1
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
2
|
Ji KL, Fan YY, Gong Q, Liu QF, Cui MJ, Fu KC, Zhang HY, Yue JM. Densely Functionalized Macrocyclic Sesquiterpene Pyridine Alkaloids from Maytenus austroyunnanensis. JOURNAL OF NATURAL PRODUCTS 2023; 86:2315-2325. [PMID: 37728995 DOI: 10.1021/acs.jnatprod.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Eleven densely functionalized new dihydro-β-agarofuran sesquiterpenoid derivatives, named maytenoids A-K (1-11), as well as one known analog, were isolated and characterized from Maytenus austroyunnanensis. Their structures were assigned based on analysis of spectroscopic data and X-ray crystallography. Compounds 1-9 are macrocyclic sesquiterpene pyridine alkaloids generated by the respective acylation of the hydroxy groups at C-3 and C-13 of dihydro-β-agarofuran sesquiterpenoids via diverse pyridine dicarboxylic acids. Compounds 1, 2, 5-10, and 12 exhibited significant inhibitory effects on NO production at 10 μM in lipopolysaccharide (LPS)-stimulated BV2 cells.
Collapse
Affiliation(s)
- Kai-Long Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Qi Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Ming-Jun Cui
- Pu'er National Institute of Ethnic Traditional Medicine, Pu'er 665000, People's Republic of China
| | - Kai-Cong Fu
- Pu'er National Institute of Ethnic Traditional Medicine, Pu'er 665000, People's Republic of China
| | - Hai-Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
3
|
Shah D, Ajazuddin, Bhattacharya S. Role of natural P-gp inhibitor in the effective delivery for chemotherapeutic agents. J Cancer Res Clin Oncol 2023; 149:367-391. [PMID: 36269390 DOI: 10.1007/s00432-022-04387-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023]
Abstract
Multi-drug resistance has shown to be one of the leading threats faced currently in many chemotherapeutic agents. Permeability glycoprotein (P-gp) is an efflux transporter in membrane, an integral part of ATP-binding cassette (ABC) transporters widely distributed in the body for cellular uptake. It is present enormously in cancerous cells and is in charge of generating transporter mediated resistance to treatments of tumorous cells in addition to blocking the entry of chemotherapeutic drugs into the cell. Natural P-gp inhibitors are derived from natural plant sources possessing basic structures like alkaloids, flavonoids, phenolics, terpenoids, saponins, sapogenins, sterols, coumarins and miscellaneous structures acting on P-gp substrate for inhibition of multi-drug resistance via inhibiting the efflux pump. They do not depict their action on the healthy cells and thus it is proven to be more effective and less toxic than synthetic P-gp inhibitor leading to enhancement in bioavailability of chemotherapeutic drugs. The significant objective of the present review is surfing through the impact of natural P-gp inhibitors having basic structures derived from the plant sources and how it inhibits the resistance of chemotherapeutic drugs together with how well it delivers chemotherapy medicines.
Collapse
Affiliation(s)
- Disha Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
4
|
Gu WT, Li LY, Rui WJ, Diao ZW, Zhuang GD, Chen XM, Qian ZM, Wang SM, Tang D, Ma HY. Non-targeted metabolomic analysis of variation of volatile fractions of ginseng from different habitats by HS-SPME-GC-MS coupled with chemometrics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3583-3597. [PMID: 36043471 DOI: 10.1039/d2ay01060g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cultivated ginseng (CG), transplanted ginseng (TG) and mountain cultivated ginseng (MCG) classified by the habitat type all belong to Panax ginseng and were reported to have similar types of secondary metabolites. Nonetheless, owing to the distinctly diverse habitats in which these ginseng types grow, their pharmacological effects differ. In the present study, an emerging analytical approach involving headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was established to effectively distinguish among CG, TG and MCG. First, the volatile components were analysed and identified by using the NIST library combined with measured retention indices (Kovats', RI), and a total of 78 volatile components were finally characterized, which included terpenes, alcohols, esters, aldehydes and alkynols. Furthermore, multivariate statistical approaches, principal component analysis (PCA) and orthogonal partial least-squares discrimination analysis (OPLS-DA) were subsequently utilized to screen for compounds of significance. Under optimized HS-SPME-GC-MS conditions, 12, 16, and 16 differential markers were screened in the CG-TG, CG-MCG and TG-MCG groups, respectively. Our study suggested that HS-SPME-GC-MS analysis combined with metabolomic analytical methods and chemometric techniques can be applied as potent tools to identify chemical marker candidates to distinguish CG, TG and MCG.
Collapse
Affiliation(s)
- Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lin-Yuan Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Company Limited, Guangzhou 51006, China
| | - Wen-Jing Rui
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhong-Wen Diao
- Guangzhou Forensic Science Institute, Guangzhou 51006, China
| | - Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiao-Mei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hong-Yan Ma
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Huang YY, Chen L, Ma GX, Xu XD, Jia XG, Deng FS, Li XJ, Yuan JQ. A Review on Phytochemicals of the Genus Maytenus and Their Bioactive Studies. Molecules 2021; 26:4563. [PMID: 34361712 PMCID: PMC8347511 DOI: 10.3390/molecules26154563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
The genus Maytenus is a member of the Celastraceae family, of which several species have long been used in traditional medicine. Between 1976 and 2021, nearly 270 new compounds have been isolated and elucidated from the genus Maytenus. Among these, maytansine and its homologues are extremely rare in nature. Owing to its unique skeleton and remarkable bioactivities, maytansine has attracted many synthetic endeavors in order to construct its core structure. In this paper, the current status of the past 45 years of research on Maytenus, with respect to its chemical and biological activities are discussed. The chemical research includes its structural classification into triterpenoids, sesquiterpenes and alkaloids, along with several chemical synthesis methods of maytansine or maytansine fragments. The biological activity research includes activities, such as anti-tumor, anti-bacterial and anti-inflammatory activities, as well as HIV inhibition, which can provide a theoretical basis for the better development and utilization of the Maytenus.
Collapse
Affiliation(s)
- Yuan-Yuan Huang
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.-Y.H.); (X.-G.J.); (F.-S.D.)
- School of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Lu Chen
- Research Department of Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Guo-Xu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; (G.-X.M.); (X.-D.X.)
| | - Xu-Dong Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; (G.-X.M.); (X.-D.X.)
| | - Xue-Gong Jia
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.-Y.H.); (X.-G.J.); (F.-S.D.)
| | - Fu-Sheng Deng
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.-Y.H.); (X.-G.J.); (F.-S.D.)
| | - Xue-Jian Li
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.-Y.H.); (X.-G.J.); (F.-S.D.)
| | - Jing-Quan Yuan
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.-Y.H.); (X.-G.J.); (F.-S.D.)
- School of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
6
|
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Elena Gazzano
- Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Turin, Italy
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 Building, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ilza Pajeva
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
7
|
Wibowo M, Wang Q, Holst J, White JM, Hofmann A, Davis RA. Celastrofurans A-G: Dihydro-β-agarofurans from the Australian Rainforest Vine Celastrus subspicata and Their Inhibitory Effect on Leucine Transport in Prostate Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2017; 80:1918-1925. [PMID: 28548851 DOI: 10.1021/acs.jnatprod.7b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Seven new dihydro-β-agarofurans, celastrofurans A-G (1-7), along with two known secondary metabolites, 9β-benzoyloxy-1α-furoyloxydihydro-β-agarofuran (8) and (1R,2R,4R,5S,7R,9S,10R)-2-acetoxy-9-benzoyloxy-1-furoyloxydihydro-β-agarofuran (9), were obtained from the leaves of the Australian rainforest vine, Celastrus subspicata. The structures of the new compounds were determined by detailed spectroscopic (1D/2D NMR) and MS data analysis. The absolute configurations of compounds 1-4 were defined by ECD and single-crystal X-ray diffraction studies. All compounds were found to exhibit inhibitory activity on leucine transport in the human prostate cancer cell line LNCaP with IC50 values ranging from 7.0 to 98.9 μM. Dihydro-β-agarofurans 1-9 showed better potency than the L-type amino acid transporter (LAT) family inhibitor, 2-aminobicyclo[2.2.1]-heptane-2-carboxylic acid (BCH).
Collapse
Affiliation(s)
- Mario Wibowo
- Griffith Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111, Australia
| | - Qian Wang
- Origins of Cancer Program, Centenary Institute, University of Sydney , Camperdown, NSW 2050, Australia
- Sydney Medical School, University of Sydney , NSW 2006, Australia
| | - Jeff Holst
- Origins of Cancer Program, Centenary Institute, University of Sydney , Camperdown, NSW 2050, Australia
- Sydney Medical School, University of Sydney , NSW 2006, Australia
| | | | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111, Australia
| |
Collapse
|
8
|
Perestelo NR, Jiménez IA, Tokuda H, Vázquez JT, Ichiishi E, Bazzocchi IL. Absolute Configuration of Dihydro-β-agarofuran Sesquiterpenes from Maytenus jelskii and Their Potential Antitumor-Promoting Effects. JOURNAL OF NATURAL PRODUCTS 2016; 79:2324-2331. [PMID: 27541714 DOI: 10.1021/acs.jnatprod.6b00469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemoprevention of human cancer appears to be a feasible strategy for cancer control, especially when chemopreventive intervention is involved during early stages of the carcinogenesis process. As a part of our ongoing research program into new chemopreventive agents, herein are reported the isolation, structural elucidation, and biological evaluation of 10 new (1-10) and three known (11-13) sesquiterpenes with a dihydro-β-agarofuran skeleton from the leaves of Maytenus jelskii Zahlbr. Their stereostructures have been elucidated by means of spectroscopic analysis, including 1D and 2D NMR techniques, ECD studies, and biogenetic considerations. The isolated metabolites and eight previously reported sesquiterpenes (14-21) were screened for their antitumor-promoting activity using a short-term in vitro assay for Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Six compounds from this series (4, 5, 11, and 13-15) were found to exhibit higher efficacies than β-carotene, used as reference inhibitor for EBV-EA activation. In particular, promising antitumor activity was observed for compound 5, exhibiting inhibition even at the lowest concentration assayed (10 mol ratio/TPA). Preliminary structure-activity relationship analysis revealed that the acetate, benzoate, and hydroxy groups are the most desirable substituents on the sesquiterpene scaffold for activity in the EBV-EA activation assay.
Collapse
Affiliation(s)
- Nayra R Perestelo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Harukuni Tokuda
- Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University , Kyoto 606-8502, Japan
| | - Jesús T Vázquez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Eiichiro Ichiishi
- Department of Internal Medicine, International University of Health and Welfare Hospital, Nasushiobara , Tochigi 329-2763, Japan
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Khan M, Maryam A, Mehmood T, Zhang Y, Ma T. Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals. Asian Pac J Cancer Prev 2016; 16:6831-9. [PMID: 26514453 DOI: 10.7314/apjcp.2015.16.16.6831] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs.
Collapse
Affiliation(s)
- Muhammad Khan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China E-mail :
| | | | | | | | | |
Collapse
|
10
|
Silva N, Salgueiro L, Fortuna A, Cavaleiro C. P-glycoprotein Mediated Efflux Modulators of Plant Origin: A Short Review. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Drug efflux transporters such as P-glycoprotein (P-gp) help maintain cellular homeostasis but are also major contributors to the development of multidrug resistance (MDR) phenomena. Since P-gp was associated with MDR, several compounds showing potential to inhibit this transporter have been identified. Particular attention has been given to natural products, namely those of plant origin, looking for highly effective and safe P-gp inhibitors with little to no interaction with other cellular or metabolic processes. Here we abridge several examples of plant compounds from distinct classes, polyketides, lignans, anthraquinones, coumarins, alkaloids, mono- and sesqui-terpenes, steroids and limonoids, which have shown the ability to modulate in vitro or in vivo the P-gp activity.
Collapse
Affiliation(s)
- Nuno Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Lígia Salgueiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos Cavaleiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Callies O, Sánchez-Cañete MP, Gamarro F, Jiménez IA, Castanys S, Bazzocchi IL. Optimization by Molecular Fine Tuning of Dihydro-β-agarofuran Sesquiterpenoids as Reversers of P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2016; 59:1880-90. [DOI: 10.1021/acs.jmedchem.5b01429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Oliver Callies
- Instituto Universitario
de Bio-Orgánica “Antonio González”, Departamento
de Química Orgánica, and Instituto Canario de Investigación
del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco
Sánchez 2, 38206 La Laguna, Tenerife Spain
| | - María P. Sánchez-Cañete
- Instituto de Parasitología y Biomedicina López-Neyra,
Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina López-Neyra,
Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada Spain
| | - Ignacio A. Jiménez
- Instituto Universitario
de Bio-Orgánica “Antonio González”, Departamento
de Química Orgánica, and Instituto Canario de Investigación
del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco
Sánchez 2, 38206 La Laguna, Tenerife Spain
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina López-Neyra,
Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada Spain
| | - Isabel L. Bazzocchi
- Instituto Universitario
de Bio-Orgánica “Antonio González”, Departamento
de Química Orgánica, and Instituto Canario de Investigación
del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco
Sánchez 2, 38206 La Laguna, Tenerife Spain
| |
Collapse
|
12
|
Mba’ning BM, Ndjakou BL, Talontsi FM, Lannang AM, Dittrich B, Ngouela SA, Tsamo E, Sewald N, Laatsch H. Salaterpene E, a eudesmane-type sesquiterpene from Salacia longipes var. camerunensis. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/znb-2015-0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
A mixture of two compounds with potent antiplasmodial activity in vitro against the W2 strain of Plasmodium falciparum (half maximal inhibitory concentration, 1.12 μg/mL) was obtained in a previous investigation of the CH2Cl2-MeOH extract of the seeds of Salacia longipes var. camerunensis. Separation by column chromatography led now to the isolation of salaterpene E (1) and (1R,2R,4S,5S,6R,7R,9S,10R)-2-acetoxy-1,6,9-tribenzoyloxy-4-hydroxy-dihydro-β-agarofuran (2). The structure of 1 was elucidated by spectroscopic analysis, and its absolute configuration was established unambiguously by means of single-crystal X-ray diffraction. Also the absolute configurations of the recently described salaterpenes A (2a) and D (2b) were determined by this method using the anomalous scattering of the oxygen atoms only.
Collapse
Affiliation(s)
| | - Bruno Lenta Ndjakou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
| | - Ferdinand Mouafo Talontsi
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany
| | - Alain Meli Lannang
- Department of Chemistry, Organic, and Bioorganic Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Birger Dittrich
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Etienne Tsamo
- Department of Organic Chemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Norbert Sewald
- Department of Chemistry, Organic, and Bioorganic Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Hartmut Laatsch
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| |
Collapse
|
13
|
Callies O, Sánchez-Cañete MP, Gamarro F, Jiménez IA, Castanys S, Bazzocchi IL. Restoration of Chemosensitivity in P-Glycoprotein-Dependent Multidrug-Resistant Cells by Dihydro-β-agarofuran Sesquiterpenes from Celastrus vulcanicola. JOURNAL OF NATURAL PRODUCTS 2015; 78:736-745. [PMID: 25695368 DOI: 10.1021/np500903a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multidrug resistance (MDR) caused by the overexpression of ABC drug transporters is a major obstacle in clinical cancer chemotherapy and underlines the urgent need for the development of new, potent, and safe reversal agents. Toward this goal, reported herein are the structure elucidation and biological activity of nine new (1-9) and four known (10-13) dihydro-β-agarofuran sesquiterpenes, isolated from the leaves of Celastrus vulcanicola, as reversers of MDR mediated by human P-glycoprotein expression. The structures of these compounds were elucidated by extensive NMR spectroscopic and mass spectrometric analysis, and their absolute configurations were determined by circular dichroism studies, chemical correlations (1a, 8a, and 8b), and biogenetic means. Four compounds from this series were discovered as potent chemosensitizers for MDR1-G185 NIH-3T3 murine cells (3, 4, 6, and 7), showing higher efficacies than the classical P-glycoprotein inhibitor verapamil, a first-generation chemosensitizer, when reversing resistance to daunomycin and vinblastine at the lowest concentration tested of 1 μM.
Collapse
Affiliation(s)
- Oliver Callies
- †Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - María P Sánchez-Cañete
- ‡Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Francisco Gamarro
- ‡Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Ignacio A Jiménez
- †Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Santiago Castanys
- ‡Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Isabel L Bazzocchi
- †Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
14
|
Wang DM, Zhang CC, Zhang Q, Shafiq N, Pescitelli G, Li DW, Gao JM. Wightianines A-E, dihydro-β-agarofuran sesquiterpenes from Parnassia wightiana, and their antifungal and insecticidal activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6669-6676. [PMID: 24945753 DOI: 10.1021/jf501767s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Five new sesquiterpene polyol esters with a dihydro-β-agarofuran skeleton, designated as wightianines A-E (1-5), besides two known compounds, were isolated from the methanolic extract of the whole plant of the traditional herbal medicine Parnassia wightiana Wall. The structures of the isolated compounds were elucidated on the basis of spectroscopic analyses, including two-dimensional nuclear magnetic resonance techniques (correlation spectroscopy, heteronuclear multiple-quantum coherence, nuclear Overhauser effect spectrometry, and heteronuclear multiple-bond correlation) and electronic circular dichroism studies. The antifungal and insecticidal activities of five compounds were evaluated against several plant pathogenic fungi and armyworm larvae (Mythimna separata Walker). Among the test metabolites, compounds 2 and 7 both exhibited potent antifungal activity against the phytopathogenic fungus Cytospora sp. with minimum inhibitory concentration values of 0.78 μg/mL, which are equal to the two positive controls, hymexazol and carbendazim. However, no insecticidal activity of the test compounds was observed in the present study. Compounds 2 and 7 could be promising leads for developing new fungicides against agriculturally important fungus Cytospora sp.
Collapse
Affiliation(s)
- Dong-Mei Wang
- College of Forestry, and §Shaanxi Engineering Center of Bioresource Chemistry and Sustainable Utilization, College of Science, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
García ME, Motrich RD, Caputto BL, Sánchez M, Palermo JA, Estévez-Braun A, Ravelo AG, Nicotra VE. Agarofuran sesquiterpenes from Schaefferia argentinensis. PHYTOCHEMISTRY 2013; 94:260-267. [PMID: 23827326 DOI: 10.1016/j.phytochem.2013.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/19/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Sixteen dihydro-β-agarofuran sesquiterpenes were isolated from the aerial parts of Schaefferia argentinensis Speg. Their structures were determined by a combination of 1D and 2D NMR and MS techniques. The in vitro antiproliferative activity of the major sesquiterpenes was examined in T47D, MCF7, and MDA-MB231 human cancer cell lines, but was found to be marginal.
Collapse
Affiliation(s)
- Manuela E García
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ardiles AE, González-Rodríguez A, Núñez MJ, Perestelo NR, Pardo V, Jiménez IA, Valverde AM, Bazzocchi IL. Studies of naturally occurring friedelane triterpenoids as insulin sensitizers in the treatment type 2 diabetes mellitus. PHYTOCHEMISTRY 2012; 84:116-24. [PMID: 22925829 DOI: 10.1016/j.phytochem.2012.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 05/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly expanding public epidemic and frequently results in severe vascular complications. In an attempt to find anti-diabetic agents, we report herein on the isolation, structural elucidation and bioactivity of nine friedelane-type triterpenes (1-9) and twenty two known ones (10-31) from the root barks of Celastrus vulcanicola and Maytenus jelskii. Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques. Two compounds from this series (1 and 3) exhibited increased insulin-mediated signalling, which suggests these friedelane triterpenes have potential therapeutic use in insulin resistant states.
Collapse
Affiliation(s)
- Alejandro E Ardiles
- Instituto Universitario de Bio-Orgánica Antonio González and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gabriele B, Mancuso R, Maltese V, Veltri L, Salerno G. Synthesis of Furan-3-carboxylic and 4-Methylene-4,5-dihydrofuran-3-carboxylic Esters by Direct Palladium Iodide Catalyzed Oxidative Carbonylation of 3-Yne-1,2-diol Derivatives. J Org Chem 2012; 77:8657-68. [DOI: 10.1021/jo301628n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bartolo Gabriele
- Dipartimento di Scienze Farmaceutiche and ‡Dipartimento di Chimica, Università della Calabria, 87036
Arcavacata di Rende (CS), Italy
| | - Raffaella Mancuso
- Dipartimento di Scienze Farmaceutiche and ‡Dipartimento di Chimica, Università della Calabria, 87036
Arcavacata di Rende (CS), Italy
| | - Vito Maltese
- Dipartimento di Scienze Farmaceutiche and ‡Dipartimento di Chimica, Università della Calabria, 87036
Arcavacata di Rende (CS), Italy
| | - Lucia Veltri
- Dipartimento di Scienze Farmaceutiche and ‡Dipartimento di Chimica, Università della Calabria, 87036
Arcavacata di Rende (CS), Italy
| | - Giuseppe Salerno
- Dipartimento di Scienze Farmaceutiche and ‡Dipartimento di Chimica, Università della Calabria, 87036
Arcavacata di Rende (CS), Italy
| |
Collapse
|
18
|
Affiliation(s)
- Braulio M Fraga
- Instituto de Productos Naturales y Agrobiología, CSIC, 38206-La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|