1
|
Liu C, Hou J, Ren X, Guo X, Wang B, Song W, Wang L, Wang G. Norwogonin aids in fighting MRSA-induced pneumonia by targeting agrA C to inhibit α-hemolysin production. World J Microbiol Biotechnol 2024; 40:265. [PMID: 38990361 DOI: 10.1007/s11274-024-04052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
The increasing prevalence of infections related to methicillin-resistant Staphylococcus aureus (MRSA) necessitates the exploration of innovative therapeutic strategies that diverge from conventional antibiotic treatments. This is imperative to effectively combat resistance and manage these infections. The adoption of antivirulence strategies has emerged as a particularly promising avenue. This approach applies a heightened selective pressure on pathogens, thereby diminishing the likelihood of bacteria evolving resistance to antibiotics. In our pursuit of novel therapeutics for treating MRSA infections, we have focused on agents that inhibit the virulence of S. aureus without impeding its growth, aiming to minimize the development of drug resistance. α-Hemolysin, a critical virulence factor encoded by the hla gene, is a cytotoxin that forms pores in host cell membranes and plays a pivotal role in the progression of disease during bacterial infections. Herein, we identified that norwogonin could effectively inhibit Hla production via targeting agrAC, a crucial protein in quorum sensing, resulting in dose-dependent inhibition of hemolytic activity without suppressing S. aureus growth. In vitro assays illustrated that norwogonin decreased the thermal stability of agrAC, providing evidence of interaction between norwogonin and agrAC. Meanwhile, norwogonin alleviated Hla-mediated A549 cell damage and reduced lactate dehydrogenase release. In vivo studies suggested that norwogonin treatment blocked the establishment of a mouse model of pneumonia caused by S. aureus USA300. Notably, norwogonin enhanced the antibacterial potency of oxacillin. In conclusion, norwogonin is a promising candidate for treating S. aureus infections, offering a novel alternative to traditional antibiotics by targeting virulence factors and enhancing the efficacy of existing treatments.
Collapse
Affiliation(s)
- Chang Liu
- Jilin University School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Juan Hou
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Ren
- Jilin University School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xuerui Guo
- Jilin University School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
| | - Guangshu Wang
- Jilin University School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Shi C, Liu X, Chen Y, Dai J, Li C, Felemban S, Khowdiary MM, Cui H, Lin L. Inhibitory effects of citral on the production of virulence factors in Staphylococcus aureus and its potential application in meat preservation. Int J Food Microbiol 2024; 413:110581. [PMID: 38246026 DOI: 10.1016/j.ijfoodmicro.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Foodborne diseases caused by Staphylococcus aureus contamination on meat and meat products has gained increasing attention in recent years, while the pathogenicity of S. aureus is mainly attributed to its virulence factors production, which is primarily regulated by quorum sensing (QS) system. Herein, we aimed to uncover the inhibitory effects and mechanisms of citral (CIT) on virulence factors production by S. aureus, and further explore its potential application in pork preservation. Susceptibility test confirmed the antibacterial properties of CIT against S. aureus, the minimal inhibitory concentration (MIC) was 0.25 mg/mL. Treatment with sub-MICs of CIT reduced the hemolytic activity by inhibiting the production of α-hemolysin, and staphylococcal enterotoxins (SEs) production was significantly inhibited by CIT in both culture medium and pork without affecting bacterial growth. Transcriptomic analysis indicated that the differentially expression genes encoding α-hemolysin, SEs, and other virulence factors were down-regulated after treatment with 1/2MIC CIT. Moreover, the genes related to QS including agrA and agrC were also down-regulated, while the global transcriptional regulator sarA was up-regulated. Data here demonstrated that CIT could inhibited S. aureus virulence factors production through disturbing QS systems. In a challenge test, the addition of CIT caused a remarkable inhibition of S. aureus population and delay in lipid oxidation and color change on pork after 15 days incubation at 4 °C. These findings demonstrated that CIT could not only efficiently restrain the production of S. aureus virulence factors by disturbing QS, but also exhibit the potential application on the preservation of meat products.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Xu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Shifa Felemban
- Department of Chemistry, Faculty of Applied Science, Al Leith University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Manal M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Al Leith University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
3
|
Tian L, Wu X, Yu H, Yang F, Sun J, Zhou T, Jiang H. Isovitexin Protects Mice from Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia by Targeting Sortase A. J Microbiol Biotechnol 2022; 32:1284-1291. [PMID: 36224754 PMCID: PMC9668100 DOI: 10.4014/jmb.2206.06007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) has resulted in significant morbidity and mortality, and clinical treatment of MRSA infections has become extremely difficult. Sortase A (SrtA), a virulence determinant that anchors numerous virulence-related proteins to the cell wall, is a prime druggable target against S. aureus infection due to its crucial role in the pathogenicity of S. aureus. Here, we demonstrate that isovitexin, an active ingredient derived from a variety of traditional Chinese medicines, can reversibly inhibit SrtA activity in vitro with a low dose (IC50=24.72 μg/ml). Fluorescence quenching and molecular simulations proved the interaction between isovitexin and SrtA. Subsequent point mutation experiments further confirmed that the critical amino acid positions for SrtA binding to isovitexin were Ala-92, Ile-182, and Trp-197. In addition, isovitexin treatment dramatically reduced S. aureus invasion of A549 cells. This study shows that treatment with isovitexin could alleviate pathological injury and prolong the life span of mice in an S. aureus pneumonia model. According to our research, isovitexin represents a promising lead molecule for the creation of anti-S. aureus medicines or adjuncts.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Xinliang Wu
- Department of Pharmacy, Tianjin Baodi Hospital, Baodi Clinical College, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun 130062, P.R. China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Jian Sun
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College Agriculture, Beijing 102442, P.R. China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China,Corresponding authors T. Zhou E-mail:
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China,
H. Jiang E-mail:
| |
Collapse
|
4
|
Li H, Huang YY, Addo KA, Yu YG, Xiao XL. Effects of cuminaldehyde on toxins production of Staphylococcus aureus and its application in sauced beef. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Xu W, Peng L, Li C, Wu T, Chen H, Zhang H, Yu H, Ye Y, Wu Y, Yuan Q, Nian S. A novel fully human recombinant antibody neutralizing the α-hemolysin of Staphylococcus aureus. APMIS 2022; 130:578-589. [PMID: 35751523 DOI: 10.1111/apm.13258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is resistant to almost all β-lactam antibiotics. Hence, new ways to control MRSA infection, such as antibacterial antibodies, need to be explored. α-hemolysin is the most important virulence factor widely expressed in S. aureus. This study aimed to develop a new fully human antibody against α-hemolysin of S. aureus and research its neutralizing effect. RESULTS The single-chain antibody fragments(scFvs)against S. aureus were screened from a fully human scFv library using phage display technology. The selected scFvs had good binding affinities to α-hemolysin and S. aureus. The IgG-like scFv-Fc inserted into the pcDNA3.1 or pMH3 vector was expressed in HEK293F suspension cells to extend the half-life and restore Fc function. The size of purified scFv-Fc was about 55 kDa. The functions of expressed scFv-Fcs against α-hemolysin were validated. The cytotoxicity assays showed that scFv555-Fc had better protective effects on A549 cells than other scFv-Fcs. The results of anti-rabbit erythrocyte lysis and A549 cell apoptosis assay confirmed that scFv555-Fc had a significant neutralizing effect on α-hemolysin. The scFv555-Fc was used to construct the docking model of antigen-antibody complexes using Discovery Studio software. It predicted that the key binding sites of α-hemolysin were TYR28, LYS37, PHE39, ARG56, and LYS58, which might be the key toxic sites of α-hemolysin. CONCLUSION A novel fully human scFv-Fc antibody neutralizing the α-hemolysin toxin of S. aureus was successfully developed. The findings might provide a new theoretical basis and treatment method for preventing MRSA infection.
Collapse
Affiliation(s)
- Wenfeng Xu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lei Peng
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chun Li
- Clinical pharmacy & GCP center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Tong Wu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Han Chen
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Hong Yu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yingchun Ye
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuchuan Wu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Qing Yuan
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Siji Nian
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Jing S, Kong X, Wang L, Wang H, Feng J, Wei L, Meng Y, Liu C, Chang X, Qu Y, Guan J, Yang H, Zhang C, Zhao Y, Song W. Quercetin Reduces the Virulence of S. aureus by Targeting ClpP to Protect Mice from MRSA-Induced Lethal Pneumonia. Microbiol Spectr 2022; 10:e0234021. [PMID: 35319277 PMCID: PMC9045277 DOI: 10.1128/spectrum.02340-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
The dramatic increase of methicillin-resistant Staphylococcus aureus (MRSA) poses a great challenge to the treatment of Staphylococcus aureus (S. aureus) infections. Therefore, there is an urgent need to identify novel anti-infective agents to attack new targets to overcome antibiotic resistance. Casein hydrolase P (ClpP) is a key virulence factor in S. aureus to maintain cellular homeostasis. We screened from flavonoids and finally determined that quercetin could effectively attenuate the virulence of MRSA. The results of the thermal shift assay showed that quercetin could bind to ClpP and reduce the thermal stability of ClpP, and the KD value between quercetin and ClpP was 197 nM as determined by localized surface plasmon resonance. We found that quercetin exhibited a protective role of a mouse model of MRSA-induced lethal infection in a murine model. Based on the above facts, quercetin, as a ClpP inhibitor, could be further developed as a potential candidate for antivirulence agents to combat S. aureus infections. IMPORTANCE The resistance of Staphylococcus aureus (S. aureus) to various antibiotics has increased dramatically, and thus the development of new anti-infective drugs with new targets is urgently needed to combat resistance. Caseinolytic peptidase P (ClpP) is a casein hydrolase that has been shown to regulate a variety of important virulence factors in S. aureus. Here, we found that quercetin, a small-molecule compound from traditional Chinese herbal flavonoids, effectively inhibits ClpP activity. Quercetin attenuates the expression of multiple virulence factors in S. aureus and effectively protects mice from lethal pneumonia caused by MRSA. In conclusion, we determined that quercetin is a ClpP inhibitor and an effective lead compound for the development of a virulence factor-based treatment for S. aureus infection.
Collapse
Affiliation(s)
- Shisong Jing
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jiaxuan Feng
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Wei
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Meng
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Chang Liu
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiren Chang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yishen Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haimiao Yang
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chi Zhang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Jing S, Ren X, Wang L, Kong X, Wang X, Chang X, Guo X, Shi Y, Guan J, Wang T, Wang B, Song W, Zhao Y. Nepetin reduces virulence factors expression by targeting ClpP against MRSA-induced pneumonia infection. Virulence 2022; 13:578-588. [PMID: 35363605 PMCID: PMC8986306 DOI: 10.1080/21505594.2022.2051313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The resistance of Staphylococcus aureus (S. aureus) to various antibiotics has increased dramatically due to the misuse of antibiotics, and thus the development of new anti-infective drugs with new targets is urgently needed to combat resistance. Caseinolytic peptidase P is a case in hydrolase that regulates the virulence level of S. aureus. Here, we found that nepetin, a small-molecule compound from traditional Chinese herbal flavonoids, effectively inhibits ClpP activity. Nepetin suppressed the virulence of S. aureus and effectively combated the lethal pneumonia caused by MRSA. The results of cellular thermal shift assay showed that nepetin could bind to ClpP and reduce the thermal stability of ClpP, and the KD value of 602 nM between them was determined using localized surface plasmon resonance. The binding mode of nepetin and ClpP was further investigated by molecular docking, and it was found that Ser-22 and Gln-47 of ClpP residues were found to be involved in the binding of nepetin to ClpP. In conclusion, we determined that nepetin is a ClpP inhibitor and an effective lead compound for the development of a virulence factor-based treatment for MRSA infection.
Collapse
Affiliation(s)
- Shisong Jing
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Ren
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xingye Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,College of integrated Chinese and Western medicine, College of rehabilitation, Changchun University of Chinese Medicine, Changchun, China
| | - Xiren Chang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Jing S, Wang L, Wang T, Fan L, Chen L, Xiang H, Shi Y, Wang D. Myricetin protects mice against MRSA-related lethal pneumonia by targeting ClpP. Biochem Pharmacol 2021; 192:114753. [PMID: 34474040 DOI: 10.1016/j.bcp.2021.114753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Methicillin-resistant Staphylococcus aureus is one of the leading causes of community and nosocomial infections, which has created the urgent need for innovative anti-infective agents to control MRSA-associated infections. A conserved serine protease, caseinolytic peptidase P (ClpP) in Staphylococcus aureus is highly associated with pathogenicity and has been claimed to be a novel antimicrobial target. We aim to search suitable inhibitors of ClpP to attenuate the virulence of MRSA and combat their infections in vivo. Over 500 natural compounds were pre-screened via fluorescence resonance energy transfer using the Suc-LY-AMC substrate. The binding of myricetin to ClpP was determined and the mechanism of action was elucidated by thermal shift assay, surface plasmon resonance, and molecular dynamics simulations. The therapeutic effects of myricetin on S. aureus infection were further investigated using a S. aureus-induced pneumonia model. We revealed that myricetin could effectively block the activity of ClpP without disturbing the growth of the bacteria and the Gln-47 and Met-31 residues were necessary for myricetin binding to ClpP. Importantly, myricetin attenuated the pathogenicity of S. aureus in vivo, while improving the efficacy of the traditional antibiotic oxacillin against MRSA infection and protecting mice from fatal lung infections caused by MRSA. These findings indicate that myricetin has the potential to be applied in the pharmaceutical industry as a promising therapeutic agent.
Collapse
Affiliation(s)
- Shisong Jing
- Department of Pharmacology, School of Pharmaceutical Science, Jilin University, Changchun 130021, China; College of Animal Science, Jilin University, Changchun 130062, China
| | - Li Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Lianghai Fan
- Department of Nutrition, the Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Lin Chen
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Hua Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yan Shi
- Department of Pharmacology, School of Pharmaceutical Science, Jilin University, Changchun 130021, China.
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
9
|
Wang L, Jing S, Qu H, Wang K, Jin Y, Ding Y, Yang L, Yu H, Shi Y, Li Q, Wang D. Orientin mediates protection against MRSA-induced pneumonia by inhibiting Sortase A. Virulence 2021; 12:2149-2161. [PMID: 34369293 PMCID: PMC8354611 DOI: 10.1080/21505594.2021.1962138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Drug-resistant pathogenic Staphylococcus aureus (S. aureus) has severely threatened human health and arouses widespread concern. Sortase A (SrtA) is an essential virulence factor of S. aureus, which is responsible for the covalent anchoring of a variety of virulence-related proteins to the cell wall. SrtA has always been regarded as an ideal pharmacological target against S. aureus infections. In this research, we have determined that orientin, a natural compound isolated from various medicinal plants, can effectively inhibit the activity of SrtA with an IC50 of 50.44 ± 0.51 µM. We further demonstrated that orientin inhibited the binding of S. aureus to fibrinogen and diminished biofilm formation and the attaching of Staphylococcal protein A (SpA) to the cell wall in vitro. Using the fluorescence quenching assay, we demonstrated a direct interaction between orientin and SrtA. Further mechanistic studies revealed that the residues Glu-105, Thr-93, and Cys-184 were the key sites for the binding of SrtA to orientin. Importantly, we demonstrated that treatment with orientin attenuated S. aureus virulence of in vivo and protected mice against S. aureus-induced lethal pneumonia. These findings indicate that orientin is a potential drug to counter S. aureus infections and limit the development of drug resistance.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun China
| | - Han Qu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kai Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun China
| | - Ying Ding
- College of Animal Science, Jilin University, Changchun China
| | - Lin Yang
- College of Animal Science, Jilin University, Changchun China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun China
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun China
| | - Qianxue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun China
| |
Collapse
|
10
|
Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, Spyrakis F, Ronda L. Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. Int J Mol Sci 2020; 21:E2145. [PMID: 32245010 PMCID: PMC7139808 DOI: 10.3390/ijms21062145] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Omar De Bei
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Stefano Bettati
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Luca Ronda
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
11
|
Mu D, Luan Y, Wang L, Gao Z, Yang P, Jing S, Wang Y, Xiang H, Wang T, Wang D. The combination of salvianolic acid A with latamoxef completely protects mice against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus. Emerg Microbes Infect 2020; 9:169-179. [PMID: 31969071 PMCID: PMC7006784 DOI: 10.1080/22221751.2020.1711817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Staphylococcus aureus (S. aureus), especially methicillin-resistant Staphylococcus aureus (MRSA), is a major cause of pneumonia, resulting in severe morbidity and mortality in adults and children. Sortase A (SrtA), which mediates the anchoring of cell surface proteins in the cell wall, is an important virulence factor of S. aureus. Here, we found that salvianolic acid A (Sal A), which is a natural product that does not affect the growth of S. aureus, could inhibit SrtA activity (IC50 = 5.75 μg/ml) and repress the adhesion of bacteria to fibrinogen, the anchoring of protein A to cell wall, the biofilm formation, and the ability of S. aureus to invade A549 cells. Furthermore, in vivo studies demonstrated that Sal A treatment reduced inflammation and protected mice against lethal pneumonia caused by MRSA. More significantly, full protection (a survival rate of 100%) was achieved when Sal A was administered in combination with latamoxef. Together, these results indicate that Sal A could be developed into a promising therapeutic drug to combat MRSA infections while limiting resistance development.
Collapse
Affiliation(s)
- Dan Mu
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Yongxin Luan
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun, People's Republic of China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Zeyuan Gao
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Panpan Yang
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, People's Republic of China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Yanling Wang
- College of Animal Science, Jilin University, Changchun, People's Republic of China.,Qingdao Vland biological Limited co., LTD, Qingdao, People's Republic of China
| | - Hua Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
12
|
Liu S, Zhang J, Zhou Y, Hu N, Li J, Wang Y, Niu X, Deng X, Wang J. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases. Br J Pharmacol 2019; 176:4548-4557. [PMID: 31376166 DOI: 10.1111/bph.14818] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Bacteria producing New Delhi metallo-β-lactamase-1 (NDM-1) are an increasing clinical threat. NDM-1 can inactivate almost all β-lactams and is not sensitive to any existing β-lactamase inhibitors. To identify effective inhibitors of the NDM-1 enzyme and clarify the mechanism of action, a "lead compound" for developing more potent NDM-1 inhibitors needs to be provided. EXPERIMENTAL APPROACH Natural compounds were tested by enzyme inhibition screening to find potential inhibitors. MIC assays, growth curve assays, and time-kill assays were conducted to evaluate the in vitro antibacterial activity of pterostilbene and the combination of pterostilbene and meropenem. A murine thigh model and a mouse pneumonia model were used to evaluate the in vivo efficacy of combined therapy. Molecular modelling and a mutational analysis were used to clarify the mechanism of action. KEY RESULTS Pterostilbene significantly inhibited NDM-1 hydrolysis activity in enzyme inhibition screening assays and effectively restored the effectiveness of meropenem in vitro with NDM-expressing isolates in antibacterial activity assays. In addition, the combined therapy effectively reduced the bacterial burden in a murine thigh model and protected mice from pneumonia caused by Klebsiella pneumoniae. By means of molecular dynamics simulation, we observed that pterostilbene localized to the catalytic pocket of NDM-1, hindering substrate binding to NDM-1 and reducing NDM-1 activity. CONCLUSIONS AND IMPLICATIONS These findings indicated that pterostilbene combined with meropenem may offer a new safe and potential "lead compound" for the further development of NDM-1 inhibitors.
Collapse
Affiliation(s)
- Shui Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naiyu Hu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jiyun Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
13
|
Jiang L, Yi T, Shen Z, Teng Z, Wang J. Aloe-emodin Attenuates Staphylococcus aureus Pathogenicity by Interfering With the Oligomerization of α-Toxin. Front Cell Infect Microbiol 2019; 9:157. [PMID: 31157174 PMCID: PMC6530610 DOI: 10.3389/fcimb.2019.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/26/2019] [Indexed: 01/30/2023] Open
Abstract
α-toxin, an essential virulence factor secreted by Staphylococcus aureus (S. aureus), is a critical exotoxin in multiple infections. In this study, we found that aloe-emodin (AE), a natural compound lacking anti-S. aureus activity, could inhibit the hemolytic activity of α-toxin. Oligomerization assays, molecular dynamics simulations, and fluorescence-quenching analyses were used to determine the mechanism of this inhibition. The oligomerization of α-toxin was restricted by the engagement of AE with K110, T112, and M113 of the toxin, which eventually resulted in inhibition of the hemolytic activity. Lactate dehydrogenase and live/dead assays demonstrated that AE decreased the injury of human lung epithelial cells (A549) and mouse lung macrophages (MH-S) mediated by S. aureus. Furthermore, treatment with AE showed robust protective effects in mice infected by S. aureus. These findings suggest that AE effectively inhibited the pore-forming activity of α-toxin and showed a protective effect against S. aureus virulence in vitro and in vivo, which may provide a new strategy and new antibacterial agent for clinical treatment of S. aureus infections.
Collapse
Affiliation(s)
- Lanxiang Jiang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Tian Yi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science, Jilin University, Changchun, China
| | - Ziying Shen
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, China
| | - Zihao Teng
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
14
|
Liu S, Zhou Y, Niu X, Wang T, Li J, Liu Z, Wang J, Tang S, Wang Y, Deng X. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell Death Discov 2018; 4:28. [PMID: 29531825 PMCID: PMC5841300 DOI: 10.1038/s41420-018-0029-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 01/23/2023] Open
Abstract
The emergence of plasmid-mediated New Delhi metallo-β-lactamase-1 (NDM-1) in carbapenem-resistant Gram-negative pathogens is an increasing clinical threat. Here we report the discovery of an NDM-1 inhibitor, magnolol, through enzyme inhibition screening. We showed that magnolol significantly inhibited NDM enzyme activity (IC50 = 6.47 µg/mL), and it restored the activity of meropenem against Escherichia coli ZC-YN3, an NDM-1-producing E. coli isolate, in in vitro antibacterial activity assays. Magnolol lacked direct antibacterial activity, but compared with meropenem alone, it reduced the MICs of meropenem against E. coli ZC-YN3 by 4-fold and killed almost all the bacteria within 3 h. Molecular modeling and a mutational analysis demonstrated that magnolol binds directly to the catalytic pocket (residues 110 to 200) of NDM-1, thereby blocking the binding of the substrate to NDM-1 and leading to its inactivation. Our results demonstrate that the combination of magnolol and meropenem may have the potential to treat infections caused by NDM-1-positive, carbapenem-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Shui Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Department of Food Quality and Safety, Jilin University, Changchun, China
| | - Tingting Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyun Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhongjie Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
15
|
Wang J, Li H, Pan J, Dong J, Zhou X, Niu X, Deng X. Oligopeptide Targeting Sortase A as Potential Anti-infective Therapy for Staphylococcus aureus. Front Microbiol 2018; 9:245. [PMID: 29491861 PMCID: PMC5817083 DOI: 10.3389/fmicb.2018.00245] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/31/2018] [Indexed: 01/13/2023] Open
Abstract
Sortase A (SrtA)-catalyzed anchorage of surface proteins in most Gram-positive bacteria is indispensable for their virulence, suggesting that this transpeptidase is a promising target for antivirulence therapy. Here, an oligopeptide, LPRDA, was identified as an effective inhibitor of SrtA via virtual screening based on the LPXTG substrate sequence, and it was found to inhibit SrtA activity in vitro and in vivo (IC50 = 10.61 μM) by competitively occupying the active site of SrtA. Further, the oligopeptide treatment had no anti-Staphylococcus aureus activity, but it provided protection against S. aureus-induced mastitis in a mouse model. These findings indicate that the oligopeptide could be used as an effective anti-infective agent for the treatment of infection caused by S. aureus or other Gram-positive bacteria via the targeting of SrtA.
Collapse
Affiliation(s)
- Jianfeng Wang
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongen Li
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Juan Pan
- Tianjin International Travel Healthcare Center, Tianjin, China
| | - Jing Dong
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuan Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
16
|
Niu X, Yu Y, Guo H, Yang Y, Wang G, Sun L, Gao Y, Yu Z, Wang H. Molecular modeling reveals the inhibition mechanism and binding mode of ursolic acid to TLR4-MD2. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2017.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Insight into the novel inhibition mechanism of apigenin to Pneumolysin by molecular modeling. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemical and Biological Aspects of Nutritional Immunity-Perspectives for New Anti-Infectives that Target Iron Uptake Systems. Angew Chem Int Ed Engl 2017; 56:14360-14382. [PMID: 28439959 DOI: 10.1002/anie.201701586] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Upon bacterial infection, one of the defense mechanisms of the host is the withdrawal of essential metal ions, in particular iron, which leads to "nutritional immunity". However, bacteria have evolved strategies to overcome iron starvation, for example, by stealing iron from the host or other bacteria through specific iron chelators with high binding affinity. Fortunately, these complex interactions between the host and pathogen that lead to metal homeostasis provide several opportunities for interception and, thus, allow the development of novel antibacterial compounds. This Review focuses on iron, discusses recent highlights, and gives some future perspectives which are relevant in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Joshua A V Blodgett
- Department of Biology, Washington University, St. Louis, MO, 63130-4899, USA
| | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 7, 0569, Stuttgart, Germany
| | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Rainer Schobert
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
19
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemische und biologische Aspekte von “Nutritional Immunity” - Perspektiven für neue Antiinfektiva mit Fokus auf bakterielle Eisenaufnahmesysteme. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening; Helmholtz-Zentrum für Infektionsforschung; Inhoffenstraße 7 38124 Braunschweig Deutschland
| | | | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; I-20133 Milano Italien
| | - Sabine Laschat
- Institut für Organische Chemie; Universität Stuttgart; Pfaffenwaldring 55, 7 0569 Stuttgart Deutschland
| | - Anne Routledge
- Department of Chemistry; University of York, Heslington; York YO10 5DD Großbritannien
| | - Rainer Schobert
- Organische Chemie I; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| |
Collapse
|
20
|
Investigation of the inhibition effect and mechanism of myricetin to Suilysin by molecular modeling. Sci Rep 2017; 7:11748. [PMID: 28924148 PMCID: PMC5603505 DOI: 10.1038/s41598-017-12168-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 01/27/2023] Open
Abstract
In the present study, the inhibitory effect and mechanism of myricetin, a natural flavonoid compound, in relation to Suilysin (SLY) were investigated through molecular dynamics simulations, mutational analysis and fluorescence-quenching assays. Myricetin is a potential inhibitor that does not exhibit antimicrobial activity but has been shown to inhibit SLY cytotoxicity. Molecular dynamics simulations and mutational analysis revealed that myricetin binds directly to SLY in the gap between domains 2 and 3, an important region for oligomerization and pore formation. The results of principal component analysis (PCA) indicated that the binding of myricetin in this gap region restricts the conformational transition of SLY from a monomer to an oligomer, thereby counteracting the haemolytic activity of SLY. This mechanism was verified using a haemolysis assay. These results demonstrated that myricetin is a strong candidate as a novel therapeutic agent for the treatment of Streptococcus suis infections.
Collapse
|
21
|
Zhang B, Teng Z, Li X, Lu G, Deng X, Niu X, Wang J. Chalcone Attenuates Staphylococcus aureus Virulence by Targeting Sortase A and Alpha-Hemolysin. Front Microbiol 2017; 8:1715. [PMID: 28932220 PMCID: PMC5592744 DOI: 10.3389/fmicb.2017.01715] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus (S.aureus) resistance, considered a dilemma for the clinical treatment of this bacterial infection, is becoming increasingly intractable. Novel anti-virulence strategies will undoubtedly provide a path forward in combating these resistant bacterial infections. Sortase A (SrtA), an enzyme responsible for anchoring virulence-related surface proteins, and alpha-hemolysin (Hla), a pore-forming cytotoxin, have aroused great scientific interest, as they have been regarded as targets for promising agents against S. aureus infection. In this study, we discovered that chalcone, a natural small compound with little anti-S. aureus activity, could significantly inhibit SrtA activity with an IC50 of 53.15 μM and Hla hemolysis activity with an IC50 of 17.63 μM using a fluorescence resonance energy transfer (FRET) assay and a hemolysis assay, respectively. In addition, chalcone was proven to reduce protein A (SpA) display in intact bacteria, binding to fibronectin, formation of biofilm and S. aureus invasion. Chalcone could down-regulate the transcriptional levels of the hla gene and the agrA gene, thus leading to a reduction in the expression of Hla and significant protection against Hla-mediated A549 cell injury; more importantly, chalcone could also reduce mortality in infected mice. Additionally, molecular dynamics simulations and mutagenesis assays were used to identify the mechanism of chalcone against SrtA, which implied that the inhibitory activity lies in the bond between chalcone and SrtA residues Val168, Ile182, and Arg197. Taken together, the in vivo and in vitro experiments suggest that chalcone is a potential novel therapeutic compound for S. aureus infection via targeting SrtA and Hla.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xianhe Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| |
Collapse
|
22
|
Wang H, Chen Y, Huang C, Diao M, Zhou Y. Insight into the function of the key residues in the binding clefts of the substrate with CBM4-2 of xylanase Xyn10A by molecular modeling and free energy calculation. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Zhou X, Zhang B, Cui Y, Chen S, Teng Z, Lu G, Wang J, Deng X. Curcumin Promotes the Clearance of Listeria monocytogenes both In Vitro and In Vivo by Reducing Listeriolysin O Oligomers. Front Immunol 2017; 8:574. [PMID: 28567044 PMCID: PMC5434164 DOI: 10.3389/fimmu.2017.00574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/28/2017] [Indexed: 01/28/2023] Open
Abstract
The pore-forming toxin listeriolysin O (LLO), an essential virulence factor that is secreted by Listeria monocytogenes (L. monocytogenes), is responsible for bacterial breaching at the phagosomal membranes and subsequent release into the cytoplasm; it cannot be recognized by the host immune system. The vital role that LLO plays in bacterial pathogenicity and evading host immune clearance makes this virulence a promising target for addressing L. monocytogenes infection. In this study, we hypothesized that curcumin, a polyphenol derived from turmeric that could effectively inhibit LLO pore-forming activity, might be useful in the prevention or treatment of L. monocytogenes infection. Thus, the in vitro protective effects of curcumin against L. monocytogenes infection by targeting LLO were assessed via hemolytic activity assays, cytotoxicity tests, intracellular growth assays, and confocal microscopy. Our results revealed that treating infected macrophages with curcumin can lead to a decrease in LLO-mediated bacteria phagosomal escape and limit the intracellular growth of L. monocytogenes. Moreover, results from animal experiments show that this natural compound effectively increases protection against bacterial infection and helps the host to clear the invading pathogen completely from an animal model, establishing it as a potent antagonist of L. monocytogenes. The results from our molecular modeling and mutational analysis demonstrated that curcumin directly engages with domains 2 and 4 of LLO, thereby decreasing the hemolytic activity of LLO by influencing its oligomerization. Taken together, these results suggest that, as an antitoxin agent, curcumin can be further developed into a novel therapy against L. monocytogenes infections by targeting LLO.
Collapse
Affiliation(s)
- Xuan Zhou
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Cui
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuiye Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
24
|
Song M, Teng Z, Li M, Niu X, Wang J, Deng X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J Cell Mol Med 2017; 21:2586-2598. [PMID: 28402019 PMCID: PMC5618700 DOI: 10.1111/jcmm.13179] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol-dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence-associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY-mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Meng Song
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China
| |
Collapse
|
25
|
Li H, Zhao X, Deng X, Wang J, Song M, Niu X, Peng L. Insights into structure and activity of natural compound inhibitors of pneumolysin. Sci Rep 2017; 7:42015. [PMID: 28165051 PMCID: PMC5292752 DOI: 10.1038/srep42015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
Pneumolysin is the one of the major virulence factor of the bacterium Streptococcus pneumoniae. In previous report, it is shown that β-sitosterol, a natural compound without antimicrobial activity, is a potent antagonist of pneumolysin. Here, two new pneumolysin natural compound inhibitors, with differential activity, were discovered via haemolysis assay. To explore the key factor of the conformation for the inhibition activity, the interactions between five natural compound inhibitors with differential activity and pneumolysin were reported using molecular modelling, the potential of mean force profiles. Interestingly, it is found that incorporation of the single bond (C22-C23-C24-C25) to replace the double bond (hydrocarbon sidechain) improved the anti-haemolytic activity. In view of the molecular modelling, binding of the five inhibitors to the conserved loop region (Val372, Leu460, and Tyr461) of the cholesterol binding sites led to stable complex systems, which was consistent with the result of β-sitosterol. Owing to the single bond (C22-C23-C24-C25), campesterol and brassicasterol could form strong interactions with Val372 and show higher anti-haemolytic activity, which indicated that the single bond (C22-C23-C24-C25) in inhibitors was required for the anti-haemolytic activity. Overall, the current molecular modelling work provides a starting point for the development of rational design and higher activity pneumolysin inhibitors.
Collapse
Affiliation(s)
- Hongen Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoran Zhao
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Song
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
26
|
Wang J, Liu B, Teng Z, Zhou X, Wang X, Zhang B, Lu G, Niu X, Yang Y, Deng X. Phloretin Attenuates Listeria monocytogenes Virulence Both In vitro and In vivo by Simultaneously Targeting Listeriolysin O and Sortase A. Front Cell Infect Microbiol 2017; 7:9. [PMID: 28154809 PMCID: PMC5244253 DOI: 10.3389/fcimb.2017.00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/05/2017] [Indexed: 01/05/2023] Open
Abstract
The critical roles of sortase A (SrtA) and listeriolysin O (LLO) in Listeria monocytogenes pathogenicity render these two virulence factors as ideal targets for the development of anti-virulence agents against L. monocytogenes infection. Additionally, the structures of SrtA and LLO are highly conserved among the members of sortase enzyme family and cholesterol dependent toxin family. Here, phloretin, a natural polyphenolic compound derived from apples and pears that has little anti-L. monocytogenes activity, was identified to simultaneously inhibit LLO expression and neutralize SrtA catalytic activity. Phloretin neutralized SrtA activity by causing a conformational change in the protein's active pocket, which prevented engagement with its substrate. Treatment with phloretin simultaneously reduced L. monocytogenes invasion into host cells and blocked the escape of vacuole-entrapped L. monocytogenes into cytoplasm. Further, L. monocytogenes-infected mice that received phloretin showed lower mortality, decreased bacterial burden and reduced pathological injury. Our results demonstrate that phloretin is a promising anti-infective therapeutic for infections caused by L. monocytogenes due to its simultaneous targeting of SrtA and LLO, which may result in fewer side effects than those caused by other antibiotics.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Bowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Xuan Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Xiyan Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| |
Collapse
|
27
|
Molecular Mechanism of the Flavonoid Natural Product Dryocrassin ABBA against Staphylococcus aureus Sortase A. Molecules 2016; 21:molecules21111428. [PMID: 27792196 PMCID: PMC6273746 DOI: 10.3390/molecules21111428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/14/2016] [Accepted: 10/23/2016] [Indexed: 11/21/2022] Open
Abstract
The intractability of bacterial resistance presents a dilemma for therapies against Staphylococcus aureus (S. aureus) infection. Effective anti-virulence strategies are urgently needed, reflecting the proliferation of resistant strains. Inhibitors of sortase A (SrtA), enzymes that anchor virulence-related surface proteins, are regarded as promising candidates for countermeasures against bacterial infections. In the present study, the inhibitory effect of dryocrassin ABBA (ABBA) against SrtA and its molecular basis has been examined. Fluorescence resonance energy transfer (FRET) assays were used to determine the inhibitory activity of ABBA against SrtA. To identify the mechanism underlying this activity, molecular dynamics simulations and mutagenesis assays were applied, and the results revealed that the direct engagement of SrtA via ABBA through binding to V166 and V168 significantly attenuated the catalytic activity of SrtA. Taken together, these findings indicated that ABBA is a potential novel antimicrobial agent for S. aureus infection via targeting SrtA.
Collapse
|
28
|
Sun X, Qian MD, Guan SS, Shan YM, Dong Y, Zhang H, Wang S, Han WW. Investigation of an "alternate water supply system" in enzymatic hydrolysis in the processive endocellulase Cel7A from Rasamsonia emersonii by molecular dynamics simulation. Biopolymers 2016; 107:46-60. [PMID: 27696356 DOI: 10.1002/bip.22991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
Cel7A from Rasamsonia emersonii is one of the processive endocellulases classified under family 7 glycoside hydrolase. Molecular dynamics simulations were carried out to obtain the optimized sliding and hydrolyzing conformations, in which the reducing ends of sugar chains are located on different sites. Hydrogen bonds are investigated to clarify the interactions between protein and substrate in either conformation. Nine hydrogen bonding interactions are identified in the sliding conformation, and six similar interactions are also found correspondingly in the hydrolyzing conformation. In addition, four strong hydrophobic interactions are also determined. The domain cross-correlation map analysis shows movement correlation of protein including autocorrelation between residues. The root mean square fluctuations analysis represents the various flexibilities of different fragment in the two conformations. Comparing the two conformations reveals the water-supply mechanism of selective hydrolysis of cellulose in Cel7A. The mechanism can be described as follow. When the reducing end of substrate slides from the unhydrolyzing site (sliding conformation) to the hydrolyzing site (hydrolyzing conformation), His225 is pushed down and rotated, the rotation leads to the movement of Glu209 with the interstrand hydrogen bonding in β-sheet. It further makes Asp211 close to the hydrolysis center and provides a water molecule bounding on its carboxyl in the previous unhydrolyzing site. After the hydrolysis takes place and the product is excluded from the enzyme, the Asp211 comes back to its initial position. In summary, Asp211 acts as an elevator to transport outer water molecules into the hydrolysis site for every other glycosidic bond.
Collapse
Affiliation(s)
- Xun Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Meng-Dan Qian
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Shan-Shan Guan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Ya-Ming Shan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Ying Dong
- Bethune pharmaceutical factory, Jilin University, Changchun, 130012, People's Republic of China
| | - Hao Zhang
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Song Wang
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Wei-Wei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China.,Department of Computer Science, C.S. Bond Life Sciences Center, University of Missouri Columbia, Missouri, 65211
| |
Collapse
|
29
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
30
|
Zhao X, Li H, Wang J, Guo Y, Liu B, Deng X, Niu X. Verbascoside Alleviates Pneumococcal Pneumonia by Reducing Pneumolysin Oligomers. Mol Pharmacol 2016; 89:376-87. [PMID: 26700563 DOI: 10.1124/mol.115.100610] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/18/2015] [Indexed: 02/14/2025] Open
Abstract
Pneumolysin (PLY), an essential virulence factor of Streptococcus pneumoniae (pneumococcus), can penetrate the physical defenses of the host and possesses inflammatory properties. The vital role PLY plays in pneumococcus pathogenesis makes this virulence factor one of the most promising targets for the treatment of pneumococcal infection. Verbascoside (VBS) is an agent that does not exhibit bacteriostatic activity but has been shown to inhibit PLY-mediated cytotoxicity. The results from molecular dynamics simulations and mutational analysis indicated that VBS binds to the cleft between domains 3 and 4 of PLY, thereby blocking PLY's oligomerization and counteracting its hemolytic activity. Moreover, VBS can effectively alleviate PLY-mediated human alveolar epithelial (A549) cell injury, and treatment with VBS provides significant protection against lung damage and reduces mortality in a pneumococcal pneumonia murine model. Our results demonstrate that VBS is a strong candidate as a novel therapeutic in the treatment of Streptococcus pneumoniae infection.
Collapse
Affiliation(s)
- Xiaoran Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China (X.Z., H.L., J.F., Y.G., B.L., X.D.); and Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, Jilin University, Changchun, China (X.N.)
| | - Hongen Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China (X.Z., H.L., J.F., Y.G., B.L., X.D.); and Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, Jilin University, Changchun, China (X.N.)
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China (X.Z., H.L., J.F., Y.G., B.L., X.D.); and Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, Jilin University, Changchun, China (X.N.)
| | - Yan Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China (X.Z., H.L., J.F., Y.G., B.L., X.D.); and Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, Jilin University, Changchun, China (X.N.)
| | - Bowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China (X.Z., H.L., J.F., Y.G., B.L., X.D.); and Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, Jilin University, Changchun, China (X.N.)
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China (X.Z., H.L., J.F., Y.G., B.L., X.D.); and Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, Jilin University, Changchun, China (X.N.).
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China (X.Z., H.L., J.F., Y.G., B.L., X.D.); and Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, Jilin University, Changchun, China (X.N.).
| |
Collapse
|
31
|
β-sitosterol interacts with pneumolysin to prevent Streptococcus pneumoniae infection. Sci Rep 2015; 5:17668. [PMID: 26631364 PMCID: PMC4668377 DOI: 10.1038/srep17668] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022] Open
Abstract
Pneumolysin is one of the major virulence factors elaborated by Streptococcus pneumoniae; this toxin is a member of the cholesterol-dependent cytolysins. Engagement of cholesterol induces the formation of a multi-subunit complex by pneumolysin that lyses host cells by forming pores on the membrane. Because pneumolysin released by bacteria which have been killed by conventional antibiotics is still active, agents capable of directly attacking the toxin are considered advantageous against antimicrobials in the treatment of S. pneumoniae infections. Here we found that the phytosterol, β-sitosterol, effectively protects against cell lysis caused by pneumolysin. This compound interacts with the toxin at Thr459 and Leu460, two sites important for being recognized by its natural ligand, cholesterol. Similar to cholesterol, β-sitosterol induces pneumolysin oligomerization. This compound also protects cells from damage by other cholesterol-dependent toxins. Finally, this compound protects mice against S. pneumoniae infection. Thus, β-sitosterol is a candidate for the development of anti-virulence agents against pathogens that rely on cholesterol-dependent toxins for successful infections.
Collapse
|
32
|
Dong J, Zhang Y, Chen Y, Niu X, Zhang Y, Li R, Yang C, Wang Q, Li X, Deng X. Baicalin inhibits the lethality of ricin in mice by inducing protein oligomerization. J Biol Chem 2015; 290:12899-907. [PMID: 25847243 DOI: 10.1074/jbc.m114.632828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
Toxic ribosome-inactivating proteins abolish cell viability by inhibiting protein synthesis. Ricin, a member of these lethal proteins, is a potential bioterrorism agent. Despite the grave challenge posed by these toxins to public health, post-exposure treatment for intoxication caused by these agents currently is unavailable. In this study, we report the identification of baicalin extracted from Chinese herbal medicine as a compound capable of inhibiting the activity of ricin. More importantly, post-exposure treatment with baicalin significantly increased the survival of mice poisoned by ricin. We determined the mechanism of action of baicalin by solving the crystal structure of its complex with the A chain of ricin (RTA) at 2.2 Å resolution, which revealed that baicalin interacts with two RTA molecules at a novel binding site by hydrogen bond networks and electrostatic force interactions, suggesting its role as molecular glue of the RTA. Further biochemical and biophysical analyses validated the amino acids directly involved in binding the inhibitor, which is consistent with the hypothesis that baicalin exerts its inhibitory effects by inducing RTA to form oligomers in solution, a mechanism that is distinctly different from previously reported inhibitors. This work offers promising leads for the development of therapeutics against ricin and probably other ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Jing Dong
- From the Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, the Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223
| | - Yong Zhang
- From the Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062
| | - Yutao Chen
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Xiaodi Niu
- the Department of Food Quality and Safety, Jilin University, Changchun 130062, and
| | - Yu Zhang
- From the Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062
| | - Rui Li
- From the Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062
| | - Cheng Yang
- the College of Pharmacy, NanKai University, Tianjin 300071, China
| | - Quan Wang
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Xuemei Li
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101,
| | - Xuming Deng
- From the Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062,
| |
Collapse
|
33
|
Guan SS, Han WW, Zhang H, Wang S, Shan YM. Insight into the interactive residues between two domains of human somatic Angiotensin-converting enzyme and Angiotensin II by MM-PBSA calculation and steered molecular dynamics simulation. J Biomol Struct Dyn 2015; 34:15-28. [PMID: 25582663 DOI: 10.1080/07391102.2015.1007167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin-angiotensin-aldosterone and kallikrein-kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson-Boltzmann Surface Area calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain-AngII complex is more stable than the N-domain-AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors.
Collapse
Affiliation(s)
- Shan-shan Guan
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Wei-wei Han
- b Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , School of Life Sciences, Jilin University , Changchun 130023 , People's Republic of China
| | - Hao Zhang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Song Wang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Ya-ming Shan
- c School of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|
34
|
Wang J, Zhou X, Liu S, Li G, Shi L, Dong J, Li W, Deng X, Niu X. Morin hydrate attenuates Staphylococcus aureus virulence by inhibiting the self-assembly of α-hemolysin. J Appl Microbiol 2015; 118:753-63. [PMID: 25564958 DOI: 10.1111/jam.12743] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the mechanism by which morin hydrate inhibits the haemolytic activity of α-hemolysin (Hla), a channel-forming toxin that is important for the pathogenesis of disease in experimental animals, and its therapeutic effect against Staphylococcus aureus pneumonia in a mouse model. METHODS AND RESULTS The results from the in vitro (haemolysis, western blot and cytotoxicity assays) and in vivo (mouse model of intranasal lung infection) experiments indicated that morin hydrate, a natural compound with little anti-Staph. aureus activity, could effectively antagonize the cytolytic activity of Hla, alleviate human lung cell injury, and protect against mortality of Staph. aureus pneumonia in a mouse model of infection. Molecular dynamics simulations, free energy calculations and mutagenesis assays were further employed to determine the catalytic mechanism of inhibition, which indicated that a direct binding of morin to the 'Stem' domain of Hla (residues I107 and T109) and the concomitant change in conformation led to the inhibition of the self-assembly of the heptameric transmembrane pore, thus inhibiting the biological activity of Hla for cell lysis. CONCLUSIONS Morin inhibited Staph. aureus virulence via inhibiting the haemolytic activity of α-hemolysin. SIGNIFICANCE AND IMPACT OF THE STUDY These findings suggested that morin is a promising candidate for the development of anti-virulence therapeutic agents for the treatment of Staph. aureus infections.
Collapse
Affiliation(s)
- J Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Qiu J, Wang D, Zhang Y, Dong J, Wang J, Niu X. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin. PLoS One 2013; 8:e80197. [PMID: 24312202 PMCID: PMC3842302 DOI: 10.1371/journal.pone.0080197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/28/2013] [Indexed: 01/13/2023] Open
Abstract
α-Hemolysin (α-HL) is a self-assembling, channel-forming toxin that is produced as a soluble monomer by Staphylococcus aureus strains. Until now, α-HL has been a significant virulence target for the treatment of S. aureus infection. In our previous report, we demonstrated that some natural compounds could bind to α-HL. Due to the binding of those compounds, the conformational transition of α-HL from the monomer to the oligomer was blocked, which resulted in inhibition of the hemolytic activity of α-HL. However, these results have not indicated how the binding of the α-HL inhibitors influence the conformational transition of the whole protein during the oligomerization process. In this study, we found that three natural compounds, Oroxylin A 7-O-glucuronide (OLG), Oroxin A (ORA), and Oroxin B (ORB), when inhibiting the hemolytic activity of α-HL, could bind to the “stem” region of α-HL. This was completed using conventional Molecular Dynamics (MD) simulations. By interacting with the novel binding sites of α-HL, the ligands could form strong interactions with both sides of the binding cavity. The results of the principal component analysis (PCA) indicated that because of the inhibitors that bind to the “stem” region of α-HL, the conformational transition of α-HL from the monomer to the oligomer was restricted. This caused the inhibition of the hemolytic activity of α-HL. This novel inhibition mechanism has been confirmed by both the steered MD simulations and the experimental data obtained from a deoxycholate-induced oligomerization assay. This study can facilitate the design of new antibacterial drugs against S. aureus.
Collapse
Affiliation(s)
- Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dacheng Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Dong
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Department of Food Quality and Safety, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|