1
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Sidoryk K, Parapini S, Basilico N, Zaremba-Czogalla M, Kubiszewski M, Cybulski M, Gubernator J, Zagórska A, Jaromin A. Efficient One-Pot Synthesis of Novel Caffeic Acid Derivatives as Potential Antimalarials. J Parasitol Res 2023; 2023:6675081. [PMID: 38046256 PMCID: PMC10691883 DOI: 10.1155/2023/6675081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
New protocol for the preparation of the novel caffeic acid derivatives using the Wittig reaction has been applied to follow the principles of green chemistry. The compounds have been evaluated against chloroquine-sensitive and chloroquine-resistant P. falciparum strains. Their cytotoxicity to normal human dermal fibroblasts and their propensity to induce hemolysis have been also determined. Ethyl (2E)-3-(2,3,4-trihydroxyphenyl)-2-methylpropenoate has exhibited the highest antiplasmodial activity against P. falciparum strains without the cytotoxic and hemolytic effects. This derivative is significantly more potent than caffeic acid parent structure. The application of our one-step procedure has been shown to be rapid and efficient. It allows for an easy increase of input data to refine the structure-activity relationship model of caffeates as the antimalarials. The one-step approach meets the conditions of "atom economy" and eliminates hazardous materials. Water has been used as the effective medium for the Wittig reaction to avoid toxic organic solvents.
Collapse
Affiliation(s)
- Katarzyna Sidoryk
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, Warsaw, Poland
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università di Milano, Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università di Milano, Milan, Italy
| | | | - Marek Kubiszewski
- Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, Warsaw, Poland
| | - Marcin Cybulski
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, Warsaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
3
|
Zhao X, Liu Z, Liu H, Guo J, Long S. Hybrid molecules based on caffeic acid as potential therapeutics: A focused review. Eur J Med Chem 2022; 243:114745. [PMID: 36152388 DOI: 10.1016/j.ejmech.2022.114745] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 01/29/2023]
Abstract
Caffeic acid-based compounds possess a high degree of structural diversity and show a variety of pharmacological properties, providing a useful framework for the discovery of new therapeutic agents. They are well-known analogues of antioxidants found in many natural products and synthetic compounds. The present review surveys the recent developments in structure-activity relationships (SAR) and mechanism of action (MOA) of various caffeic acid-containing compounds that play important roles in the design and synthesis of new bioactive molecules with antioxidant, antidiabetic, antiviral, antibacterial, anticancer, anti-inflammatory, and other properties. This review should provide inspiration to scientists in the research fields of organic synthesis and medicinal chemistry related to the development of new antioxidants with versatile therapeutic potential.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
4
|
Chavarria D, Benfeito S, Soares P, Lima C, Garrido J, Serrão P, Soares-da-Silva P, Remião F, Oliveira PJ, Borges F. Boosting caffeic acid performance as antioxidant and monoamine oxidase B/catechol-O-methyltransferase inhibitor. Eur J Med Chem 2022; 243:114740. [PMID: 36116233 DOI: 10.1016/j.ejmech.2022.114740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Increased oxidative stress (OS) and depletion of nigrostriatal dopamine (DA) are closely linked to the neurodegeneration observed in Parkinson's Disease (PD). Caffeic acid (CA)-based antioxidants were developed, and their inhibitory activities towards monoamine oxidases (MAOs) and catechol O-methyltransferases (COMT) were screened. The results showed that the incorporation of an extra double bond maintained or even boosted the antioxidant properties of CA. α-CN derivatives displayed redox potentials (Ep) similar to CA (1) and inhibited hMAO-B with low μM IC50 values. Moreover, catechol amides acted as MB-COMT inhibitors, showing IC50 values within the low μM range. In general, CA derivatives presented safe cytotoxicity profiles at concentrations up to 10 μM. The formation of reactive oxygen species (ROS) induced by CA derivatives may be underlying the cytotoxic effects observed at higher concentrations. Catechol amides 3-6, 8-11 at 10 μM protected cells against oxidative damage. Compounds 3 and 8 were predicted to cross the blood-brain barrier (BBB) by passive diffusion. In summary, we report for the first time BBB-permeant CA-based multitarget lead compounds that may restore DAergic neurotransmission (dual hMAO-B/MB-COMT inhibition) and prevent oxidative damage. The data represents a groundbreaking advancement towards the discovery of the next generation of new drugs for PD.
Collapse
Affiliation(s)
- Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carla Lima
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Jorge Garrido
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; Department of Chemical Engineering, School of Engineering (ISEP), Polytechnic of Porto, 4200-072, Porto, Portugal
| | - Paula Serrão
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319, Porto, Portugal
| | - Patrício Soares-da-Silva
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology. University of Coimbra, UC Biotech Building, Cantanhede, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
5
|
Feng LS, Cheng JB, Su WQ, Li HZ, Xiao T, Chen DA, Zhang ZL. Cinnamic acid hybrids as anticancer agents: A mini-review. Arch Pharm (Weinheim) 2022; 355:e2200052. [PMID: 35419808 DOI: 10.1002/ardp.202200052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Cancer, as a long-lasting and dramatic disease, affects almost one-third of human beings globally. Chemotherapeutics play an important role in cancer treatment, but multidrug resistance and severe adverse effects have already become the main causes of failure in tumor chemotherapy. Therefore, it is an urgent need to develop novel chemotherapeutics. Cinnamic acid contains a ubiquitous α,β-unsaturated acid moiety presenting potential therapeutic effects in the treatment of cancer as these derivatives could act on cancer cells by diverse mechanisms of action. Accordingly, cinnamic acid derivatives are critical scaffolds in discovering novel anticancer agents. This review provides a comprehensive overview of cinnamic acid hybrids as anticancer agents. The structure-activity relationship, as well as the mechanisms of action, are also discussed, covering articles published from 2012 to 2021.
Collapse
Affiliation(s)
- Lian-Shun Feng
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Jin-Bo Cheng
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Wen-Qi Su
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Hong-Ze Li
- WuXi AppTec Co., Ltd., Chengdu, Peoples' Republic of China
| | - Tao Xiao
- WuXi AppTec Co., Ltd., Chengdu, Peoples' Republic of China
| | - De-An Chen
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Zhi-Liu Zhang
- WuXi AppTec Co., Ltd., Shanghai, Peoples' Republic of China
| |
Collapse
|
6
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
7
|
Al Zahrani NA, El-Shishtawy RM, Elaasser MM, Asiri AM. Synthesis of Novel Chalcone-Based Phenothiazine Derivatives as Antioxidant and Anticancer Agents. Molecules 2020; 25:molecules25194566. [PMID: 33036301 PMCID: PMC7583060 DOI: 10.3390/molecules25194566] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Based on reported results for the potential medicinal impact of phenothiazine core, as well as the chalcone skeleton that is widely present in many natural products, together with their reported bioactivities, the present work was aimed at combining both moieties in one molecular skeleton and to synthesize and characterize a novel series of chalone-based phenothiazine derivatives. For this purpose, 2-acetylphenothiazine was N-alkylated, followed by the Claisen-Schmidt reaction to produce the chalcones with good yield. Antioxidant activity, as evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, was assessed to determine if their antioxidant potential was comparable with ascorbic acid, and attributable to the phenothiazine core. Screening anticancer activities of the synthesized chalone-based phenothiazine derivatives against human breast cancer cell line MCF-7 cells, and human hepatocellular carcinoma HepG-2 cells, compared with standard drugs cisplatin and doxorubicin, was evaluated. The results revealed that compounds 4a, 4b, 4d, 4h, 4j, 4k, 4m, 4o, and 4p were good against human hepatocellular carcinoma HepG-2 cells, and among these compounds 4b and 4k were the most effective compounds, with IC50 values of 7.14 μg/mL and 7.6 1 μg/mL, respectively. On the other hand, compounds 4a, 4b, 4k, and 4m were good against human breast cancer cell line MCF-7 cells and, among these compounds, 4k and 4b were the most effective compounds, with IC50 values of 12 μg/mL and 13. 8 μg/mL, respectively. The overall results suggest that these compounds could, potentially, be further modified for the formation of more potent antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Nourah A. Al Zahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research Division, National Research Centre, Dokki, Cairo 12611, Egypt
- Correspondence:
| | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11759, Egypt;
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem 2020; 204:112609. [DOI: 10.1016/j.ejmech.2020.112609] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
9
|
Abranches DO, Benfica J, Shimizu S, Coutinho JAP. The Perspective of Cooperative Hydrotropy on the Solubility in Aqueous Solutions of Cyrene. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dinis O. Abranches
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jordana Benfica
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - João A. P. Coutinho
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Insights into the Discovery of Novel Neuroprotective Agents: A Comparative Study between Sulfanylcinnamic Acid Derivatives and Related Phenolic Analogues. Molecules 2019; 24:molecules24234405. [PMID: 31810314 PMCID: PMC6930627 DOI: 10.3390/molecules24234405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Exogenous antioxidants may be beneficial therapeutic tools to tackle the oxidative damage in neurodegenerative diseases by regulation of the redox state that is critical for cell viability and organ function. Inspired by natural plant polyphenols, a series of cinnamic acid-based thiophenolic and phenolic compounds were synthesized and their antioxidant and neuroprotective properties were studied. In general, our results showed that the replacement of the hydroxyl group (OH) by a sulfhydryl group (SH) increased the radical scavenging activity and enhanced the reaction rate with 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) and galvinoxyl radical (GO•). These results correlated well with the lower oxidation potential (Ep) values of thiophenols. However, a lower peroxyl radical (ROO•) scavenging activity was observed for thiophenols in oxygen radical absorbance capacity (ORAC-FL) assay. Furthermore, the introduction of 5-methoxy and 5-phenyl groups in the aromatic ring of 4-thioferulic acid (TFA) 2 and ferulic acid (FA) 1 did not significantly improve their antioxidant activity, despite the slight decrease of Ep observed for compounds 5, 6, and 9. Concerning cinnamic acid amides, the antioxidant profile was similar to the parent compounds. None of the compounds under study presented significant cytotoxic effects in human differentiated neuroblastoma cells. Thiophenolic amide 3 stands out as the most promising thiophenol-based antioxidant, showing cellular neuroprotective effects against oxidative stress inducers (hydrogen peroxide and iron).
Collapse
|
11
|
Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: Structure-activity-toxicity, drug-likeness and efflux transport studies. Eur J Med Chem 2019; 185:111770. [PMID: 31711793 DOI: 10.1016/j.ejmech.2019.111770] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 02/02/2023]
Abstract
Piperine has been associated with neuroprotective effects and monoamine oxidase (MAO) inhibition, thus being an attractive scaffold to develop new antiparkinsonian agents. Accordingly, we prepared a small library of piperine derivatives and screened the inhibitory activities towards human MAO isoforms (hMAO-A and hMAO-B). Structure-activity relationship (SAR) studies pointed out that the combination of α-cyano and benzyl ester groups increased both potency and selectivity towards hMAO-B. Kinetic experiments with compounds 7, 10 and 15 indicated a competitive hMAO-B inhibition mechanism. Compounds 15 and 16, at 10 μM, caused a small but significant decrease in P-gp efflux activity in Caco-2 cells. Compound 15 stands out as the most potent piperine-based hMAO-B inhibitor (IC50 = 47.4 nM), displaying favourable drug-like properties and a broad safety window. Compound 15 is thus a suitable candidate for lead optimization and the development of multitarget-directed ligands.
Collapse
|
12
|
Neelam, Khatkar A, Sharma KK. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr 2019; 60:2655-2675. [PMID: 31456411 DOI: 10.1080/10408398.2019.1653822] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylpropanoids and their derivatives are plant secondary metabolites widely present in fruits, vegetables, cereal grains, beverages, spices and herbs. They are known to have multifaceted effects which include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer activities and as well as exhibits renoprotective, neuroprotective, cardioprotective and hepatoprotective effects. Owing to their antioxidant, antimicrobial and photoprotective properties, these compounds have wide application in the food (preservation, packaging films and edible coating), pharmaceutical, cosmetic and other industries such as textile (colorant), biofuel (antioxidant additive) and sensors (sensing biologically relevant molecules). Phenylpropanoids are present in commercially available dietary supplements and skin care products. In this review, we have presented the current knowledge on the biosynthesis, occurrence, biological activities of phenylpropanoids and their derivatives, along with the mechanism of action and their potential applications in various industries.
Collapse
Affiliation(s)
- Neelam
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
13
|
Smolyaninov IV, Pitikova OV, Korchagina EO, Poddel'sky AI, Fukin GK, Luzhnova SA, Tichkomirov AM, Ponomareva EN, Berberova NT. Catechol thioethers with physiologically active fragments: Electrochemistry, antioxidant and cryoprotective activities. Bioorg Chem 2019; 89:103003. [PMID: 31132599 DOI: 10.1016/j.bioorg.2019.103003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
A number of asymmetrical thioethers based on 3,5-di-tert-butylcatechol containing sulfur atom bonding with physiologically active groups in the sixth position of aromatic ring have been synthesized and the electrochemical properties, antioxidant, cryoprotective activities of new thioethers have been evaluated. Cyclic voltammetry was used to estimate the oxidation potentials of thioethers in acetonitrile. The electrooxidation of compounds at the first stage leads to the formation of o-benzoquinones. The antioxidant activities of the compounds were determined using 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) assay, experiments on the oxidative damage of the DNA, the reaction of 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced glutathione depletion (GSH), the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro, and iron(II) chelation test. Compounds 1-9 have greater antioxidant effectiveness than 3,5-di-tert-butylcatechol (CatH2) in all assays. The variation of physiologically active groups at sulfur atom allows to regulate lipophilic properties and antioxidant activity of compounds. Thioethers 3, 4 and 7 demonstrate the combination of radical scavenging, antioxidant activity and iron(II) binding properties. The researched compounds 1-9 were studied as possible cryoprotectants of the media for cryopreservation of the Russian sturgeon sperm. Novel cryoprotective additives in cryomedium reduce significantly the content of membrane-permeating agent (DMSO). A cryoprotective effect of an addition of the catechol thioethers depends on the structure of groups at sulfur atom. The cryoprotective properties of compounds 3, 4 and 7 are caused by combination of catechol fragment, bonded by a thioether linker with a long hydrocarbon chain and a terminal ionizable group or with a biologically relevant acetylcysteine residue.
Collapse
Affiliation(s)
- Ivan V Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., Rostov-on-Don 344006, Russia.
| | - Olga V Pitikova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Eugenia O Korchagina
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Andrey I Poddel'sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Georgy K Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Svetlana A Luzhnova
- Department of Microbiology and Immunology, Pyatigorsk Medicinal and Pharmaceutical Institute, 11 Kalinina str., Pyatigorsk 357500, Russia
| | - Andrey M Tichkomirov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Elena N Ponomareva
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., Rostov-on-Don 344006, Russia
| | - Nadezhda T Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| |
Collapse
|
14
|
Fine-tuning the neuroprotective and blood-brain barrier permeability profile of multi-target agents designed to prevent progressive mitochondrial dysfunction. Eur J Med Chem 2019; 167:525-545. [DOI: 10.1016/j.ejmech.2019.01.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
|
15
|
Sun S, Hou X. A novel caffeic acid-based deep eutectic solvent as caffeoyl donor to enhance glycerol caffeates synthesis. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Silva T, Mohamed T, Shakeri A, Rao PPN, Soares da Silva P, Remião F, Borges F. Repurposing nitrocatechols: 5-Nitro-α-cyanocarboxamide derivatives of caffeic acid and caffeic acid phenethyl ester effectively inhibit aggregation of tau-derived hexapeptide AcPHF6. Eur J Med Chem 2019; 167:146-152. [PMID: 30771602 DOI: 10.1016/j.ejmech.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022]
Abstract
Polyphenols like caffeic acid and its phenethyl ester have been associated with potent anti-aggregating activity. Accordingly, we screened a library of polyphenols and synthetic derivatives thereof for their capacity to inhibit tau-aggregation using a thioflavin T-based fluorescence method. Our results show that the nitrocatechol scaffold is required for a significant anti-aggregating activity, which is enhanced by introducing bulky substituents at the side chain. A remarkable increase in activity was observed for α-cyanocarboxamide derivatives 26-27. Molecular docking studies showed that the amide bond provides superior conformational stability in the steric zipper assembly of tau, which drives the increase in activity. We also found that derivatives 24-27 were potent chelators of copper(II) - a property of pharmacological significance in abnormal protein aggregation. These small molecules can provide promising leads to develop new drugs for tauopathies and AD. These findings open a new window on the repurposing of nitrocatechols beyond their established role as catechol-O-methyltransferase inhibitors.
Collapse
Affiliation(s)
- Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Tarek Mohamed
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Arash Shakeri
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Praveen P N Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Patrício Soares da Silva
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
17
|
Chavarria D, Fernandes C, Silva T, Garrido J, Remião F, Oliveira PJ, Borges F. Bioisosteric OH- to SH-replacement changes the antioxidant profile of ferulic acid. Org Biomol Chem 2019; 17:9646-9654. [DOI: 10.1039/c9ob01875a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new ferulic acid-based thiophenol was synthesized and the differences in the antioxidant properties of the natural and the synthetic compounds were investigated.
Collapse
Affiliation(s)
- Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Carlos Fernandes
- CIQUP/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Jorge Garrido
- Department of Chemical Engineering
- School of Engineering (ISEP)
- Polytechnic of Porto
- 4200-072 Porto
- Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE
- Laboratory of Toxicology
- Department of Biological Sciences
- Faculty of Pharmacy
- University of Porto
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology
- University of Coimbra
- Cantanhede
- Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
18
|
Gao CZ, Dong W, Cui ZW, Yuan Q, Hu XM, Wu QM, Han X, Xu Y, Min ZL. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors. J Enzyme Inhib Med Chem 2018; 34:150-162. [PMID: 30427217 PMCID: PMC6237161 DOI: 10.1080/14756366.2018.1530224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A series of new Olaparib derivatives was designed and synthesized, and their inhibitory activities against poly (ADP-ribose) polymerases-1 (PARP-1) enzyme and cancer cell line MDA-MB-436 in vitro were evaluated. The results showed that compound 5l exhibited the most potent inhibitory effects on PARP-1 enzyme (16.10 ± 1.25 nM) and MDA-MB-436 cancer cell (11.62 ± 2.15 μM), which was close to that of Olaparib. As a PARP-1 inhibitor had been reported to be viable to neuroprotection, in order to search for new multitarget-directed ligands (MTDLs) for the treatment of Alzheimer’s disease (AD), the inhibitory activities of the synthesized compounds against the enzymes AChE (from electric eel) and BChE (from equine serum) were also tested. Compound 5l displayed moderate BChE inhibitory activity (9.16 ± 0.91 μM) which was stronger than neostigmine (12.01 ± 0.45 μM) and exhibited selectivity for BChE over AChE to some degree. Molecular docking studies indicated that 5l could bind simultaneously to the catalytic active of PARP-1, but it could not interact well with huBChE. For pursuit of PARP-1 and BChE dual-targeted inhibitors against AD, small and flexible non-polar groups introduced to the compound seemed to be conducive to improving its inhibitory potency on huBChE, while keeping phthalazine-1-one moiety unchanged which was mainly responsible for PARP-1 inhibitory activity. Our research gave a clue to search for new agents based on AChE and PARP-1 dual-inhibited activities to treat Alzheimer’s disease.
Collapse
Affiliation(s)
- Cheng-Zhi Gao
- a Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan , China
| | - Wei Dong
- a Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan , China
| | - Zhi-Wen Cui
- a Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan , China
| | - Qiong Yuan
- a Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan , China
| | - Xia-Min Hu
- b College of Pharmacy , Shanghai University of Medicine & Health Sciences , Shanghai , China
| | - Qing-Ming Wu
- a Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan , China
| | - Xianlin Han
- c Barshop Institute for Longevity and Aging Studies , University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Yao Xu
- d College of Life Science and Health , Wuhan University of Science and Technology , Wuhan , China
| | - Zhen-Li Min
- a Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan , China.,c Barshop Institute for Longevity and Aging Studies , University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
19
|
Fernandes C, Pinto M, Martins C, Gomes MJ, Sarmento B, Oliveira PJ, Remião F, Borges F. Development of a PEGylated-Based Platform for Efficient Delivery of Dietary Antioxidants Across the Blood–Brain Barrier. Bioconjug Chem 2018; 29:1677-1689. [DOI: 10.1021/acs.bioconjchem.8b00151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carlos Fernandes
- CIQUP, Centro de Investigação em Química, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Miguel Pinto
- CIQUP, Centro de Investigação em Química, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | | | | | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, 3060-197 Cantanhede, Portugal
| | | | - Fernanda Borges
- CIQUP, Centro de Investigação em Química, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| |
Collapse
|
20
|
|
21
|
Teixeira J, Cagide F, Benfeito S, Soares P, Garrido J, Baldeiras I, Ribeiro JA, Pereira CM, Silva AF, Andrade PB, Oliveira PJ, Borges F. Development of a Mitochondriotropic Antioxidant Based on Caffeic Acid: Proof of Concept on Cellular and Mitochondrial Oxidative Stress Models. J Med Chem 2017; 60:7084-7098. [DOI: 10.1021/acs.jmedchem.7b00741] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- José Teixeira
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
- CNC—Center
for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech
Building, Biocant Park, Cantanhede 3060-197, Portugal
| | - Fernando Cagide
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Sofia Benfeito
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Pedro Soares
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Jorge Garrido
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
- Department
of Chemical Engineering, School of Engineering (ISEP), Polytechnic Institute of Porto, Porto 4200-072, Portugal
| | - Inês Baldeiras
- Faculty
of Medicine, University of Coimbra, Coimbra 3004-504, Portugal
- Laboratory
of Neurochemistry, Coimbra University Hospital (CHUC), Coimbra 3000-075, Portugal
| | - José A. Ribeiro
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Carlos M. Pereira
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - António F. Silva
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV-Laboratory
of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Paulo J. Oliveira
- CNC—Center
for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech
Building, Biocant Park, Cantanhede 3060-197, Portugal
| | - Fernanda Borges
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| |
Collapse
|
22
|
Sun S, Hu B. Enzymatic preparation of novel caffeoyl structured lipids using monoacylglycerols as caffeoyl acceptor and transesterification mechanism. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Teixeira J, Oliveira C, Amorim R, Cagide F, Garrido J, Ribeiro JA, Pereira CM, Silva AF, Andrade PB, Oliveira PJ, Borges F. Development of hydroxybenzoic-based platforms as a solution to deliver dietary antioxidants to mitochondria. Sci Rep 2017; 7:6842. [PMID: 28754950 PMCID: PMC5533782 DOI: 10.1038/s41598-017-07272-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/27/2017] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction have been associated with metabolic and age-related diseases. Thus, the prevention of mitochondrial oxidative damage is nowadays a recognized pharmacological strategy to delay disease progression. Epidemiological studies suggested an association between the consumption of polyphenol-rich diet and the prevention of different pathologies, including diseases with a mitochondrial etiology. The development of mitochondrial-targeted antioxidants based on dietary antioxidants may decrease mitochondrial oxidative damage. Herein, we report the design and synthesis of two new mitochondriotropic antioxidants based on hydroxybenzoic acids (AntiOxBENs). The results obtained showed that the novel antioxidants are accumulated inside rat liver mitochondria driven by the organelle transmembrane electric potential and prevented lipid peroxidation, exhibiting low toxicity. Some of the observed effects on mitochondrial bioenergetics resulted from an increase of proton leakage through the mitochondrial inner membrane. The new derivatives present a higher lipophilicity than the parent compounds (protocatechuic and gallic acids) and similar antioxidant and iron chelating properties. AntiOxBENs are valid mitochondriotropic antioxidant prototypes, which can be optimized and used in a next future as drug candidates to prevent or slow mitochondrial oxidative stress associated to several pathologies.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech Building, Biocant Park -University of Coimbra, Cantanhede, 3060-197, Portugal
| | - Catarina Oliveira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
| | - Ricardo Amorim
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech Building, Biocant Park -University of Coimbra, Cantanhede, 3060-197, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
| | - Jorge Garrido
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
- Department of Chemical Engineering, School of Engineering (ISEP), Polytechnic of Porto, Porto, 4200%, Portugal
| | - José A Ribeiro
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
| | - Carlos M Pereira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
| | - António F Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV-Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech Building, Biocant Park -University of Coimbra, Cantanhede, 3060-197, Portugal.
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal.
| |
Collapse
|
24
|
Moosavi F, Hosseini R, Rajaian H, Silva T, Magalhães E Silva D, Saso L, Edraki N, Miri R, Borges F, Firuzi O. Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorg Med Chem 2017; 25:3235-3246. [PMID: 28495385 DOI: 10.1016/j.bmc.2017.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/09/2017] [Indexed: 01/01/2023]
Abstract
Neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, threaten the lives of millions of people and the number of affected patients is constantly growing with the increase of the aging population. Small molecule neurotrophic agents represent promising therapeutics for the pharmacological management of neurodegenerative diseases. In this study, a series of caffeic acid amide analogues with variable alkyl chain lengths, including ACAF3 (C3), ACAF4 (C4), ACAF6 (C6), ACAF8 (C8) and ACAF12 (C12) were synthesized and their neurotrophic activity was examined by different methods in PC12 neuronal cells. We found that all caffeic acid amide derivatives significantly increased survival in PC12 neuronal cells in serum-deprived conditions at 25μM, as measured by the MTT assay. ACAF4, ACAF6 and ACAF8 at 5µM also significantly enhanced the effect of nerve growth factor (NGF) in inducing neurite outgrowth, a sign of neuronal differentiation. The neurotrophic effects of amide derivatives did not seem to be mediated by direct activation of tropomyosin receptor kinase A (TrkA) receptor, since K252a, a potent TrkA antagonist, did not block the neuronal survival enhancement effect. Similarly, the active compounds did not activate TrkA as measured by immunoblotting with anti-phosphoTrkA antibody. We also examined the effect of amide derivatives on signaling pathways involved in survival and differentiation by immunoblotting. ACAF4 and ACAF12 induced ERK1/2 phosphorylation in PC12 cells at 5 and 25µM, while ACAF12 was also able to significantly increase AKT phosphorylation at 5 and 25µM. Molecular docking studies indicated that compared to the parental compound caffeic acid, ACAF12 exhibited higher binding energy with phosphoinositide 3-kinase (PI3K) as a putative molecular target. Based on Lipinski's rule of five, all of the compounds obeyed three molecular descriptors (HBD, HBA and MM) in drug-likeness test. Taken together, these findings show for the first time that caffeic amides possess strong neurotrophic effects exerted via modulation of ERK1/2 and AKT signaling pathways presumably by activation of PI3K and thus represent promising agents for the discovery of neurotrophic compounds for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hamid Rajaian
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Diogo Magalhães E Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Zeindlhofer V, Khlan D, Bica K, Schröder C. Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures. RSC Adv 2017; 7:3495-3504. [PMID: 28496974 PMCID: PMC5361174 DOI: 10.1039/c6ra24736a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood-Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed.
Collapse
Affiliation(s)
- Veronika Zeindlhofer
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| | - Diana Khlan
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Katharina Bica
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Christian Schröder
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| |
Collapse
|
26
|
Sun S, Hu B. A novel method for the synthesis of glyceryl monocaffeate by the enzymatic transesterification and kinetic analysis. Food Chem 2017; 214:192-198. [DOI: 10.1016/j.foodchem.2016.07.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/04/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
|
27
|
Hosseini R, Moosavi F, Rajaian H, Silva T, Magalhães e Silva D, Soares P, Saso L, Edraki N, Miri R, Borges F, Firuzi O. Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chem Biol Drug Des 2016; 88:926-937. [DOI: 10.1111/cbdd.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Hamid Rajaian
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Diogo Magalhães e Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”; Sapienza University of Rome; Rome Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
28
|
Lohou E, Sasaki NA, Boullier A, Sonnet P. Multifunctional diamine AGE/ALE inhibitors with potential therapeutical properties against Alzheimer's disease. Eur J Med Chem 2016; 122:702-722. [PMID: 27451257 DOI: 10.1016/j.ejmech.2016.04.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022]
Abstract
An important part of pathogenesis of Alzheimer's disease (AD) is attributed to the contribution of AGE (Advanced Glycation Endproducts) and ALE (Advanced Lipid peroxidation Endproducts). In order to attenuate the progression of AD, we designed a new type of molecules that consist of two trapping parts for reactive carbonyl species (RCS) and reactive oxygen species (ROS), precursors of AGE and ALE, respectively. These molecules also chelate transition metals, the promoters of ROS formation. In this paper, synthesis of the new AGE/ALE inhibitors and evaluation of their physicochemical and biological properties (carbonyl trapping capacity, antioxidant activity, Cu(2+)-chelating capacity, cytotoxicity and protective effect against in vitro MGO-induced apoptosis in the model AD cell-line PC12) are described. It is found that compounds 40b and 51e possess promising therapeutic potentials for treating AD.
Collapse
Affiliation(s)
- Elodie Lohou
- Université de Picardie Jules Verne, Laboratoire de Glycochimie des Antimicrobiens et des Agroressouces, LG2A, UMR CNRS 7378, UFR de Pharmacie, 1 Rue des Louvels, F-80037, Amiens Cedex 01, France
| | - N André Sasaki
- Université de Picardie Jules Verne, Laboratoire de Glycochimie des Antimicrobiens et des Agroressouces, LG2A, UMR CNRS 7378, UFR de Pharmacie, 1 Rue des Louvels, F-80037, Amiens Cedex 01, France.
| | - Agnès Boullier
- Université de Picardie Jules Verne, UFR de Médecine, 1 Rue des Louvels, F-80037, Amiens Cedex 01, France; INSERM U1088, Centre Universitaire de Recherche en Santé (CURS), Avenue René Laënnec - Salouel, F-80054, Amiens Cedex 01, France; CHU Amiens Picardie, Avenue René Laënnec - Salouel, F-80054, Amiens Cedex 01, France
| | - Pascal Sonnet
- Université de Picardie Jules Verne, Laboratoire de Glycochimie des Antimicrobiens et des Agroressouces, LG2A, UMR CNRS 7378, UFR de Pharmacie, 1 Rue des Louvels, F-80037, Amiens Cedex 01, France
| |
Collapse
|
29
|
Martínez MD, Luna L, Tesio AY, Feresin GE, Durán FJ, Burton G. Antioxidant properties in a non-polar environment of difluoromethyl bioisosteres of methyl hydroxycinnamates. ACTA ACUST UNITED AC 2016; 68:233-44. [PMID: 26773438 DOI: 10.1111/jphp.12507] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Many natural antioxidants have poor pharmacokinetic properties that impair their therapeutic use. For hydroxycinnamic acids (HCAs) and other phenolic antioxidants, their major drawback is their low lipophilicity and a rapid metabolism. The difluoromethyl group may be considered as a 'lipophilic hydroxyl' due to its hydrogen bond donor and acceptor properties; this prompted us to assess it as a bioisosteric replacement of a phenolic hydroxyl for increasing the lipophilicity of HCAs. METHODS Six difluoromethyl-substituted methyl cinnamates (4a-c, 5a-c) related to caffeic acid were synthesized and their antioxidant activity evaluated by chemical (FRAP, DPPH scavenging, inhibition of β-carotene bleaching, at 1-200 μm), electrochemical (differential pulse voltammetry, cyclic voltammetry) and cell-based (inhibition of lipid peroxidation in erythrocytes, at 1 and 50 μm) assays. KEY FNDINGS Analogues 4a-c and 5a-c were inactive in FRAP and DPPH assays and only those containing a free phenolic hydroxyl (4a and 5a) exhibited electrochemical activity although with high redox potentials. Compounds 4a,b and 5a,b were active in the inhibition of β-carotene bleaching assay and all analogues inhibited lipid peroxidation in the human erythrocytes assay. CONCLUSIONS Lipophilic difluoromethyl-substituted cinnamic esters retain radical scavenging capabilities that prove useful to confer antioxidant properties in a non-polar environment.
Collapse
Affiliation(s)
- Mario D Martínez
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lorena Luna
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, Argentina
| | - Alvaro Y Tesio
- INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela E Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, Argentina
| | - Fernando J Durán
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo Burton
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Chandak N, Bhardwaj JK, Zheleva-Dimitrova D, Kitanov G, Sharma RK, Sharma PK, Saso L. Effective attenuation of atrazine-induced histopathological changes in testicular tissue by antioxidant N-phenyl-4-aryl-polyhydroquinolines. J Enzyme Inhib Med Chem 2015; 30:722-9. [DOI: 10.3109/14756366.2014.960864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Jitender K. Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India,
| | | | - Gerassim Kitanov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria, and
| | - Rajnesh K. Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India,
| | | | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| |
Collapse
|
31
|
Cláudio AFM, Neves MC, Shimizu K, Canongia Lopes JN, Freire MG, Coutinho JAP. The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2015; 17:3948-3963. [PMID: 26379471 PMCID: PMC4568318 DOI: 10.1039/c5gc00712g] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid-biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media.
Collapse
Affiliation(s)
- Ana Filipa M. Cláudio
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Márcia C. Neves
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Karina Shimizu
- Centro de Química Estrutural, Instituto Superior Técnico, 1049 001 Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica, UNL, AV. República Ap. 127, 2780 901 Oeiras, Portugal
| | - José N. Canongia Lopes
- Centro de Química Estrutural, Instituto Superior Técnico, 1049 001 Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica, UNL, AV. República Ap. 127, 2780 901 Oeiras, Portugal
| | - Mara G. Freire
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
32
|
Dhammaraj T, Phintha A, Pinthong C, Medhanavyn D, Tinikul R, Chenprakhon P, Sucharitakul J, Vardhanabhuti N, Jiarpinitnun C, Chaiyen P. p-Hydroxyphenylacetate 3-Hydroxylase as a Biocatalyst for the Synthesis of Trihydroxyphenolic Acids. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00439] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Taweesak Dhammaraj
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Aisaraphon Phintha
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Chatchadaporn Pinthong
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Dheeradhach Medhanavyn
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Ruchanok Tinikul
- Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jeerus Sucharitakul
- Department
of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant
Road, Patumwan, Bangkok 10300, Thailand
| | - Nontima Vardhanabhuti
- Department of Pharmacy,
Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Chutima Jiarpinitnun
- Department of Chemistry
and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
33
|
Synthesis and antioxidant activity of polyhydroxylated trans-restricted 2-arylcinnamic acids. Molecules 2015; 20:2555-75. [PMID: 25648597 PMCID: PMC6272747 DOI: 10.3390/molecules20022555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/26/2015] [Indexed: 12/16/2022] Open
Abstract
A series of sixteen polyhydroxylated trans-restricted 2-arylcinnamic acid analogues 3a–p were synthesized through a one-pot reaction between homophthalic anhydrides and various aromatic aldehydes, followed by treatment with BBr3. The structure of the newly synthesized compounds was confirmed by spectroscopic methods and the configuration around the double bond was unequivocally estimated by means of gated decoupling 13C-NMR spectra. It was shown that the trans-cinnamic acid fragment incorporated into the target compounds’ structure ensures the cis-configuration of the stilbene backbone and prevents further isomerization along the carbon–carbon double bond. The antioxidant activity of compounds 3a–p was measured against 1,1-diphenyl-2-picrylhydrazyl (DPPH●), hydroxyl (OH●) and superoxide (O2●▬) radicals. The results obtained showed that the tested compounds possess higher activities than natural antioxidants such as protocatechuic acid, caffeic acid and gallic acid. Moreover, it was shown that a combination of two different and independently acting fragments of well-known pharmacological profiles into one covalently bonded hybrid molecule evoke a synergistic effect resulting in higher than expected activity. To rationalize the apparent antioxidant activity and to establish the mechanism of action, a SAR analysis and DFT quantum chemical computations were also performed.
Collapse
|
34
|
Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 2015. [DOI: 10.1039/c5ra01911g] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress, a result of an overproduction and accumulation of free radicals, is the leading cause of several degenerative diseases such as cancer, atherosclerosis, cardiovascular diseases, ageing and inflammatory diseases.
Collapse
Affiliation(s)
- Bharti Badhani
- Computational Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Neha Sharma
- Computational Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rita Kakkar
- Computational Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
35
|
Silva T, Borges F, Edraki N, Alizadeh M, Miri R, Saso L, Firuzi O. Hydroxycinnamic acid as a novel scaffold for the development of cyclooxygenase-2 inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra08692b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The most active hydroxycinnamic acid derivative, caffeic acid diethyl ester (CA-DE), demonstrated 88.5/30.5% inhibition at 100/20 μM against COX-2 and negligible COX-1 inhibitory effect. CA-DE showed preferred interactions with COX-2 active site.
Collapse
Affiliation(s)
- T. Silva
- CIQ/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - F. Borges
- CIQ/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - N. Edraki
- Medicinal and Natural Products Chemistry Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - M. Alizadeh
- Medicinal and Natural Products Chemistry Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - R. Miri
- Medicinal and Natural Products Chemistry Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - L. Saso
- Department of Physiology and Pharmacology Vittorio Erspamer
- Sapienza University of Rome
- Rome
- Italy
| | - O. Firuzi
- Medicinal and Natural Products Chemistry Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| |
Collapse
|
36
|
Silva T, Bravo J, Summavielle T, Remião F, Pérez C, Gil C, Martínez A, Borges F. Biology-oriented development of novel lipophilic antioxidants with neuroprotective activity. RSC Adv 2015. [DOI: 10.1039/c4ra15164j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Discovery of hydroxycinnamic acid derivatives with enhanced in lipophilicity, blood brain barrier permeability and neuroprotective potential.
Collapse
Affiliation(s)
- T. Silva
- CIQ/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- Porto
- Portugal
| | - J. Bravo
- Addiction Biology Group
- Institute for Molecular and Cell Biology
- University of Porto
- Porto
- Portugal
| | - T. Summavielle
- Addiction Biology Group
- Institute for Molecular and Cell Biology
- University of Porto
- Porto
- Portugal
| | - F. Remião
- REQUIMTE/Laboratory of Toxicology
- Department of Biological Sciences
- Faculty of Pharmacy
- University of Porto
- Porto
| | - C. Pérez
- Instituto de Química Médica
- CSIC
- Madrid
- Spain
| | - C. Gil
- Instituto de Química Médica
- CSIC
- Madrid
- Spain
| | | | - F. Borges
- CIQ/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- Porto
- Portugal
| |
Collapse
|
37
|
Chavarria D, Silva T, Martins D, Bravo J, Summavielle T, Garrido J, Borges F. Exploring cinnamic acid scaffold: development of promising neuroprotective lipophilic antioxidants. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00018a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
New lipophilic hydroxycinnamic acid based derivatives were designed and synthesized and their antioxidant and neuroprotective activities evaluated.
Collapse
Affiliation(s)
- Daniel Chavarria
- CIQ/Department of Chemistry Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Tiago Silva
- CIQ/Department of Chemistry Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Daniel Martins
- CIQ/Department of Chemistry Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Joana Bravo
- Addiction Biology Group
- Institute for Molecular and Cell Biology
- University of Porto
- Porto
- Portugal
| | - Teresa Summavielle
- Addiction Biology Group
- Institute for Molecular and Cell Biology
- University of Porto
- Porto
- Portugal
| | - Jorge Garrido
- Department of Chemical Engineering
- School of Engineering (ISEP)
- Polytechnic of Porto
- 4200-072 Porto
- Portugal
| | - Fernanda Borges
- CIQ/Department of Chemistry Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
38
|
Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014; 19:19292-349. [PMID: 25429559 PMCID: PMC6271800 DOI: 10.3390/molecules191219292] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.
Collapse
|
39
|
Mura F, Silva T, Castro C, Borges F, Zuñiga MC, Morales J, Olea-Azar C. New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: spectroscopic, electrochemistry, and cellular studies. Free Radic Res 2014; 48:1473-84. [PMID: 25236566 DOI: 10.3109/10715762.2014.965702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series hydroxycinnamic and gallic acids and their derivatives were studied with the aim of evaluating their in vitro antioxidant properties both in homogeneous and in cellular systems. It was concluded from the oxygen radical absorbance capacity-fluorescein (ORAC-FL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and cyclic voltammetry data that some compounds exhibit remarkable antioxidant properties. In general, in homogeneous media (DPPH assay), galloyl-based cinnamic and benzoic systems (compounds 7-11) were the most active, exhibiting the lowest oxidation potentials in both dimethyl sulfoxide (DMSO) and phosphate buffer. Yet, p-coumaric acid and its derivatives (compounds 1-3) disclosed the highest scavenging activity toward peroxyl radicals (ORAC-FL assay). Interesting structure-property- activity relationships between ORAC-FL, or DPPH radical, and redox potentials have been attained, showing that the latter parameter can be a valuable antioxidant measure. It was evidenced that redox potentials are related to the structural features of cinnamic and benzoic systems and that their activities are also dependent on the radical generated in the assay. Electron spin resonance data of the phenoxyl radicals generated both in DMSO and phosphate buffer support the assumption that radical stability is related to the type of phenolic system. Galloyl-based cinnamic and benzoic ester-type systems (compounds 9 and 11) were the most active and effective compounds in cell-based assays (51.13 ± 1.27% and 54.90 ± 3.65%, respectively). In cellular systems, hydroxycinnamic and hydroxybenzoic systems operate based on their intrinsic antioxidant outline and lipophilic properties, so the balance between these two properties is considered of the utmost importance to ensure their performance in the prevention or minimization of the effects due to free radical overproduction.
Collapse
Affiliation(s)
- F Mura
- Department of Inorganic and Analytical Chemistry, Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Sciences, University of Chile , Santiago de Chile , Chile
| | | | | | | | | | | | | |
Collapse
|
40
|
Silva T, Oliveira C, Borges F. Caffeic acid derivatives, analogs and applications: a patent review (2009-2013). Expert Opin Ther Pat 2014; 24:1257-70. [PMID: 25284760 DOI: 10.1517/13543776.2014.959492] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Caffeic acid (CA) is broadly distributed in several species of the plant kingdom and is widely consumed in human diet. CA and derivatives have been extensively studied in the past years, which unveiled a broad spectrum of biological activities and potential therapeutic applications. As a result, there has been an upsurge in the development of new chemical entities based on the CA scaffold. AREAS COVERED The scope of this review is to revisit the therapeutic potential of CA and derivatives. It provides an overview of patented processes and applications thereof between 2009 and 2013. EXPERT OPINION The phenylpropanoid framework is currently considered a valid structure for drug discovery programs. Actually, CA has been widely used as a template for the development of new chemical entities with potential therapeutic interest in human diseases associated with oxidative stress. Additionally, the applicability of CA derivatives expands to the realms of cosmetic industry due to its stabilizing properties. The synthesis of esters, amides and hybrids with currently marketed drugs is a trending strategy for the development of derivatives with therapeutic application. It is our opinion that the innovative artwork currently being developed involving this chemical scaffold will yield new and effective therapeutic agents in a foreseeable future.
Collapse
Affiliation(s)
- Tiago Silva
- University of Porto, CIQ/Department of Chemistry and Biochemistry, Faculty of Sciences , Rua do Campo Alegre s/n, Porto , Portugal
| | | | | |
Collapse
|
41
|
Change of phenylpropanoic acid and flavonol contents at different growth stage of glasswort (Salicornia herbacea L.). Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0093-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
42
|
Revankar HM, Kulkarni MV, Joshi SD, More UA. Synthesis, biological evaluation and docking studies of 4-aryloxymethyl coumarins derived from substructures and degradation products of vancomycin. Eur J Med Chem 2013; 70:750-7. [DOI: 10.1016/j.ejmech.2013.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/12/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
|
43
|
Teixeira J, Gaspar A, Garrido EM, Garrido J, Borges F. Hydroxycinnamic acid antioxidants: an electrochemical overview. BIOMED RESEARCH INTERNATIONAL 2013; 2013:251754. [PMID: 23956973 PMCID: PMC3730368 DOI: 10.1155/2013/251754] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 12/21/2022]
Abstract
Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far.
Collapse
Affiliation(s)
- José Teixeira
- CIQ/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Alexandra Gaspar
- CIQ/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - E. Manuela Garrido
- CIQ/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Jorge Garrido
- CIQ/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Fernanda Borges
- CIQ/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
44
|
Mabalirajan U, Ghosh B. Mitochondrial dysfunction in metabolic syndrome and asthma. J Allergy (Cairo) 2013; 2013:340476. [PMID: 23840225 PMCID: PMC3687506 DOI: 10.1155/2013/340476] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/21/2013] [Indexed: 01/15/2023] Open
Abstract
Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma.
Collapse
Affiliation(s)
- Ulaganathan Mabalirajan
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Balaram Ghosh
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|