the Cu(II) complexes of two of the new designer compounds were shown to fragment supercoiled plasmid DNA into linear DNA in the presence of DNA gyrase, demonstrating a "proof of concept" in vitro. These ciprofloxacin-nuclease conjugates can therefore serve as models with which to develop next-generation, in vivo functioning catalytic antimicrobials.
Collapse
Affiliation(s)
- Moshe N. Goldmeier
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Sofya Katz
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabian Glaser
- The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Valery Belakhov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Alina Khononov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Timor Baasov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Prabhu Kumar K, Vasantha Kumar B, Kumar PR, Butcher RJ, Vivek H, Suchetan P, Revanasiddappa H, Foro S. Synthesis, characterization, CT‐DNA binding and docking studies of novel selenated ligands and their palladium complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K.M. Prabhu Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - B.C. Vasantha Kumar
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - P. Raghavendra Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | | | - H.K. Vivek
- Faculty of Natural SciencesAdichunchanagiri University B. G. Ngara Mandya Karnataka India
| | - P.A. Suchetan
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - H.D. Revanasiddappa
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - Sabine Foro
- Institute of Materials ScienceDarmstadt University of Technology Petersenstr. 23 D‐64287 Darmstadt Germany
| |
Collapse
|
9
|
Beckford FA, Niece MB, Lassiter BP, Beebe SJ, Holder AA. Polynuclear ruthenium organometallic complexes containing a 1,3,5-triazine ligand: synthesis, DNA interaction, and biological activity. J Biol Inorg Chem 2018; 23:1205-1217. [PMID: 30039184 DOI: 10.1007/s00775-018-1599-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
It is now well established that ruthenium complexes are attractive alternatives to platinum-based anticancer agents. Most of the ruthenium compounds currently under investigation contain a single metal center. The synthesis of multinuclear analogues may provide access to novel complexes with enhanced biological activity. In this work, we have synthesized a set of three trinuclear complexes containing organometallic ruthenium fragments-(arene)RuCl-coordinated to a 2,4,6-tris(di-2-pyridylamino)-1,3,5-triazine core [(Arene = benzene (2), p-cymene (1), or hexamethylbenzene (3)]. The interaction of the complexes with DNA was extensively studied using a variety of biophysical probes as well as by molecular docking. The complexes bind strongly to DNA with apparent binding constants ranging from 2.20 to 4.79 × 104 M-1. The binding constants from electronic absorption titrations were an order of magnitude greater. The mode of binding to the nucleic acid was not definitively determined, but the evidence pointed to some kind of non-specific electrostatic interaction. None of the complexes displayed any significant antimicrobial activity against the organisms that were studied and exhibited anticancer activity only at high (> 100 μM) concentration.
Collapse
Affiliation(s)
- Floyd A Beckford
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA, 24293, USA.
| | - Madison B Niece
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA, 24293, USA
| | - Brittany P Lassiter
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA, 23529-0126, USA
| |
Collapse
|
10
|
de Lima Serafim V, Félix MB, Frade Silva DK, Rodrigues KADF, Andrade PN, de Almeida SMV, de Albuquerque dos Santos S, de Oliveira JF, de Lima MDCA, Mendonça-Junior FJB, Scotti MT, de Oliveira MR, de Moura RO. New thiophene-acridine compounds: Synthesis, antileishmanial activity, DNA binding, chemometric, and molecular docking studies. Chem Biol Drug Des 2018; 91:1141-1155. [DOI: 10.1111/cbdd.13176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/24/2017] [Accepted: 01/20/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Vanessa de Lima Serafim
- Laboratório de Leishmanioses; Departamento de Biologia Molecular; Universidade Federal da Paraíba; João Pessoa PB Brazil
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos; Universidade Federal da Paraíba; João Pessoa Paraíba Brazil
| | - Mayara Barbalho Félix
- Laboratório de Leishmanioses; Departamento de Biologia Molecular; Universidade Federal da Paraíba; João Pessoa PB Brazil
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos; Universidade Federal da Paraíba; João Pessoa Paraíba Brazil
| | - Daiana Karla Frade Silva
- Laboratório de Leishmanioses; Departamento de Biologia Molecular; Universidade Federal da Paraíba; João Pessoa PB Brazil
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos; Universidade Federal da Paraíba; João Pessoa Paraíba Brazil
| | - Klinger Antônio da Franca Rodrigues
- Laboratório de Leishmanioses; Departamento de Biologia Molecular; Universidade Federal da Paraíba; João Pessoa PB Brazil
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos; Universidade Federal da Paraíba; João Pessoa Paraíba Brazil
| | - Patrícia Néris Andrade
- Laboratório de Leishmanioses; Departamento de Biologia Molecular; Universidade Federal da Paraíba; João Pessoa PB Brazil
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos; Universidade Federal da Paraíba; João Pessoa Paraíba Brazil
| | | | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT); Departamento de Antibióticos; Universidade Federal de Pernambuco; Recife PE Brazil
| | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT); Departamento de Antibióticos; Universidade Federal de Pernambuco; Recife PE Brazil
| | - Francisco Jaime Bezerra Mendonça-Junior
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos; Universidade Federal da Paraíba; João Pessoa Paraíba Brazil
- Laboratório de Síntese e Vetorização de Moléculas; Departamento de Ciências Biológicas; Universidade Estadual da Paraíba; João Pessoa PB Brazil
| | - Marcus Tullius Scotti
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos; Universidade Federal da Paraíba; João Pessoa Paraíba Brazil
| | - Márcia Rosa de Oliveira
- Laboratório de Leishmanioses; Departamento de Biologia Molecular; Universidade Federal da Paraíba; João Pessoa PB Brazil
| | - Ricardo Olímpio de Moura
- Laboratório de Síntese e Vetorização de Moléculas; Departamento de Ciências Biológicas; Universidade Estadual da Paraíba; João Pessoa PB Brazil
- Departamento de Ciências Farmacêuticas; Centro de Ciências Biológicas e da Saúde; Universidade Estadual da Paraíba - Bodocongó; Campina Grande PB Brazil
| |
Collapse
|
11
|
Synthesis, spectroscopic, physicochemical and structural characterization of tetrandrine-based macrocycles functionalized with acridine and anthracene groups: DNA binding and anti-proliferative activity. Chem Biol Interact 2018; 286:34-44. [PMID: 29476729 DOI: 10.1016/j.cbi.2018.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/14/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022]
Abstract
In this work, we report on the synthesis of two new mono-alkylated tetrandrine derivatives with acridine and anthracene units, MAcT and MAnT. The compounds were fully characterized by physicochemical techniques and single-crystal X-ray diffraction analysis. In addition, both derivatives were studied as nucleotide receptors and double-stranded DNA binders in aqueous phosphate buffer at pH = 7.2 using UV-vis and fluorescence spectroscopy. According to the molecular recognition studies, MAcT and MAnT exhibit high affinity (K ∼ 105 M-1) and selectivity for ds-DNA, presumably in an intercalation mode. Finally, the anti-proliferative effects of the tetrandrine derivatives on different cancer cell lines were explored, revealing promising activities. Particularly, the mono-anthracene tetrandrine derivative MAnT showed an IC50 of 2.74 μg/mL on the HeLa cervical cancer cell line, representing a value 3.3 times smaller than that obtained for unsubstituted tetrandrine. Examination of the cytotoxic effects on the HeLa cell line by inverted microscopy suggests that the cell death mechanism consists basically in apoptosis. The molecular modelling of three ds-DNA-MAcT complexes, suggested that the macrocycles may use an intercalation binding mode towards DNA. MAcT is predicted to bind into the major groove of the ds-DNA providing non-covalent interactions such as electrostatic, van der Waals and hydrophobic interactions that lead to selectivity. Overall experimental data supports the mode of action of MAnT and MAcT as cytotoxic compounds against cancer cell lines via a DNA interaction mechanism.
Collapse
|
12
|
Inclán M, Guijarro L, Pont I, Frías JC, Rotger C, Orvay F, Costa A, García-España E, Albelda MT. Binding Mode and Selectivity of a Scorpiand-Like Polyamine Ligand to Single- and Double-Stranded DNA and RNA: Metal- and pH-Driven Modulation. Chemistry 2017; 23:15966-15973. [PMID: 28833584 DOI: 10.1002/chem.201702934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/18/2017] [Indexed: 01/07/2023]
Abstract
The interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA-polyU, poly(dAT)2 , and poly(dGC)2 has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shifts. However, the fluorescence studies reveal that both polyA-polyU and poly(dAT)2 induce a twofold increase in the fluorescence, whereas interaction of poly(dGC)2 with the ligand L induces a quenching of the fluorescence. Cu2+ modulates the interaction with the double-stranded polynucleotides due to the conformation changes that its coordination induces in compound L. In general, the spectroscopic studies show that intercalation seems to be blocked by the formation of the metal complex. All these features suggest the possibility of using compound L as a sequence-selective fluorescence probe.
Collapse
Affiliation(s)
- Mario Inclán
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980, Paterna, Spain
| | - Lluis Guijarro
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980, Paterna, Spain
| | - Isabel Pont
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980, Paterna, Spain
| | - Juan C Frías
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980, Paterna, Spain.,Departamento de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Ramón y Cajal s/n, 46115, Alfara del Patriarca, Spain
| | - Carmen Rotger
- Department of Chemistry, University of Balearic Islands, E-07122, Palma de Mallorca, Baleares, Spain
| | - Francisca Orvay
- Department of Chemistry, University of Balearic Islands, E-07122, Palma de Mallorca, Baleares, Spain
| | - Antoni Costa
- Department of Chemistry, University of Balearic Islands, E-07122, Palma de Mallorca, Baleares, Spain
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980, Paterna, Spain
| | - M Teresa Albelda
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980, Paterna, Spain.,GIBI230, Grupo de Investigación Biomédica en Imagen IIS La Fe, Valencia, Spain
| |
Collapse
|
13
|
Chemical structures and biological activities of bis- and tetrakis-acridine derivatives: A review. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Beckford FA, Webb KR. Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:158-171. [PMID: 28448954 DOI: 10.1016/j.saa.2017.04.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50)×104M-1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105M-1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27μM.
Collapse
Affiliation(s)
- Floyd A Beckford
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, United States.
| | - Kelsey R Webb
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, United States
| |
Collapse
|
15
|
Li S, Dai M, Zhang C, Jiang B, Xu J, Zhou D, Gu Z. DNA Cleavage and Condensation Activities of Mono- and Binuclear Hybrid Complexes and Regulation by Graphene Oxide. Molecules 2016; 21:E920. [PMID: 27428945 PMCID: PMC6274443 DOI: 10.3390/molecules21070920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/26/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022] Open
Abstract
Hybrid complexes with N,N'-bis(2-benzimidazolylmethyl)amine and cyclen moieties are novel enzyme mimics and controlled DNA release materials, which could interact with DNA through three models under different conditions. In this paper, the interactions between plasmid DNA and seven different complexes were investigated, and the methods to change the interaction patterns by graphene oxide (GO) or concentrations were also investigated. The cleavage of pUC19 DNA promoted by target complexes were via hydrolytic or oxidative mechanisms at low concentrations ranging from 3.13 × 10(-7) to 6.25 × 10(-5) mol/L. Dinuclear complexes 2a and 2b can promote the cleavage of plasmid pUC19 DNA to a linear form at pH values below 7.0. Furthermore, binuclear hybrid complexes could condense DNA as nanoparticles above 3.13 × 10(-5) mol/L and partly release DNA by graphene oxide with π-π stacking. Meanwhile, the results also reflected that graphene oxide could prevent DNA from breaking down. Cell viability assays showed dinuclear complexes were safe to normal human hepatic cells at relative high concentrations. The present work might help to develop novel strategies for the design and synthesis of DNA controllable releasing agents, which may be applied to gene delivery and also to exploit the new application for GO.
Collapse
Affiliation(s)
- Shuo Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Mingxing Dai
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Chunping Zhang
- Jiangsu Key Laboratory of Target Drug and Clinical Application, Xuzhou Medical College, Xuzhou 221004, China.
| | - Bingying Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Junqiang Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Dewen Zhou
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
16
|
Huang Y, Song Y, Huang M, Fan YR, Tian DN, Zhao QP, Yang XB, Zhang WN. Synthesis, DNA binding, and cytotoxicity activity of bis-naphalenyl compounds with different diamine linkers. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2539-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Synthesis, DNA-cleaving activities and cytotoxicities of the copper(II) complexes of pyrrole-polyamide dimers tethered with carboxylate-containing linkers. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Sharma S, Singh H, Singh H, Mohinder Singh Bedi P. Chemotherapeutic Potential of Acridine Analogs: An Ample Review. HETEROCYCLES 2015. [DOI: 10.3987/rev-15-826] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Wende C, Lüdtke C, Kulak N. Copper Complexes of N-Donor Ligands as Artificial Nucleases. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201400032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Yan H, Yue P, Li Z, Guo Z, Lu Z. Syntheses of bifunctional molecules containing [12]aneN3 and carbazol moieties as effective DNA condensation agents. Sci China Chem 2013. [DOI: 10.1007/s11426-013-5031-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules 2013; 18:15035-50. [PMID: 24322489 PMCID: PMC6270168 DOI: 10.3390/molecules181215035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023] Open
Abstract
Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.
Collapse
|
22
|
An D, Ye Z. Synthesis and DNA Cleavage Activity of Piperazine Containing Guanidinoethyl and Hydroxyethyl Side Arms. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Synthesis, DNA-cleaving activities and cytotoxicities of C2-symmetrical dipyrrole-polyamide dimer-based Cu(II) complexes: A comparative study. Eur J Med Chem 2013; 66:508-15. [DOI: 10.1016/j.ejmech.2013.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 12/19/2022]
|
24
|
Beckford FA, Stott A, Gonzalez-Sarrías A, Seeram NP. Novel microwave synthesis of half-sandwich [(η6
-C6
H6
)Ru] complexes and an evaluation of the biological activity and biochemical reactivity. Appl Organomet Chem 2013. [DOI: 10.1002/aoc.3007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Alyssa Stott
- Science Division; Lyon College; Batesville AR 72501 USA
| | - Antonio Gonzalez-Sarrías
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy; University of Rhode Island; Kingston RI 02881 USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy; University of Rhode Island; Kingston RI 02881 USA
| |
Collapse
|
25
|
Shivakumar L, Shivaprasad K, Revanasiddappa HD. SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:203-212. [PMID: 23429055 DOI: 10.1016/j.saa.2013.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 05/20/2023]
Abstract
Newly synthesized ligand [2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol] (Bpmp) react with manganese(II) to form mononuclear complexes [Mn(phen)(Bpmp)(CH3COO)(H2O)]·4H2O (1), (phen=1,10-phenanthroline) and [Mn(Bpmp)2(CH3COO)(H2O)]·5H2O (2). These complexes were characterized by elemental analysis, IR, (1)H NMR, Mass, UV-vis spectral studies. Molar conductance and thermogravimetric analysis of these complexes were also recorded. The in vitro SOD mimic activity of Mn(III) complexes were carried out and obtained with good result. The DNA-binding properties of the complexes 1 and 2 were investigated by UV-spectroscopy, fluorescence spectroscopy and viscosity measurements. The spectral results suggest that the complexes 1 and 2 can bind to Calf thymus DNA by intercalation mode. The cleavage properties of these complexes with super coiled pUC19 have been studied using the gel electrophoresis method, wherein both complexes 1 and 2 displayed chemical nuclease activity in the absence and presence of H2O2 via an oxidative mechanism. All the complexes inhibit the growth of both Gram positive and Gram negative bacteria to competent level. The MIC was determined by microtiter method.
Collapse
Affiliation(s)
- L Shivakumar
- Department of Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka, India
| | | | | |
Collapse
|
26
|
Hormann J, Perera C, Deibel N, Lentz D, Sarkar B, Kulak N. Straightforward approach to efficient oxidative DNA cleaving agents based on Cu(ii) complexes of heterosubstituted cyclens. Dalton Trans 2013; 42:4357-60. [DOI: 10.1039/c3dt32857k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
DNA binding acridine-thiazolidinone agents affecting intracellular glutathione. Bioorg Med Chem 2012; 20:7139-48. [PMID: 23122936 DOI: 10.1016/j.bmc.2012.09.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/21/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
Three new acridine-thiazolidinone derivatives (2a-2c) have been synthesized and their interactions with calf thymus DNA and a number of cell lines (leukemic cells HL-60 and L1210 and human epithelial ovarian cancer cell lines A2780) were studied. The compounds 2a-2c possessed high affinity to calf thymus DNA and their binding constants determined by spectrofluorimetry were in the range of 1.37 × 10(6)-5.89 × 10(6) M(-1). All of the tested derivatives displayed strong cytotoxic activity in vitro, the highest activity in cytotoxic tests was found for 2c with IC(50) = 1.3 ± 0.2 μM (HL-60), 3.1 ± 0.4 μM (L1210), and 7.7 ± 0.5 μM (A2780) after 72 h incubation. The cancer cells accumulated acridine derivatives very fast and the changes of the glutathione level were confirmed. The compounds inhibited proliferation of the cells and induced an arrest of the cell cycle and cell death. Their influence upon cells was associated with their reactivity towards thiols and DNA binding activity.
Collapse
|
28
|
Yin YX, Wen JH, Geng ZR, Li YZ, Wang ZL. Two heptadentate Co(III) and Mn(III) complexes with partially deprotonated cyclen derivative bearing four hydroxypropyl pendants: structure, DNA binding and DNA cleavage. Appl Organomet Chem 2012. [DOI: 10.1002/aoc.2905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Jing-Han Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing; People's Republic of China
| | - Zhi-Rong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing; People's Republic of China
| | - Yi-Zhi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing; People's Republic of China
| | - Zhi-Lin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing; People's Republic of China
| |
Collapse
|
29
|
Biodegradable cyclen-based linear and cross-linked polymers as non-viral gene vectors. Bioorg Med Chem 2012; 20:1380-7. [DOI: 10.1016/j.bmc.2012.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/17/2022]
|
30
|
Yan H, Li ZF, Guo ZF, Lu ZL, Wang F, Wu LZ. Effective and reversible DNA condensation induced by bifunctional molecules containing macrocyclic polyamines and naphthyl moieties. Bioorg Med Chem 2012; 20:801-8. [DOI: 10.1016/j.bmc.2011.11.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
|
31
|
Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-yl)ethanone Thiosemicarbazone. ACTA ACUST UNITED AC 2011; 2011. [PMID: 22303515 DOI: 10.1155/2011/624756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC) has been synthesized and its basic coordination chemistry with zinc(II), cobalt(II), and copper(II) explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC)(2)Cl(2)] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2). The compounds bind to DNA via an intercalative mode with binding constants of 9.7 × 10(4) M(-1), 1.8 × 10(5) M(-1), and 9.5 × 10(4) M(-1) for the zinc, cobalt, and copper complexes, respectively.
Collapse
|
32
|
|