1
|
Tabassum A, Kumari D, Bhore HB, Palmo T, Venkatesan I, Samanta J, Katare AK, Singh K, Bharitkar YP. Synthesis of novel spiroisoxazolidino hybrids of alantolactone and isoalantolactone via 1,3 dipolar nitrone cycloaddition and its antimicrobial Evaluation. Bioorg Chem 2025; 154:108087. [PMID: 39729768 DOI: 10.1016/j.bioorg.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Alantolactone and isoalantolactone are two isomeric sesquiterpene lactones that were isolated from Innula recemosa. Here, we are used for the semisynthesis of novel isoxazolidine hybrids of alantolactone and isoalantolactone through a two-step process: nitrone synthesis followed by nitrone 1,3-dipolar cycloaddition. The formation of the cycloadduct was well characterized via modern spectroscopic techniques such as HRMS, 1H NMR, 13C NMR, DEPT-90, DEPT-135, and 2D NMR. This study also includes the synthesis of dinitrone with glyoxal and terephthalaldehyde, which is used for the dinitrone cycloadduct of alantolactone and isoalantolactone. Both nitrone cycloaddition and dinitrone cycloaddition proceed with high regio- and diastereoselectivity, resulting in the formation of only one isomer. The formation of the α-cycloadducts and the absolute configuration were established through 2D NMR and single-crystal X-ray diffraction analysis. The antimicrobial activity of all synthesized compounds was evaluated against a panel of Gram-positive and Gram-negative pathogens. Compounds 3f and 4f exhibited potential antimicrobial activity against drug-sensitive and -resistant Staphylococcus aureus strains, with minimum inhibitory concentrations ranging from 6 to 10 µM. A time-kill kinetics assay suggested that compounds 3f and 4f are bacteriostatic. Furthermore, scanning electron microscopy analysis confirmed that compounds 3f and 4f cause significant morphological alternations and exert potent antibacterial effects by causing substantial cellular damage.
Collapse
Affiliation(s)
- Aliya Tabassum
- CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Kumari
- CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harshad B Bhore
- CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Tashi Palmo
- CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Initha Venkatesan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Jayanta Samanta
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Anil Kumar Katare
- CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Yogesh P Bharitkar
- CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Boutiddar R, Abbiche K, Mellaoui MD, Imjjad A, Alahiane M, Ait Albrimi Y, Marakchi K, Mogren Al-Mogren M, El Hammadi A, Hochlaf M. Insights into the mechanism of [3+2] cycloaddition reactions between N-benzyl fluoro nitrone and maleimides, its selectivity and solvent effects. J Comput Chem 2024; 45:284-299. [PMID: 37795767 DOI: 10.1002/jcc.27235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
We present a theoretical study of the [3+2] cycloaddition (32CA) reactions of N-benzyl fluoro nitrone with a series of maleimides producing isoxazolidines. We use the Molecular Electron Density Theory at the MPWB1K/6-311G(d) level. We focus on the reaction mechanism, selectivity, solvent, and temperature effects. In addition, we perform topological analyses at the minimal and transition states to identify the intermolecular interactions. Electron Localization Function approach classifies the N-benzyl fluoro nitrone as zwitterionic (zw-) three-atom components (TACs), associated with a high energy barrier. The low polar character of the reaction is evaluated using the Conceptual Density Functional Theory analysis of the reactants, confirmed by the low global electron density transfer computed at the transition states. Computations show that these 32CA reactions follow a one-step mechanism under kinetic control, with highly asynchronous bond formation and no new covalent bond is formed at the TS. Besides, the potential energy surfaces along the reaction pathways in gas phase and in solvent are mapped. The corresponding Gibbs free energy profiles reveal that the exo-cycloadducts are kinetically and thermodynamically more favored than endo-cycloadducts, in agreement with the exo-selectivity observed experimentally. In particular, we found that solvent and temperature did not affect this selectivity and mainly influence the activation energies and the exothermic character of these 32CA reactions.
Collapse
Affiliation(s)
- Rachid Boutiddar
- Analysis, Modeling, Engineering, Natural Substances and Environment Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Taroudant, Morocco
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, Morocco
| | - Khalid Abbiche
- Analysis, Modeling, Engineering, Natural Substances and Environment Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Taroudant, Morocco
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, Morocco
- Applied Physical Chemistry Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Moulay Driss Mellaoui
- Applied Physical Chemistry Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdallah Imjjad
- Applied Physical Chemistry Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mustapha Alahiane
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Agadir, Morocco
| | - Youssef Ait Albrimi
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Agadir, Morocco
| | - Khadija Marakchi
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, Morocco
| | | | - Abdellatif El Hammadi
- Analysis, Modeling, Engineering, Natural Substances and Environment Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Taroudant, Morocco
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, Champs sur Marne, France
| |
Collapse
|
3
|
Sánchez‐González Á, Grenut P, Gil A. Influence of conventional hydrogen bonds in the intercalation of phenanthroline derivatives with DNA: The important role of the sugar and phosphate backbone. J Comput Chem 2022; 43:804-821. [PMID: 35297513 PMCID: PMC9313584 DOI: 10.1002/jcc.26836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
The influence of hydrogen bonds in model intercalated systems between guanine-cytosine and adenine-thymine DNA base pairs (bps) was analyzed with the popular intercalator 1,10-phenanthroline (phen) and derivatives obtained by substitution with OH and NH2 groups in positions 4 and 7. Semiempirical and Density Functional Theory (DFT) methods were used both including dispersion effects: PM6-DH2, M06-2X and B3LYP-D3 along with the recently developed near linear-scaling coupled cluster method DLPNO-CCSD(T) for benchmark calculations. Our results given by QTAIM and non-covalent interaction analysis confirmed the existence of hydrogen bonds created by OH and NH2 . The trends in the energy decomposition analysis for the interaction energy, ΔEint , showed that the ΔEelstat contributions are equal or even a little bit higher than the values for ΔEdisp . Such important ΔEelstat attractive contribution comes mainly from the conventional hydrogen bonds formed by OH and NH2 functional groups with DNA not only with bps but specially with the sugar and phosphate backbone. This behavior is very different from that of phen and other classical intercalators that cannot form conventional hydrogen bonds, where the ΔEdisp is the most important attractive contribution to the ΔEint . The inclusion of explicit water molecules in molecular dynamics simulations showed, as a general trend, that the hydrogen bonds with the bps disappear during the simulations but those with the sugar and phosphate backbone remain in time, which highlights the important role of the sugar and phosphate backbone in the stabilization of these systems.
Collapse
Affiliation(s)
- Ángel Sánchez‐González
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de Lisboa, Campo GrandeLisbonPortugal
| | - Pierre Grenut
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de Lisboa, Campo GrandeLisbonPortugal
| | - Adrià Gil
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de Lisboa, Campo GrandeLisbonPortugal
- ARAID FoundationZaragozaSpain
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza, c/ Pedro Cerbuna 12ZaragozaSpain
| |
Collapse
|
4
|
Zhai P, Li W, Lin J, Li X, Wei WL, Chen W. Hydrazones as Substrates in the Synthesis of Isoxazolidines via a KOH-Promoted One-Pot Three-Component Cycloaddition with Nitroso Compounds and Olefins. J Org Chem 2021; 86:17710-17721. [PMID: 34842429 DOI: 10.1021/acs.joc.1c01994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hydrazones have been employed as the starting materials in a KOH-mediated one-pot three-component cycloaddition with readily accessible nitroso compounds and olefins to construct various isoxazolidines. Compared with diazo compounds as starting materials, this methodology could afford a wider range of products in good to excellent yields and diastereoselectivities for most substrates, and hydrazones are cheaper, more accessible, and safer substrates. The experimental study shows that the choice of suitable hydrazones is crucial.
Collapse
Affiliation(s)
- Pingan Zhai
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Wenhui Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Wen-Long Wei
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Wenwen Chen
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| |
Collapse
|
5
|
Nongthombam GS, Boruah RC. D-Ring modification of steroids: synthesis of isoxazole annulated steroids from des D-formyl alkyne via 1,3-dipolar cycloaddition reaction. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1955930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Romesh Chandra Boruah
- Applied Organic Chemistry Group, Chemical Science & Technology Division, CSIR-NEIST, Jorhat, India
| |
Collapse
|
6
|
Dar'in D, Kantin G, Kalinin S, Sharonova T, Bunev A, Ostapenko GI, Nocentini A, Sharoyko V, Supuran CT, Krasavin M. Investigation of 3-sulfamoyl coumarins against cancer-related IX and XII isoforms of human carbonic anhydrase as well as cancer cells leads to the discovery of 2-oxo-2H-benzo[h]chromene-3-sulfonamide - A new caspase-activating proapoptotic agent. Eur J Med Chem 2021; 222:113589. [PMID: 34147910 DOI: 10.1016/j.ejmech.2021.113589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Herein we report the synthesis of a set of seventeen 3-sulfonamide substituted coumarin derivatives. Prepared compounds were tested in vitro for inhibition of four physiologically relevant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Several coumarin sulfonamides displayed low nanomolar KI values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Some of these compounds exerted a concentration-dependent antiproliferative action toward RT4 human bladder cancer and especially A431 human epidermoid carcinoma cell lines. In the meantime, the viability of non-tumorigenic hTERT immortalized human foreskin fibroblast cell line Bj-5ta was not significantly affected by the obtained derivatives. Interestingly, compound 10q (2-oxo-2H-benzo [h]chromene-3-sulfonamide) showed a profound and selective dose-dependent inhibition of A431 cell growth with low nanomolar IC50 values. We demonstrated that 10q possessed a concentration-dependent apoptosis induction activity associated with caspase 3/7 activation in cancer cells. As carbonic anhydrase isoforms in question were not potently inhibited by this compound, its antiproliferative effects likely involve other mechanisms, such as DNA intercalation. Compound 10q clearly represents a viable lead for further development of new-generation anticancer agents.
Collapse
Affiliation(s)
- Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Sharonova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Gennady I Ostapenko
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, 50019, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, 50019, Italy.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
7
|
Li X, Zhai P, Fang Y, Li W, Chang H, Gao W. Synthesis of isoxazolidines via catalyst-free one-pot three-component cycloaddition of sulfoxonium ylides, nitrosoarenes and alkenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01471k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A general and practical strategy for the construction of various keto-substituted isoxazolidines via one-pot three-component reaction of easily accessible, safer and more stable sulfoxonium ylides, nitrosoarenes and olefins is described.
Collapse
Affiliation(s)
- Xing Li
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Pingan Zhai
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Yongsheng Fang
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Wenhui Li
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Honghong Chang
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Wenchao Gao
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| |
Collapse
|
8
|
Cycloaddition of nitrones to 1,3-diarylpropenones and subsequent transformations of the resulting isoxazolidines. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02797-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Efremova MM, Molchanov AP, Novikov AS, Starova GL, Muryleva AA, Slita AV, Zarubaev VV. 1,3-Dipolar cycloaddition of N-allyl substituted polycyclic derivatives of isoindole-1,3-dione with nitrones and nitrile oxides: An experimental and theoretical investigation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Molchanov AP, Lukina VM, Efremova MM, Muryleva AA, Slita AV, Zarubaev VV. The 1,3-dipolar cycloaddition of adamantine-derived nitrones with maleimides. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1738494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexander P. Molchanov
- Institute of Chemistry Saint Petersburg State University, St. Petersburg, Russian Federation
| | - Valentina M. Lukina
- Institute of Chemistry Saint Petersburg State University, St. Petersburg, Russian Federation
| | - Mariia M. Efremova
- Institute of Chemistry Saint Petersburg State University, St. Petersburg, Russian Federation
| | - Anna A. Muryleva
- Saint Petersburg Pasteur Institute, St. Petersburg, Russian Federation
| | | | | |
Collapse
|
11
|
Gentile D, Floresta G, Patamia V, Nicosia A, Mineo PG, Rescifina A. Cucurbit[7]uril as a catalytic nanoreactor for one-pot synthesis of isoxazolidines in water. Org Biomol Chem 2020; 18:1194-1203. [PMID: 31995083 DOI: 10.1039/c9ob02352f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The main objective of supramolecular chemistry is to mimic the macrosystems present in nature, a goal that fits perfectly with the green chemistry guidelines. The aim of our work is to use the hydrophobic cavity of cucurbit[7]uril (CB[7]) to mimic nature for performing different dehydration and cycloaddition reactions in water. The hydrophobic cavity of CB[7] made it possible to synthesize nitrones and isoxazolidines in a one-pot fashion using water as a reaction solvent. Substituted isoxazolidines were obtained from the cycloaddition of nitrones with various styrenes and cinnamates, under microwave irradiation, with a catalytic amount of CB[7], and a moderate increase in the formation of the trans adduct was observed, compared to the reaction being carried out in toluene. The mechanism of the reaction and the inclusion of reagents and products in the CB[7] cavity have been studied and rationalized by NMR spectroscopy, ESI-MS experiments, and molecular modeling calculations.
Collapse
Affiliation(s)
- Davide Gentile
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy. and Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Vincenzo Patamia
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy. and Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Angelo Nicosia
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Placido G Mineo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy and CNR-IPCB Istituto per i Polimeri, Compositi e Biomateriali, Via P. Gaifami 18, 95126 Catania, Italy and CNR-IPCF Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy. and Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
12
|
Teterina PS, Efremova MM, Sirotkina EV, Novikov AS, Khoroshilova OV, Molchanov AP. A highly efficient and stereoselective cycloaddition of nitrones to N-arylitaconimides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Mandal R, Singh M, Krishnan AAV, Dahat YH, Bharitkar YP, Ravichandiran V, Hazra A. Semi-synthesis of a novel hybrid isoxazolidino withaferin via chemoselective and diastereoselective 1,3-dipolar nitrone cycloaddition reaction. Nat Prod Res 2019; 34:2208-2218. [PMID: 30938170 DOI: 10.1080/14786419.2019.1582045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A facile, atom-economic synthesis of isoxazilidino withaferin, a novel hybrid of withaferin A, has been accomplished via two-step reaction of nitrone synthesis followed by nitrone 1,3-dipolar cycloaddition. The reaction is highly chemoselective (preferential reaction only on one of the two double bonds present on withaferin A) and diastereoselective affording exclusively the cis-fused products. The structure was determined by detailed analysis of 1D, 2D NMR and mass spectral data.
Collapse
Affiliation(s)
- Ramkrishna Mandal
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Meenakshi Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Amrutha A V Krishnan
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Yogita H Dahat
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Yogesh P Bharitkar
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Abhijit Hazra
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
14
|
Zhu M, Wang D, Xie M, Qu G, Guo H. Enantioselective Friedel–Crafts Alkylation Reactions of β‐Naphthols with Donor–Acceptor Aminocyclopropanes. Chemistry 2018; 24:15512-15516. [DOI: 10.1002/chem.201804032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Man Zhu
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Dong‐Chao Wang
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ming‐Sheng Xie
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Gui‐Rong Qu
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Hai‐Ming Guo
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
15
|
Hydrothermal Synthesis, Structural Characterization, and Interaction Mechanism with DNA of Copper(II) Complex Containing 2,2'-Bipyridine. Bioinorg Chem Appl 2018; 2018:8459638. [PMID: 29951088 PMCID: PMC5987339 DOI: 10.1155/2018/8459638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/08/2018] [Indexed: 11/18/2022] Open
Abstract
A Cu(II) complex [Cu(bipy)(H2O)2(SO4)] n (bipy = 2,2'-bipyridine) was synthesized by hydrothermal method and characterized structurally by elemental analyses, single crystal X-ray diffraction, infrared spectra, and thermogravimetry and differential scanning calorimetry. The Cu(II) was hexacoordinated by two N atoms from bipy, two O atoms from different sulfate radical anions, and two O atoms from two water molecules, forming a slightly distorted octahedral geometry, and bridged by sulfato groups into polymeric chains. Under the condition of physiological pH, the interaction mechanism between the complex and hsDNA was explored with acridine orange as a fluorescence probe by spectroscopic methods. The binding modes between the complex and hsDNA were the electrostatic and embedded modes.
Collapse
|
16
|
Highly efficient and stereoselective cycloaddition of nitrones to indolyl- and pyrrolylacrylates. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Varrica MG, Zagni C, Mineo PG, Floresta G, Monciino G, Pistarà V, Abbadessa A, Nicosia A, Castilho RM, Amata E, Rescifina A. DNA intercalators based on (1,10-phenanthrolin-2-yl)isoxazolidin-5-yl core with better growth inhibition and selectivity than cisplatin upon head and neck squamous cells carcinoma. Eur J Med Chem 2018; 143:583-590. [DOI: 10.1016/j.ejmech.2017.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 02/04/2023]
|
18
|
Floresta G, Talotta C, Gaeta C, De Rosa M, Chiacchio U, Neri P, Rescifina A. γ-Cyclodextrin as a Catalyst for the Synthesis of 2-Methyl-3,5-diarylisoxazolidines in Water. J Org Chem 2017; 82:4631-4639. [PMID: 28406307 DOI: 10.1021/acs.joc.7b00227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A green and efficient 1,3-dipolar cycloaddition of nitrones with different styrenes and cinnamates using a catalytic amount of γ-cyclodextrin (γ-CD) in water has been developed to give substituted isoxazolidines. γ-CD was found to be highly efficacious in carrying out this reaction under an eco-friendly environment, affording moderate to excellent yields and, in some cases, excellent diastereomeric excess (up to >95%) at 100 °C in 8-12 h. The catalyst can be easily recuperated and recycled for several times without loss of activity. Water, an eco-friendly reaction medium, has been utilized for the first time, to the best of our knowledge, in this reaction. The credit of the presented protocol includes high yields and catalyst reusability, and precludes the use of organic solvents. The use of in silico calculations allowed us to rationalize the obtained results and to improve the stereoselectivity.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università di Catania , Viale Andrea Doria 6, 95125 - Catania, Italy.,Dipartimento di Scienze Chimiche, Università di Catania , Viale Andrea Doria 6, 95125 - Catania, Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno , Via Giovanni Paolo II 132, 84084 - Fisciano (SA), Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno , Via Giovanni Paolo II 132, 84084 - Fisciano (SA), Italy
| | - Margherita De Rosa
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno , Via Giovanni Paolo II 132, 84084 - Fisciano (SA), Italy
| | - Ugo Chiacchio
- Dipartimento di Scienze del Farmaco, Università di Catania , Viale Andrea Doria 6, 95125 - Catania, Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno , Via Giovanni Paolo II 132, 84084 - Fisciano (SA), Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania , Viale Andrea Doria 6, 95125 - Catania, Italy
| |
Collapse
|
19
|
Galliot A, Gil A, Calhorda MJ. Effects of oxygenation on the intercalation of 1,10-phenanthroline-5,6/4,7-dione between DNA base pairs: a computational study. Phys Chem Chem Phys 2017. [PMID: 28621352 DOI: 10.1039/c7cp00532f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effects of oxygen in positions 4,7 and 5,6 of phenanthroline have been studied computationally when this ligand intercalates between DNA base pairs. Our results indicate that solvation energy could be the driving force of the process and thus, it can be also related with the cytotoxicity of the drug.
Collapse
Affiliation(s)
- Aurellia Galliot
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- Campo Grande 1749-016 Lisboa
| | - Adrià Gil
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- Campo Grande 1749-016 Lisboa
| | - Maria José Calhorda
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- Campo Grande 1749-016 Lisboa
| |
Collapse
|
20
|
Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Isoxazolidine: A Privileged Scaffold for Organic and Medicinal Chemistry. Chem Rev 2016; 116:15235-15283. [PMID: 27981833 DOI: 10.1021/acs.chemrev.6b00543] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The isoxazolidine ring represents one of the privileged structures in medicinal chemistry, and there have been an increasing number of studies on isoxazolidine and isoxazolidine-containing compounds. Optimization of the 1,3-dipolar cycloaddition (1,3-DC), original methods including electrophilic or palladium-mediated cyclization of unsaturated hydroxylamine, has been developed to obtain isoxazolidines. Novel reactions involving the isoxazolidine ring have been highlighted to accomplish total synthesis or to obtain bioactive compounds, one of the most significant examples being probably the thermic ring contraction applied to the total synthesis of (±)-Gelsemoxonine. The unique isoxazolidine scaffold also exhibits an impressive potential as a mimic of nucleosides, carbohydrates, PNA, amino acids, and steroid analogs. This review aims to be a comprehensive and general summary of the different isoxazolidine syntheses, their use as starting building blocks for the preparation of natural compounds, and their main biological activities.
Collapse
Affiliation(s)
- Mathéo Berthet
- Institut des Biomolécules Max Mousseron , IBMM UMR-5247 CNRS, Université de Montpellier, ENSCM, CC17-03, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Thomas Cheviet
- Institut des Biomolécules Max Mousseron , IBMM UMR-5247 CNRS, Université de Montpellier, ENSCM, CC17-03, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Gilles Dujardin
- Institut des Molécules et Matériaux du Mans , IMMM UMR 6283 CNRS, Université du Maine, UFR Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans, France
| | - Isabelle Parrot
- Institut des Biomolécules Max Mousseron , IBMM UMR-5247 CNRS, Université de Montpellier, ENSCM, CC17-03, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron , IBMM UMR-5247 CNRS, Université de Montpellier, ENSCM, CC17-03, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
21
|
Akhtar J, Khan AA, Ali Z, Haider R, Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem 2016; 125:143-189. [PMID: 27662031 DOI: 10.1016/j.ejmech.2016.09.023] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
The present review article offers a detailed account of the design strategies employed for the synthesis of nitrogen-containing anticancer agents. The results of different studies describe the N-heterocyclic ring system is a core structure in many synthetic compounds exhibiting a broad range of biological activities. Benzimidazole, benzothiazole, indole, acridine, oxadiazole, imidazole, isoxazole, pyrazole, triazoles, quinolines and quinazolines including others drugs containing pyridazine, pyridine and pyrimidines are covered. The following studies of these compounds suggested that these compounds showed their antitumor activities through multiple mechanisms including inhibiting protein kinase (CDK, MK-2, PLK1, kinesin-like protein Eg5 and IKK), topoisomerase I and II, microtubule inhibition, and many others. Our concise representation exploits the design and anticancer potency of these compounds. The direct comparison of anticancer activities with the standard enables a systematic analysis of the structure-activity relationship among the series.
Collapse
Affiliation(s)
- Jawaid Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Ahsan Ahmed Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Zulphikar Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Rafi Haider
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
22
|
Ikeda R, Kuwano R. Asymmetric Hydrogenation of Isoxazolium Triflates with a Chiral Iridium Catalyst. Chemistry 2016; 22:8610-8. [DOI: 10.1002/chem.201600732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Ryuhei Ikeda
- Department of Chemistry, Faculty of Science and; International Research Center for Molecular Systems (IRCMS); Kyushu University; 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ryoichi Kuwano
- Department of Chemistry, Faculty of Science and; International Research Center for Molecular Systems (IRCMS); Kyushu University; 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
23
|
Franchi L, De Souza T, Andrioli W, Lima I, Bastos J, Takahashi C. The effects of the mycotoxin austdiol on cell cycle progression, cytotoxicity and genotoxicity in Chinese hamster ovary (CHO-K1) cells. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Austdiol is a mycotoxin mainly produced by Aspergillus ustus and Mycoleptodiscus indicus. These fungi are found in rye, oats, barley, corn and feed grains; thus, as a potential contaminant of human food and animal feed, this mycotoxin is of great concern. As such, the elucidation of the cytotoxicity and mutagenicity of austdiol is important. In this study, austdiol was purified from a rice-oat solid medium culture of M. indicus using chromatographic separation techniques. Chinese hamster ovary (CHO-K1) cells were then used to study the effect of austdiol on mammalian cell cycle, clonogenicity and DNA damage. Austdiol induced cell cycle arrest in G2/M phase, with a decreased S phase population and increased sub-G1 population. Austdiol also increased the polyploid population. These events resulted in cell death detected 7 days after treatment by clonogenic assay. DNA damage represents the main mechanism of action of austdiol, which induces DNA breaks and increases the frequency of micronuclei and nucleoplasmic bridges in binucleated cells in a CHO-K1 cell line. Moreover, cells exposed to austdiol and doxorubicin (DXR) combined treatments presented a reduced number of colonies and increased frequencies of micronuclei and nucleoplasmic bridges compared with negative control and cells treated with austdiol or DXR alone.
Collapse
Affiliation(s)
- L.P. Franchi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Bloco G. Av. Bandeirantes 3900, 14049-900 Monte Alegre, SP, Brazil
| | - T.A.J. De Souza
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Bloco G. Av. Bandeirantes 3900, 14049-900 Monte Alegre, SP, Brazil
| | - W.J. Andrioli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
- Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14040-900 Vila Monte Alegre, SP, Brazil
| | - I.M.S. Lima
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Bloco G. Av. Bandeirantes 3900, 14049-900 Monte Alegre, SP, Brazil
| | - J.K. Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - C.S. Takahashi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Bloco G. Av. Bandeirantes 3900, 14049-900 Monte Alegre, SP, Brazil
- Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14040-900 Vila Monte Alegre, SP, Brazil
| |
Collapse
|
24
|
Kara YS. Substituent effect study on experimental ¹³C NMR chemical shifts of (3-(substituted phenyl)-cis-4,5-dihydroisoxazole-4,5-diyl)bis(methylene)diacetate derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:723-730. [PMID: 26172459 DOI: 10.1016/j.saa.2015.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/01/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Eleven novel (3-(substituted phenyl)-cis-4,5-dihydroisoxazole-4,5-diyl)bis(methylene) diacetate derivatives were synthesized in the present study. These dihydroisoxazole derivatives were characterized by IR, (1)H NMR, (13)C NMR and elemental analyses. Their (13)C NMR spectra were measured in Deuterochloroform (CDCl3). The correlation analysis for the substituent-induced chemical shift (SCS) with Hammett substituent constant (σ), inductive substituent constant (σI), different of resonance substituent constants (σR, σR(o)) and Swain-Lupton substituent parameters (F, R) were performed using SSP (single substituent parameter), and DSP (dual substituent parameter) methods, as well as single and multiple regression analysis. From the result of regression analysis, the effect of substituent on the (13)C NMR chemical shifts was explained.
Collapse
Affiliation(s)
- Yesim S Kara
- Kocaeli University, Science and Art Faculty, Department of Chemistry, Umuttepe Campus, 41380 Kocaeli, Turkey.
| |
Collapse
|
25
|
Zang Q, Zhong GQ, Wang ML. A copper(II) complex with pyridine-2,6-dicarboxylic acid: Synthesis, characterization, thermal decomposition, bioactivity and interactions with herring sperm DNA. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Galenko AV, Khlebnikov AF, Novikov MS, Pakalnis VV, Rostovskii NV. Recent advances in isoxazole chemistry. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4503] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Gholivand K, Molaei F, Hosseini M. Phosphoramides bearing isoxazole derivative: spectroscopic and structural characterization, study of hydrogen-bonding interactions and two lanthanide complexes (LnIII = Ce and Eu). ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2015; 71:176-185. [PMID: 25827370 DOI: 10.1107/s2052520615003297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
In this study, the synthesis and spectroscopic characterization of new phosphoramides based on 3-amino-5-methylisoxazole with the formula R2P(O)[NH-C4H4NO], R = C6H5O (1), C6H5 (2), RP(O)[NH-C4H4NO]2, R = C6H5O (3), CH3-C6H4O (4), C6H5NH (5), (C6H5)ClP(O)[NH-C4H4NO] (6) and two lanthanide complexes [Ln(2)2(NO3)3(EtOH)]·EtOH, Ln(III) = Ce (7) and Eu (8), have been reported. The structural study of (3) shows the presence of two conformers (crystallographically independent molecules) in the crystalline lattice, caused by different orientations of the phenyl and isoxazole rings. For (3), the intermolecular interactions have been studied by Hirshfeld surface analysis and fingerprint plots. Furthermore, the electronic and energy aspects of hydrogen bonds between molecules of (3) have been explored by density functional theory (DFT) calculations. X-ray crystallography of complexes (7) and (8) reveals that two phosphoramide ligands take part in coordination to the metal, one as monodentate from O(phosphoryl), and the other one as chelate through O(phosphoryl) and N(ring). The complexes are also composed of two conformers in the solid-state structure. Quantum theory of atoms in molecules (QTAIM) analysis discloses the electrostatic nature of the Ln-ligand interaction.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115-175, Tehran, Iran
| | - Foroogh Molaei
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115-175, Tehran, Iran
| | - Mahdieh Hosseini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115-175, Tehran, Iran
| |
Collapse
|
28
|
Zagni C, Guimarães DM, Salerno L, Punzo F, Squarize CH, Mineo PG, Romeo G, Rescifina A. An α1-adrenergic receptor ligand repurposed as a potent antiproliferative agent for head and neck squamous cell carcinoma. RSC Adv 2015. [DOI: 10.1039/c4ra11856a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study we report the anticancer properties of RN5-Me, an α1-adrenergic receptor ligand.
Collapse
Affiliation(s)
- Chiara Zagni
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
- Laboratory of Epithelial Biology
| | - Douglas Magno Guimarães
- Laboratory of Epithelial Biology
- Department of Periodontics and Oral Medicine
- University of Michigan
- Ann Arbor
- USA
| | - Loredana Salerno
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Francesco Punzo
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology
- Department of Periodontics and Oral Medicine
- University of Michigan
- Ann Arbor
- USA
| | - Placido Giuseppe Mineo
- CNR-IPCF Istituto per i Processi Chimico Fisici
- 98158 Messina
- Italy
- Dipartimento di Scienze Chimiche and I.N.S.T.M. UdR of Catania
- Università di Catania
| | - Giuseppe Romeo
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| |
Collapse
|
29
|
Rescifina A, Zagni C, Mineo PG, Giofrè SV, Chiacchio U, Tommasone S, Talotta C, Gaeta C, Neri P. DNA Recognition with Polycyclic-Aromatic-Hydrocarbon-Presenting Calixarene Conjugates. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Wan M, Xu L, Hua L, Li A, Li S, Lu W, Pang Y, Cao C, Liu X, Jiao P. Synthesis and evaluation of novel isoxazolyl chalcones as potential anticancer agents. Bioorg Chem 2014; 54:38-43. [PMID: 24747188 DOI: 10.1016/j.bioorg.2014.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022]
Abstract
A series of novel isoxazolyl chalcones were synthesized and evaluated for their activities in vitro against four types of human non-small cell lung cancer cells, including H1792, H157, A549 and Calu-1 cells. The preliminary biological screening showed that compounds 5d and 5f-i exhibited significant cytotoxicity, particularly, compounds 5f and 5h were identified as the most potent anticancer agents with IC50 values 1.35-2.07 μM and 7.27-11.07 μM against H175, A549 and Calu-1 cell lines, respectively. Compounds 5f-i could induce apoptosis in A549 cells by death receptor 5 (DR5) mediated extrinsicpathways. The preliminary structure-activity relationship study showed that compounds bearing electron withdrawing groups (EWG) at the 2-position of the phenyl ring in Ar group were more effective than those with EWG at 4-position. These results further demonstrated that the scaffolds designed in this work might lead to the discovery of novel anti-lung cancer agents.
Collapse
Affiliation(s)
- Maosheng Wan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Linyan Xu
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Li Hua
- Shandong Drug and Food Vocational College, Weihai, Shandong 264210, China
| | - Ailing Li
- Shandong Drug and Food Vocational College, Weihai, Shandong 264210, China
| | - Shuqing Li
- Shandong Drug and Food Vocational College, Weihai, Shandong 264210, China
| | - Wenjing Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yue Pang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Chengbo Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Xiangguo Liu
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Peifu Jiao
- Department of Chemistry, Qilu Normal University, Jinan, Shandong 250013, China
| |
Collapse
|
31
|
Husmann R, Wertz S, Daniliuc CG, Schäfer SW, McArdle CB, Studer A. UV–Vis Monitoring of Radical Polymerizations by Spin Trapping with Chromophoric Nitrones. Macromolecules 2014. [DOI: 10.1021/ma4025174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ralph Husmann
- Institute
of Organic Chemistry, Department of Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Sebastian Wertz
- Institute
of Organic Chemistry, Department of Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Institute
of Organic Chemistry, Department of Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Sascha W. Schäfer
- Henkel AG & Co. KGaA/Adhesives Technologies, Henkelstrasse 67, 40589 Düsseldorf, Germany
| | - Ciarán B. McArdle
- Henkel AG & Co. KGaA/Adhesives Technologies, Henkelstrasse 67, 40589 Düsseldorf, Germany
| | - Armido Studer
- Institute
of Organic Chemistry, Department of Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
32
|
Long J, Wang XM, Xu DL, Ding LS. Spectroscopic studies on the interaction mechanisms of safranin T with herring sperm DNA using acridine orange as a fluorescence probe. J Mol Recognit 2014; 27:131-7. [DOI: 10.1002/jmr.2341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Long
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Xing-ming Wang
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Dong-ling Xu
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Li-sheng Ding
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu 610041 China
| |
Collapse
|
33
|
Rescifina A, Zagni C, Varrica MG, Pistarà V, Corsaro A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur J Med Chem 2014; 74:95-115. [PMID: 24448420 DOI: 10.1016/j.ejmech.2013.11.029] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/28/2022]
Abstract
The interaction of small molecules with DNA plays an essential role in many biological processes. As DNA is often the target for majority of anticancer and antibiotic drugs, study about the interaction of drug and DNA has a key role in pharmacology. Moreover, understanding the interactions of small molecules with DNA is of prime significance in the rational design of more powerful and selective anticancer agents. Two of the most important and promising targets in cancer chemotherapy include DNA alkylating agents and DNA intercalators. For these last the DNA recognition is a critical step in their anti-tumor action and the intercalation is not only one kind of the interactions in DNA recognition but also a pivotal step of several clinically used anti-tumor drugs such as anthracyclines, acridines and anthraquinones. To push clinical cancer therapy, the discovery of new DNA intercalators has been considered a practical approach and a number of intercalators have been recently reported. The intercalative binding properties of such molecules can also be harnessed as diagnostic probes for DNA structure in addition to DNA-directed therapeutics. Moreover, the problem of intercalation site formation in the undistorted B-DNA of different length and sequence is matter of tremendous importance in molecular modeling studies and, nowadays, three models of DNA intercalation targets have been proposed that account for the binding features of intercalators. Finally, despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. Therefore, a default protocol to identify DNA binding modes which uses a modified canonical DNA as receptor is needed.
Collapse
Affiliation(s)
- Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Chiara Zagni
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maria Giulia Varrica
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Antonino Corsaro
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
34
|
Chiacchio U, Barbera V, Bonfanti R, Broggini GL, Campisi A, Gazzola S, Parenti R, Romeo G. Synthesis and biological evaluation of 1,7,8,8a-tetrahydro-3H-oxazolo[3,4-a]pyrazin-6(5H)-ones as antitumoral agents. Bioorg Med Chem 2013; 21:5748-53. [PMID: 23916151 DOI: 10.1016/j.bmc.2013.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
A series of 1,7,8,8a-tetrahydro-3H-oxazolo[3,4-a]pyrazin-6(5H)-ones has been synthesized by an intramolecular, palladium(II) catalyzed, aminooxygenation of alkenyl ureas, readily available from glycine allylamides as starting materials. Biological tests showed that the obtained compounds are endowed with an interesting antitumoral activity against two human thyroid cancer cell lines, namely FTC-133 and 8305C, by promoting the apoptotic pathway and DNA fragmentation.
Collapse
Affiliation(s)
- Ugo Chiacchio
- Dipartimento di Scienze del Farmaco, Università di Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cordaro M, Risitano F, Scala A, Rescifina A, Chiacchio U, Grassi G. Self-catalyzed Mannich-type reaction of enolizable cyclic 1,3-dicarbonyls to acyclic nitrones: an entry to functionalized β-enamino diones. J Org Chem 2013; 78:3972-9. [PMID: 23506161 DOI: 10.1021/jo400331b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new method for the preparation of highly functionalized β-enamino diones has been developed. The protocol involves an initial self-catalyzed Mannich-type reaction of enolizable cyclic 1,3-dicarbonyls to nitrones, followed by a spontaneous intramolecular reorganization of the resulting nonisolated hydroxylamine to enamino derivatives. These compounds retain the features of unnatural α-amino acids. The ease of preparation makes them attractive intermediates for the synthesis of peptidomimetics, polyheterocycles, and other multifunctional compounds. All experimental results have been efficiently rationalized by in silico studies at the M06-2X level of theory, and a valid mechanistic pathway has been proposed.
Collapse
Affiliation(s)
- Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Università di Messina, V. le F. Stagno d'Alcontres 31, Messina 98166, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Buchlovič M, Kříž Z, Hofr C, Potáček M. New PAH derivatives functionalized by cyclic nitrone framework: synthetic design, anti-proliferative activity and interaction with DNA. Bioorg Med Chem 2013; 21:1078-81. [PMID: 23352483 DOI: 10.1016/j.bmc.2013.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/27/2012] [Accepted: 01/03/2013] [Indexed: 11/17/2022]
Abstract
Novel approach to functionalized polycyclic aromatic hydrocarbons (PAHs) is presented. Incorporation of cyclic nitrone framework into the structure of PAHs was studied with respect to their anti-proliferative activities and interaction with double stranded DNA. Theoretical docking studies and UV titration methods were used for preliminary evaluation of binding of new PAH derivatives to DNA structure.
Collapse
Affiliation(s)
- Marian Buchlovič
- Department of Chemistry, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | | | | | | |
Collapse
|
37
|
Rescifina A, Zagni C, Romeo G, Sortino S. Synthesis and biological activity of novel bifunctional isoxazolidinyl polycyclic aromatic hydrocarbons. Bioorg Med Chem 2012; 20:4978-84. [DOI: 10.1016/j.bmc.2012.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 11/27/2022]
|