1
|
Morcos CA, Haiba NS, Bassily RW, Abu-Serie MM, El-Yazbi AF, Soliman OA, Khattab SN, Teleb M. Structure optimization and molecular dynamics studies of new tumor-selective s-triazines targeting DNA and MMP-10/13 for halting colorectal and secondary liver cancers. J Enzyme Inhib Med Chem 2024; 39:2423174. [PMID: 39513468 PMCID: PMC11552285 DOI: 10.1080/14756366.2024.2423174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
A series of triazole-tethered triazines bearing pharmacophoric features of DNA-targeting agents and non-hydroxamate MMPs inhibitors were synthesized and screened against HCT-116, Caco-2 cells, and normal colonocytes by MTT assay. 7a and 7g surpassed doxorubicin against HCT-116 cells regarding potency (IC50 = 0.87 and 1.41 nM) and safety (SI = 181.93 and 54.41). 7g was potent against liver cancer (HepG-2; IC50 = 65.08 nM), the main metastatic site of CRC with correlation to MMP-13 expression. Both derivatives induced DNA damage at 2.67 and 1.87 nM, disrupted HCT-116 cell cycle and triggered apoptosis by 33.17% compared to doxorubicin (DNA damage at 0.76 nM and 40.21% apoptosis induction). 7g surpassed NNGH against MMP-10 (IC50 = 0.205 μM) and MMP-13 (IC50 = 0.275 μM) and downregulated HCT-116 VEGF related to CRC progression by 38%. Docking and MDs simulated ligands-receptors binding modes and highlighted SAR. Their ADMET profiles, drug-likeness and possible off-targets were computationally predicted.
Collapse
Affiliation(s)
- Christine A. Morcos
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nesreen S. Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Rafik W. Bassily
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Egypt
| | - Amira F. El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Omar A. Soliman
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| |
Collapse
|
2
|
Kabier M, Gambacorta N, Trisciuzzi D, Kumar S, Nicolotti O, Mathew B. MzDOCK: A free ready-to-use GUI-based pipeline for molecular docking simulations. J Comput Chem 2024; 45:1980-1986. [PMID: 38703357 DOI: 10.1002/jcc.27390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Molecular docking is by far the most preferred approach in structure-based drug design for its effectiveness to predict the scoring and posing of a given bioactive small molecule into the binding site of its pharmacological target. Herein, we present MzDOCK, a new GUI-based pipeline for Windows operating system, designed with the intent of making molecular docking easier to use and higher reproducible even for inexperienced people. By harmonic integration of python and batch scripts, which employs various open source packages such as Smina (docking engine), OpenBabel (file conversion) and PLIP (analysis), MzDOCK includes many practical options such as: binding site configuration based on co-crystallized ligands; generation of enantiomers from SMILES input; application of different force fields (MMFF94, MMFF94s, UFF, GAFF, Ghemical) for energy minimization; retention of selectable ions and cofactors; sidechain flexibility of selectable binding site residues; multiple input file format (SMILES, PDB, SDF, Mol2, Mol); generation of reports and of pictures for interactive visualization. Users can download for free MzDOCK at the following link: https://github.com/Muzatheking12/MzDOCK.
Collapse
Affiliation(s)
- Muzammil Kabier
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Nicola Gambacorta
- Division of Medical Genetics, IRCSS Foundation-Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Foggia, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
3
|
Vittoria Togo M, Mastrolorito F, Orfino A, Graps EA, Tondo AR, Altomare CD, Ciriaco F, Trisciuzzi D, Nicolotti O, Amoroso N. Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives. Expert Opin Drug Metab Toxicol 2024; 20:561-577. [PMID: 38141160 DOI: 10.1080/17425255.2023.2298827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION The application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being. AREAS COVERED This review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies. EXPERT OPINION The limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.
Collapse
Affiliation(s)
- Maria Vittoria Togo
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Mastrolorito
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Angelica Orfino
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per laSalute ed il Sociale, Presidenza della Regione Puglia", Bari, Italy
| | - Anna Rita Tondo
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fulvio Ciriaco
- Department of Chemistry, Universitá degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Daniela Trisciuzzi
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Nicola Amoroso
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Kilic-Kurt Z, Celik A, Bakar-Ates F. Effects of pyrrolopyrimidine derivatives on cancer cells cultured in vitro and potential mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3169-3177. [PMID: 37891256 DOI: 10.1007/s00210-023-02799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
In this study, the anticancer activities of some pyrrolopyrimidine derivatives were evaluated. Compound 3 is the most cytotoxic compound on MCF-7 cancer cells with an IC50 value of 23.42 µM. Also, compound 3 induced apoptosis and the ROS(+) cell population in MCF-7 cells. Moreover, it significantly reduced MMP-9 activity, having 42.16 ± 5.10% and 58.28 ± 1.96% inhibitory activities at 10 µM and 50 µM concentrations, respectively. Molecular docking results supported the activity, showing key hydrogen bonds with the binding site of MMP-9. Therefore, compound 3 might be a lead compound for the development of potent MMP-9 inhibitors.
Collapse
Affiliation(s)
- Zuhal Kilic-Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey.
| | - Aybuke Celik
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey
| |
Collapse
|
5
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
6
|
El‐Hussieny M, Mansour ST, Hashem AI, Fouad MA, Abd‐El‐Maksoud MA. Design, synthesis, and biological evaluation of new heterocycles bearing both silicon and phosphorus as potent
MMP
‐2 inhibitors. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marwa El‐Hussieny
- Organometallic and Organometalloid Chemistry Department National Research Centre Giza Egypt
| | - Shaimaa T. Mansour
- Organometallic and Organometalloid Chemistry Department National Research Centre Giza Egypt
| | - Ahmed I. Hashem
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Marwa A. Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy Cairo University Giza Egypt
| | | |
Collapse
|
7
|
Fuerst R, Choi JY, Knapinska AM, Cameron MD, Ruiz C, Delmas A, Sundrud MS, Fields GB, Roush WR. Development of a putative Zn2+-chelating but highly selective MMP-13 inhibitor. Bioorg Med Chem Lett 2022; 76:129014. [DOI: 10.1016/j.bmcl.2022.129014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
|
8
|
Baidya SK, Banerjee S, Adhikari N, Jha T. Selective Inhibitors of Medium-Size S1' Pocket Matrix Metalloproteinases: A Stepping Stone of Future Drug Discovery. J Med Chem 2022; 65:10709-10754. [PMID: 35969157 DOI: 10.1021/acs.jmedchem.1c01855] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various matrix metalloproteinases (MMPs), MMPs having medium-size S1' pockets are established as promising biomolecular targets for executing crucial roles in cancer, cardiovascular diseases, and neurodegenerative diseases. However, no such MMP inhibitors (MMPIs) are available to date as drug candidates despite a lot of continuous research work for more than three decades. Due to a high degree of structural resemblance among these MMPs, designing selective MMPIs is quite challenging. However, the variability and uniqueness of the S1' pockets of these MMPs make them promising targets for designing selective MMPIs. In this perspective, the overall structural aspects of medium-size S1' pocket MMPs including the unique binding patterns of enzyme-inhibitor interactions have been discussed in detail to acquire knowledge regarding selective inhibitor designing. This overall knowledge will surely be a curtain raiser for the designing of selective MMPIs as drug candidates in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
9
|
Lawrence AS, Martin N, Sivakumar B, Cirujano FG, Dhakshinamoorthy A. Palladium‐Based Metal Organic Frameworks as Heterogeneous Catalysts for C‐C Couplings. ChemCatChem 2022. [DOI: 10.1002/cctc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nuria Martin
- Universidad de Valencia: Universitat de Valencia Chemistry SPAIN
| | | | | | - Amarajothi Dhakshinamoorthy
- Maduarai University School of Chemistry Palkalai NagarPalkalai NagarMadurai Kamaraj University 625 021 Madurai INDIA
| |
Collapse
|
10
|
Belal A, Elanany MA, Santali EY, Al-Karmalawy AA, Aboelez MO, Amin AH, Abdellattif MH, Mehany ABM, Elkady H. Screening a Panel of Topical Ophthalmic Medications against MMP-2 and MMP-9 to Investigate Their Potential in Keratoconus Management. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113584. [PMID: 35684529 PMCID: PMC9182209 DOI: 10.3390/molecules27113584] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023]
Abstract
Keratoconus (KC) is a serious disease that can affect people of any race or nationality, although the exact etiology and pathogenic mechanism are still unknown. In this study, thirty-two FDA-approved ophthalmic drugs were exposed to virtual screening using docking studies against both the MMP-2 and MMP-9 proteins to find the most promising inhibitors as a proposed computational mechanism to treat keratoconus. Matrix metalloproteinases (MMPs) are zinc-dependent proteases, and MMP inhibitors (MMPIs) are usually designed to interact with zinc ion in the catalytic (CAT) domain, thus interfering with enzymatic activity. In our research work, the FDA-approved ophthalmic medications will be investigated as MMPIs, to explore if they can be repurposed for KC treatment. The obtained findings of the docking study suggest that atenolol and ampicillin are able to accommodate into the active sites of MMP-2 and MMP-9. Additionally, both exhibited binding modes similar to inhibitors used as references, with an ability to bind to the zinc of the CAT. Molecular dynamic simulations and the MM-GBSA binding free-energy calculations revealed their stable binding over the course of 50 ns. An additional pharmacophoric study was carried out on MMP-9 (PDB ID: 1GKC) using the co-crystallized ligand as a reference for the future design and screening of the MMP-9 inhibitors. These promising results open the door to further biological research to confirm such theoretical results.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: or or
| | - Mohamed A. Elanany
- School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Cairo 11884, Egypt;
| | - Eman Y. Santali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt;
| | - Moustafa O. Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Ali H. Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Magda H. Abdellattif
- Department of Chemistry, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| |
Collapse
|
11
|
Das S, Amin SA, Gayen S, Jha T. Insight into the structural requirements of gelatinases (MMP-2 and MMP-9) inhibitors by multiple validated molecular modelling approaches: Part II. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:167-192. [PMID: 35301933 DOI: 10.1080/1062936x.2022.2041722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Inhibition of the matrix metalloproteinases (MMPs) is effective against metastasis of secondary tumours. Previous MMP inhibitors have failed in clinical trials due to their off-target toxicity in solid tumours. Thus, newer MMP inhibitors now have paramount importance. Here, different molecular modelling techniques were applied on a dataset of 110 gelatinase (MMP-2 and MMP-9) inhibitors. The objectives of the present study were to identify structural fingerprints for gelatinase inhibition and also to develop statistically validated QSAR models for the screening and prediction of different derivatives as MMP-2 (gelatinase A) and MMP-9 (gelatinase B) inhibitors. The Bayesian classification study provided the ROC values for the training set of 0.837 and 0.815 for MMP-2 and MMP-9, respectively. The linear model also produced the leave-one-out cross-validated Q2 of 0.805 (eq. 1, MMP-2) and 0.724 (eq. 2, MMP-9), an r2 of 0.845 (eq. 1, MMP-2) and 0.782 (eq. 2, MMP-9), an r2Pred of 0.806 (eq. 1, MMP-2) and 0.732 (eq. 2, MMP-9). Similarly, non-linear learning models were also statistically significant and reliable. Overall, this study may help in the rational design of newer compounds with higher gelatinase inhibition to fight against both primary and secondary cancers in future.
Collapse
Affiliation(s)
- S Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
12
|
Abstract
MMP2, a Zn2+-dependent metalloproteinase, is related to cancer and angiogenesis. Inhibition of this enzyme might result in a potential antimetastatic drug to leverage the anticancer drug armory. In silico or computer-aided ligand-based drug design is a method of rational drug design that takes multiple chemometrics (i.e., multi-quantitative structure-activity relationship methods) into account for virtually selecting or developing a series of probable selective MMP2 inhibitors. Though existing matrix metalloproteinase inhibitors have shown plausible pan-matrix metalloproteinase (MMP) activity, they have resulted in various adverse effects leading to their being rescinded in later phases of clinical trials. Therefore a review of the ligand-based designing methods of MMP2 inhibitors would result in an explicit route map toward successfully designing and synthesizing novel and selective MMP2 inhibitors.
Collapse
|
13
|
Fantacuzzi M, Gallorini M, Gambacorta N, Ammazzalorso A, Aturki Z, Balaha M, Carradori S, Giampietro L, Maccallini C, Cataldi A, Nicolotti O, Amoroso R, De Filippis B. Design, Synthesis and Biological Evaluation of Aromatase Inhibitors Based on Sulfonates and Sulfonamides of Resveratrol. Pharmaceuticals (Basel) 2021; 14:ph14100984. [PMID: 34681208 PMCID: PMC8537897 DOI: 10.3390/ph14100984] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b–c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure–activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b–c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.
Collapse
Affiliation(s)
- Marialuigia Fantacuzzi
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
- Correspondence: (M.F.); (B.D.F.)
| | - Marialucia Gallorini
- Unit of Anatomy, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (M.G.); (M.B.); (A.C.)
| | - Nicola Gambacorta
- Unit of Medicinal Chemistry, Department of Pharmacy, “A. Moro” University, 70121 Bari, Italy; (N.G.); (O.N.)
| | - Alessandra Ammazzalorso
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Zeineb Aturki
- Institute for Biological Systems (ISB), Italian National Research Council, Monterotondo, 00015 Rome, Italy;
| | - Marwa Balaha
- Unit of Anatomy, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (M.G.); (M.B.); (A.C.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Simone Carradori
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Letizia Giampietro
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Cristina Maccallini
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Amelia Cataldi
- Unit of Anatomy, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (M.G.); (M.B.); (A.C.)
| | - Orazio Nicolotti
- Unit of Medicinal Chemistry, Department of Pharmacy, “A. Moro” University, 70121 Bari, Italy; (N.G.); (O.N.)
| | - Rosa Amoroso
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Barbara De Filippis
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
- Correspondence: (M.F.); (B.D.F.)
| |
Collapse
|
14
|
Sanapalli BKR, Yele V, Jupudi S, Karri VVSR. Ligand-based pharmacophore modeling and molecular dynamic simulation approaches to identify putative MMP-9 inhibitors. RSC Adv 2021; 11:26820-26831. [PMID: 35480006 PMCID: PMC9037691 DOI: 10.1039/d1ra03891e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
MMP-9 is a calcium-dependent zinc endopeptidase that plays a crucial role in various diseases and is a ubiquitous target for many classes of drugs. The availability of MMP-9 crystal structure in combination with aryl sulfonamide anthranilate hydroxamate inhibitor facilitates to accentuate the computer-aided screening of MMP-9 inhibitors with the presumed binding mode. In the current study, ligand-based pharmacophore modeling and 3D-QSAR analysis were performed using 67 reported MMP-9 inhibitors possessing pIC50 in the range of 5.221 to 9.000. The established five-point hypothesis model DDHRR_1 was statistically validated using various parameters R 2 (0.9076), Q 2 (0.8170), and F value (83.5) at a partial least square of four. Hypothesis validation and enrichment analysis were performed for the generated hypothesis. Further, Y-scrambling and Xternal validation using mean-absolute error-based criteria were performed to evaluate the reliability of the model. Docking in the XP mode and binding free energy was calculated for 67 selected ligands to explore the key binding interactions and binding affinity against the MMP-9 enzyme. Additionally, high-throughput virtual screening was carried out for 2.3 million chemical molecules to explore the potential virtual hits, and their predicted activity was calculated. Thus, the results obtained aid in developing novel MMP-9 inhibitors with significant activity and binding affinity.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research Ooty Tamil Nadu-643001 India
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research Ooty Tamil Nadu-643001 India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research Ooty Tamil Nadu-643001 India
| | | |
Collapse
|
15
|
Das S, Amin SA, Jha T. Insight into the structural requirement of aryl sulphonamide based gelatinases (MMP-2 and MMP-9) inhibitors - Part I: 2D-QSAR, 3D-QSAR topomer CoMFA and Naïve Bayes studies - First report of 3D-QSAR Topomer CoMFA analysis for MMP-9 inhibitors and jointly inhibitors of gelatinases together. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:655-687. [PMID: 34355614 DOI: 10.1080/1062936x.2021.1955414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Gelatinases [gelatinase A - matrix metalloproteinase-2 (MMP-2), gelatinase B - matrix metalloproteinase-9 (MMP-9)] play key roles in many disease conditions including cancer. Despite some research work on gelatinases inhibitors both jointly and individually had been reported, challenges still exist in achieving potency as well as selectivity. Here in part I of a series of work, we have reported the structural requirement of some arylsulfonamides. In particular, regression-based 2D-QSARs, topomer CoMFA (comparative molecular field analysis) and Bayesian classification models were constructed to refine structural features for attaining better gelatinase inhibitory activity. The 2D-QSAR models exhibited good statistical significance. The descriptors nsssN, SHBint6, SHBint7, PubchemFP629 were directly correlated with the MMP-2 binding affinities whereas nsssN, SHBint10 and AATS2i were directly proportional to MMP-9 binding affinities. The topomer CoMFA results indicated that the steric and electrostatic fields play key roles in gelatinase inhibition. The established Naïve Bayes prediction models were evaluated by fivefold cross validation and an external test set. Furthermore, important molecular descriptors related to MMP-2 and MMP-9 binding affinities and some active/inactive fragments were identified. Thus, these observations may be helpful for further work of aryl sulphonamide based gelatinase inhibitors in future.
Collapse
Affiliation(s)
- S Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
16
|
Prasher P, Sharma M, Singh SP, Rawat DS. Barbiturate derivatives for managing multifaceted oncogenic pathways: A mini review. Drug Dev Res 2020; 82:364-373. [PMID: 33210368 DOI: 10.1002/ddr.21761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Abstract
Development and progression of metastasis comprises synchronized erroneous expressions of several composite pathways, which are difficult to manage simultaneously with the representative anticancer molecules. The emergence of the drug resistance and the complex interplay between these pathways further potentiates cancer related complexities. Barbiturates and their derivatives present a commendable anticancer profile by attenuating the cancer manifesting metabolic and enzymatic pathways including, but not limited to matrix metalloproteinases, xanthine oxidase, amino peptidases, histone deacetylases, and Ras/mitogen-activated protein kinase. The derivatization and conjugation of barbiturates with pharmacophores delivers a suitable hybrid profile in containing the anomalous expression of these pathways. The present report presents a succinct collation of the barbiturates and their derivatives in managing the various cancer causing pathways.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Dehradun, India
| | - Samarth P Singh
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Devendra S Rawat
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| |
Collapse
|
17
|
Liu W, Li J, Zhang X, Zu Y, Yang Y, Liu W, Xu Z, Gao H, Sun X, Jiang X, Zhao Q. Current Advances in Naturally Occurring Caffeoylquinic Acids: Structure, Bioactivity, and Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10489-10516. [PMID: 32846084 DOI: 10.1021/acs.jafc.0c03804] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Caffeoylquinic acids (CQAs) are a broad class of secondary metabolites that have been found in edible and medicinal plants from various families. It has been 100 years since the discovery of chlorogenic acid in 1920. In recent years, a number of naturally derived CQAs have been isolated and structurally elucidated. Accumulated evidence demonstrate that CQAs have a wide range of biological activities, such as antioxidation, antibacterial, antiparasitic, neuroprotective, anti-inflammatory, anticancer, antiviral, and antidiabetic effects. Up to date, some meaningful progresses on the biosynthesis and total synthesis of CQAs have also been made. Therefore, it is necessary to comprehensively summarize the structure, biological activity, biosynthesis, and chemical synthesis of CQAs. This review provides extensive coverage of naturally occurring CQAs discovered from 1990 until 2020. Modern isolation techniques, chemical data (including structure, biosynthesis, and total synthesis), and bioactivity are summarized. This would be helpful for further research of CQAs as potential pharmaceutical agents.
Collapse
Affiliation(s)
- Wenwu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Jingda Li
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Xuemei Zhang
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Yuxin Zu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Yue Yang
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Wenjie Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Huan Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Xue Sun
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| |
Collapse
|
18
|
Structural analysis of arylsulfonamide-based carboxylic acid derivatives: a QSAR study to identify the structural contributors toward their MMP-9 inhibition. Struct Chem 2020. [DOI: 10.1007/s11224-020-01635-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Carofiglio F, Trisciuzzi D, Gambacorta N, Leonetti F, Stefanachi A, Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020; 25:E4210. [PMID: 32937901 PMCID: PMC7570842 DOI: 10.3390/molecules25184210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The fusion oncoprotein Bcr-Abl is an aberrant tyrosine kinase responsible for chronic myeloid leukemia and acute lymphoblastic leukemia. The auto-inhibition regulatory module observed in the progenitor kinase c-Abl is lost in the aberrant Bcr-Abl, because of the lack of the N-myristoylated cap able to bind the myristoyl binding pocket also conserved in the Bcr-Abl kinase domain. A way to overcome the occurrence of resistance phenomena frequently observed for Bcr-Abl orthosteric drugs is the rational design of allosteric ligands approaching the so-called myristoyl binding pocket. The discovery of these allosteric inhibitors although very difficult and extremely challenging, represents a valuable option to minimize drug resistance, mostly due to the occurrence of mutations more frequently affecting orthosteric pockets, and to enhance target selectivity with lower off-target effects. In this perspective, we will elucidate at a molecular level the structural bases behind the Bcr-Abl allosteric control and will show how artificial intelligence can be effective to drive the automated de novo design towards off-patent regions of the chemical space.
Collapse
Affiliation(s)
- Francesca Carofiglio
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
- Molecular Horizon srl, Via Montelino 32, 06084 Bettona, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Francesco Leonetti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Angela Stefanachi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| |
Collapse
|
20
|
Gimeno A, Beltrán-Debón R, Mulero M, Pujadas G, Garcia-Vallvé S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov Today 2020; 25:38-57. [DOI: 10.1016/j.drudis.2019.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
21
|
Hariono M, Yuliani SH, Istyastono EP, Riswanto FD, Adhipandito CF. Matrix metalloproteinase 9 (MMP9) in wound healing of diabetic foot ulcer: Molecular target and structure-based drug design. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.wndm.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Mangiatordi GF, Guzzo T, Rossano EC, Trisciuzzi D, Alberga D, Fasciglione G, Coletta M, Topai A, Nicolotti O. Design, Synthesis, and Biological Evaluation of Tetrahydro-β-carboline Derivatives as Selective Sub-Nanomolar Gelatinase Inhibitors. ChemMedChem 2018; 13:1343-1352. [PMID: 29893479 DOI: 10.1002/cmdc.201800237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/03/2018] [Indexed: 01/09/2023]
Abstract
Targeting matrix metalloproteinases (MMPs) is a pursued strategy for treating several pathological conditions, such as multiple sclerosis and cancer. Herein, a series of novel tetrahydro-β-carboline derivatives with outstanding inhibitory activity toward MMPs are present. In particular, compounds 9 f, 9 g, 9 h and 9 i show sub-nanomolar IC50 values. Interestingly, compounds 9 g and 9 i also provide remarkable selectivity toward gelatinases; IC50 =0.15 nm for both toward MMP-2 and IC50 =0.63 and 0.58 nm, respectively, toward MMP-9. Molecular docking simulations, performed by employing quantum mechanics based partial charges, shed light on the rationale behind binding involving specific interactions with key residues of S1' and S3' domains. Taken together, these studies indicate that tetrahydro-β-carboline represents a promising scaffold for the design of novel inhibitors able to target MMPs and selectively bias gelatinases, over the desirable range of the pharmacokinetics spectrum.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy.,Istituto Tumori IRCCS Giovanni Paolo II, Bari, Italy
| | - Tatiana Guzzo
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via della Ricerca Scientifica snc, Ed. PP2-Macroarea Scienze, 00133, Rome, Italy
| | - Eugenio Claudio Rossano
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via della Ricerca Scientifica snc, Ed. PP2-Macroarea Scienze, 00133, Rome, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy
| | - Giovanni Fasciglione
- Dipartimento di Scienze cliniche e Medicina Traslazionale, Università di Roma "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Massimiliano Coletta
- Dipartimento di Scienze cliniche e Medicina Traslazionale, Università di Roma "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Alessandra Topai
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via della Ricerca Scientifica snc, Ed. PP2-Macroarea Scienze, 00133, Rome, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
23
|
Abstract
Matrix metalloproteinases (MMPs) are structurally related endopeptidases. They are also known as metzincins due to their interaction with zinc ion of the conserved methionine (Met) at the active site. MMPs play an important role in physiological and signaling processes of wound healing, bone resorption and angiogenesis. The structure of MMPs consists of signal peptide, propeptide, catalytic domain, hinge region and hemopexin-like domain. MMP-9 shares high structural and functional similarities with MMP-2, therefore designing selective MMP-9 inhibitors (MMPIs) is challenging. The selectivity can be achieved by targeting S2 subsite of MMP-9 that is having difference with MMP-2. Further, targeting its exosite and protein disulfide isomerase may also provide selective MMPIs. The review highlights the molecular features and basis of MMP-9 enzyme action. The MMPIs reported in the recent years have also been included.
Collapse
|
24
|
Madar JM, Shastri LA, Shastri SL, Holiyachi M, Naik N, Kulkarni R, Shaikh F, Sungar V. Design, synthesis, characterization, and biological evaluation of pyrido[1,2-a]pyrimidinone coumarins as promising anti-inflammatory agents. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1397698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jyoti M. Madar
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| | - Lokesh A. Shastri
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| | | | | | - Nirmala Naik
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| | - Rashmi Kulkarni
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| | - Farzanabi Shaikh
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| | - Vinay Sungar
- Department of Chemistry, G.S.S. College, Belgavi, Karnataka, India
| |
Collapse
|
25
|
Jha T, Adhikari N, Saha A, Amin SA. Multiple molecular modelling studies on some derivatives and analogues of glutamic acid as matrix metalloproteinase-2 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:43-68. [PMID: 29254380 DOI: 10.1080/1062936x.2017.1406986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Matrix metalloproteinase-2 (MMP-2) is a potential target in anticancer drug discovery due to its association with angiogenesis, metastasis and tumour progression. In this study, 67 glutamic acid derivatives, synthesized and evaluated as MMP-2 inhibitors, were taken into account for multi-QSAR modelling study (regression-based 2D-QSAR, classification-based LDA-QSAR, Bayesian classification QSAR, HQSAR, 3D-QSAR CoMFA and CoMSIA as well as Open3DQSAR). All these QSAR studies were statistically validated individually. Regarding the 3D-QSAR analysis, the Open3DQSAR results were better than CoMFA and CoMSIA, although all these 3D-QSAR models supported each other. The importance of biphenylsulphonyl moiety over phenylacetyl/naphthylacetyl moieties was established due to its association with favourable steric and hydrophobic characters. HQSAR, LDA-QSAR and Bayesian classification QSAR studies also suggested that the biphenylsulphonamido group was better than the phenylacetylcarboxamido function. Additionally, glutamines were proven to be far better inhibitors than isoglutamines. Observations obtained from the current study were revalidated and supported by the earlier reported molecular modelling studies. Depending on these observations, newer glutamic acid-based compounds may be designed further in future for potent MMP-2 inhibitory activity.
Collapse
Affiliation(s)
- T Jha
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry , Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - N Adhikari
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry , Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - A Saha
- b Department of Chemical Technology , University of Calcutta , Kolkata , India
| | - S A Amin
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry , Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| |
Collapse
|
26
|
Zhong Y, Lu YT, Sun Y, Shi ZH, Li NG, Tang YP, Duan JA. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin Drug Discov 2017; 13:75-87. [PMID: 29088927 DOI: 10.1080/17460441.2018.1398732] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The overexpression of matrix metalloproteinase (MMP) plays an important role in the context of tumor invasion and metastasis, and MMP-2 has been characterized as the most validated target for cancer. Therefore, it is necessary to design matrix metalloproteinase inhibitors (MMPIs) that would be active and selective against MMP-2 but non-selective toward other MMPs. Areas covered: This article clearly describes the structural character of MMP-2 followed by a review of the recent development of selective MMP-2 inhibitors based on their basic structures. Expert opinion: Over the past 30 years, MMPs have been considered to be attractive cancer targets, and several different types of synthetic inhibitors have been identified as anticancer agents, but only a small number of small MMPIs have been examined in clinical trials, and none of these molecules has been established as anticancer drugs due to their adverse effects. One major possibility is that the MMPIs used in clinical trials were broad-spectrum drugs that also inhibited the anti-tumor effects and influenced the mediation of the normal physiological processes of MMPs. MMP-2 has recently been characterized as the most validated target for cancer. Therefore, the design and synthesis of selective MMP-2 inhibitors would be helpful for the treatment of cancer.
Collapse
Affiliation(s)
- Yue Zhong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yu-Ting Lu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Ying Sun
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China.,b Department of Organic Chemistry , China Pharmaceutical University , Nanjing , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China.,c Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and College of Pharmacy , Shaanxi University of Chinese Medicine , Xianyang , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| |
Collapse
|
27
|
Tang HC, Huang HJ, Lee CC, Chen CYC. Network pharmacology-based approach of novel traditional Chinese medicine formula for treatment of acute skin inflammation in silico. Comput Biol Chem 2017; 71:70-81. [PMID: 28987294 DOI: 10.1016/j.compbiolchem.2017.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/15/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) appears to play an important role in acute skin inflammation. Subantimicrobial dose of tetracycline has been demonstrated to inhibit the activity of MMP-9 protein. However, long-term use tetracycline will induce side effect. The catalytic site of MMP-9 is located at zinc-binding amino acids, His401, His405 and His411. We attempted to search novel medicine formula as MMP-9 inhibitors from traditional Chinese medicine (TCM) database by using in silico studies. We utilized high-throughput virtual screening to find which natural compounds could bind to the zinc-binding site. The quantitative structure-activity relationship (QSAR) models, which constructed by scaffold of MMP-9 inhibitors and its activities, were employed to predict the bio-activity of the natural compounds for MMP-9. The results showed that Celacinnine, Lobelanidine and Celallocinnine were qualified to interact with zinc-binding site and displayed well predictive activity. We found that celallocinnine was the best TCM compound for zinc binging sites of MMP-9 because the stable interactions were observed under dynamic condition. In addition, Celacinnine and Lobelanidine could interact with MMP-9 related protein that identified by drug-target interaction network analysis. Thus, we suggested the herbs Hypericum patulum, Sedum acre, and Tripterygium wilfordii that containing Celallocinnine, Celacinnine and Lobelanidine might be a novel medicine formula to avoid the side effect of tetracycline and increase the efficacy of treatment.
Collapse
Affiliation(s)
- Hsin-Chieh Tang
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hung-Jin Huang
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Cheng-Chun Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Calvin Yu Chian Chen
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Tauro M, Laghezza A, Loiodice F, Piemontese L, Caradonna A, Capelli D, Montanari R, Pochetti G, Di Pizio A, Agamennone M, Campestre C, Tortorella P. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity. J Enzyme Inhib Med Chem 2016; 31:25-37. [PMID: 27556138 DOI: 10.1080/14756366.2016.1217853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.
Collapse
Affiliation(s)
- Marilena Tauro
- a Department of Tumor Biology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Antonio Laghezza
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Fulvio Loiodice
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Luca Piemontese
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Alessia Caradonna
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Davide Capelli
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Roberta Montanari
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Giorgio Pochetti
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Antonella Di Pizio
- d Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot , Israel , and
| | | | - Cristina Campestre
- e Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti , Chieti , Italy
| | - Paolo Tortorella
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| |
Collapse
|
29
|
Mangiatordi GF, Alberga D, Altomare CD, Carotti A, Catto M, Cellamare S, Gadaleta D, Lattanzi G, Leonetti F, Pisani L, Stefanachi A, Trisciuzzi D, Nicolotti O. Mind the Gap! A Journey towards Computational Toxicology. Mol Inform 2016; 35:294-308. [PMID: 27546034 DOI: 10.1002/minf.201501017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/23/2016] [Indexed: 11/11/2022]
Abstract
Computational methods have advanced toxicology towards the development of target-specific models based on a clear cause-effect rationale. However, the predictive potential of these models presents strengths and weaknesses. On the good side, in silico models are valuable cheap alternatives to in vitro and in vivo experiments. On the other, the unconscious use of in silico methods can mislead end-users with elusive results. The focus of this review is on the basic scientific and regulatory recommendations in the derivation and application of computational models. Attention is paid to examine the interplay between computational toxicology and drug discovery and development. Avoiding the easy temptation of an overoptimistic future, we report our view on what can, or cannot, realistically be done. Indeed, studies of safety/toxicity represent a key element of chemical prioritization programs carried out by chemical industries, and primarily by pharmaceutical companies.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica 'M.Merlin', Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Gadaleta
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Gianluca Lattanzi
- Dipartimento Interateneo di Fisica 'M.Merlin', Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
30
|
Song J, Peng P, Chang J, Liu MM, Yu JM, Zhou L, Sun X. Selective non-zinc binding MMP-2 inhibitors: Novel benzamide Ilomastat analogs with anti-tumor metastasis. Bioorg Med Chem Lett 2016; 26:2174-8. [PMID: 27038494 DOI: 10.1016/j.bmcl.2016.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
Novel Ilomastat analogs with substituted benzamide groups, instead of hydroxamic acid groups, were designed, synthesized and evaluated against MMP-2 and MMP-9. Among these analogs, the most potent compound 10a exhibited potent inhibitory activity against MMP-2 with IC50 value of 0.19 nM, which is 5 times more potent than that of Ilomastat (IC50=0.94 nM). Importantly, 10a exhibited more than 8300 fold selectivity for MMP-2 versus MMP-9 (IC50=1.58 μM). Molecular docking studies showed that 10a bond to the catalytic active pocket of MMP-2 by a non-zinc-chelating mechanism which was different from that of Ilomastat. Furthermore, the invasion assay showed that 10a was effective in reducing HEY cells invasion at 84.6% in 50 μM concentration. For 10a, the pharmacokinetic properties had been improved and especially the more desirable t1/2z was achieved compared with these of the lead compound Ilomastat.
Collapse
Affiliation(s)
- Jiao Song
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Peng Peng
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jun Chang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ming-Ming Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jian-Ming Yu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Xun Sun
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; Shanghai Key Lab of Clinical Geriatric Medicine, 221 West Yanan Road, Shanghai 200040, China.
| |
Collapse
|
31
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
32
|
Water-soluble salen–Pd complex as an efficient catalyst for Suzuki–Miyaura reaction of sterically hindered substrates in pure water. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Lee MJ, Cho YA, Hwang HJ, Kim JH. Development of in-cell imaging assay systems for MMP-2 and MMP-9 based on trans-localizing molecular beacon proteins. Arch Pharm Res 2015; 38:1099-107. [PMID: 25564338 DOI: 10.1007/s12272-014-0546-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/26/2014] [Indexed: 01/23/2023]
Abstract
A sensitive in-cell imaging MMP-2 and MMP-9 detection systems that enables direct fluorescence detection of a target protease and its inhibition inside living cells has been developed. This in-cell imaging system utilizes the concept of fluorescent molecular beacon reporter (MBR) protein comprising a masking protein, a mitochondrial targeting sequence, a protease specific cleavage sequence and a fluorescent marker sequence, green fluorescent protein (GFP). The MBR protein is designed to change its intracellular location upon cleavage by either MMP-2 or MMP-9 from cytosol to mitochondria. Full and partial MMP-2 and MMP-9 were tested for optimal expression and activity in the cell. The activity of MMP-2 and MMP-9 was approximately 65-71%. Among MMP clones, MMP-2 catalytic domain and MMP-9 clone containing pro, catalytic and hemopexin domain were most active. Both MMP-2 and MMP-9 required divalent ions Ca and Zn for its activity and MMP-9 was more active at higher Ca/Zn ratio. With the in-cell imaging assay the protease activity can be measured in cellular environment and cellular toxicity of candidate molecules can be monitored at the same time. These are great advantage when compared to other currently used in vitro biochemical assays. The in-cell imaging assay developed in this study can be modified for other MMPs and can be used in various life science and drug discovery researches including the high throughput screening and high contents screening applications.
Collapse
Affiliation(s)
- Min Jun Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 130-701, Korea
| | | | | | | |
Collapse
|
34
|
Pascanu V, Hansen PR, Bermejo Gómez A, Ayats C, Platero-Prats AE, Johansson MJ, Pericàs MÀ, Martín-Matute B. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. CHEMSUSCHEM 2015; 8:123-130. [PMID: 25421122 DOI: 10.1002/cssc.201402858] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 06/04/2023]
Abstract
A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt % Pd@MIL-101(Cr)-NH2 ). This could be achieved under some of the mildest conditions reported to date and a strong control over the leaching of metallic species could be maintained, despite the presence of diverse functional groups and/or several heteroatoms. Some of the targeted molecules are important intermediates in the synthesis of pharmaceuticals and we clearly exemplify the versatility of this catalytic system, which affords better yields than currently existing commercial procedures. Most importantly, Pd@MIL-101-NH2 was packed in a micro-flow reactor, which represents the first report of metallic nanoparticles supported on MOFs employed in flow chemistry for catalytic applications. A small library of 11 isolated compounds was created in a continuous experiment without replacing the catalyst, demonstrating the potential of the catalyst for large-scale applications.
Collapse
Affiliation(s)
- Vlad Pascanu
- Department of Organic Chemistry and Berzelii Center EXSELENT, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91 (Sweden)
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shakibaie M, Haghiri M, Jafari M, Amirpour-Rostami S, Ameri A, Forootanfar H, Mehrabani M. Preparation and evaluation of the effect of Fe3O4@piroctone olamine magnetic nanoparticles on matrix metalloproteinase-2: A preliminaryin vitrostudy. Biotechnol Appl Biochem 2014; 61:676-82. [DOI: 10.1002/bab.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Mojtaba Shakibaie
- Pharmaceutics Research Center; Institute of Neuropharmacology, Kerman University of Medical Sciences; Kerman Iran
| | - Mahboobe Haghiri
- The Student Research Committee; Faculty of Pharmacy, Kerman University of Medical Sciences; Kerman Iran
| | - Mandana Jafari
- Pharmaceutics Research Center; Institute of Neuropharmacology, Kerman University of Medical Sciences; Kerman Iran
| | - Sahar Amirpour-Rostami
- Pharmaceutics Research Center; Institute of Neuropharmacology, Kerman University of Medical Sciences; Kerman Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry; Faculty of Pharmacy, Kerman University of Medical Sciences; Kerman Iran
| | - Hamid Forootanfar
- Herbal and Traditional Medicines Research Center; Kerman University of Medical Sciences; Kerman Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center; Kerman University of Medical Sciences; Kerman Iran
| |
Collapse
|
36
|
Tauro M, Loiodice F, Ceruso M, Supuran CT, Tortorella P. Dual carbonic anhydrase/matrix metalloproteinase inhibitors incorporating bisphosphonic acid moieties targeting bone tumors. Bioorg Med Chem Lett 2014; 24:2617-20. [DOI: 10.1016/j.bmcl.2014.04.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022]
|
37
|
Tauro M, Loiodice F, Ceruso M, Supuran CT, Tortorella P. Arylamino bisphosphonates: Potent and selective inhibitors of the tumor-associated carbonic anhydrase XII. Bioorg Med Chem Lett 2014; 24:1941-3. [DOI: 10.1016/j.bmcl.2014.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/21/2023]
|
38
|
Tauro M, Laghezza A, Loiodice F, Agamennone M, Campestre C, Tortorella P. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorg Med Chem 2013; 21:6456-65. [PMID: 24071448 DOI: 10.1016/j.bmc.2013.08.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/29/2013] [Accepted: 08/23/2013] [Indexed: 11/24/2022]
Abstract
The complexity of matrix metalloproteinase inhibitors (MMPIs) design derives from the difficulty in carefully addressing their inhibitory activity towards the MMP isoforms involved in many pathological conditions. In particular, specific metalloproteinases, such as MMP-2 and MMP-9, are key regulators of the 'vicious cycle' occurring between tumor metastases growth and bone remodeling. In an attempt to devise new approaches to selective inhibitor derivatives, we describe novel bisphosphonate bone seeking MMP inhibitors (BP-MMPIs), capable to be selectively targeted and to overcome undesired side effects of broad spectrum MMPIs. In vitro activity (IC50 values) for each inhibitor was determined against MMP-2, -8, -9 and -14, because of their relevant role in skeletal development and renewal. The results show that BP-MMPIs reached IC50 values of enzymatic inhibition in the low micromolar range. Computational studies, used to rationalize some trends in the observed inhibitory profiles, suggest a possible differential binding mode in MMP-2 that explains the selective inhibition of this isoform. In addition, survival assay was conducted on J774 cell line, a well known model system used to evaluate the structure-activity relationship of BPs for inhibiting bone resorption. The resulting data, confirming the specific activity of BP-MMPIs, and their additional proved propensity to bind hydroxyapatite powder in vitro, suggest a potential use of BP-MMPIs in skeletal malignancies.
Collapse
Affiliation(s)
- Marilena Tauro
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi 'Aldo Moro' di Bari, Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|