1
|
Li Y, Liu Y, Hao D, Xu L, Liu P. Regioselective bromination of pyrrolo[1,2- a]quinoxalines. RSC Adv 2024; 14:36488-36496. [PMID: 39553275 PMCID: PMC11565163 DOI: 10.1039/d4ra07358d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, we report a novel and efficient method for the regioselective bromination of pyrrolo[1,2-a]quinoxalines using tetrabutylammonium tribromide (TBATB). This method exploits the mild nature of TBATB to obtain highly selective C3-brominated or C1, C3-dibrominated products in good yields. Notably, the reaction has a broad substrate applicability, and the C3-brominated product can be synthesized on a gram scale and can be further converted into structurally diverse pyrrolo[1,2-a]quinoxaline derivatives.
Collapse
Affiliation(s)
- Yingqian Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China +86 0993 2057270 +86 0993 2057213
| | - Yali Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China +86 0993 2057270 +86 0993 2057213
| | - Di Hao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China +86 0993 2057270 +86 0993 2057213
| | - Liang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China +86 0993 2057270 +86 0993 2057213
| | - Ping Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China +86 0993 2057270 +86 0993 2057213
| |
Collapse
|
2
|
Singh P, Singh A, Singh DK, Nath M. Applications of Clauson-Kaas Reaction in Organic Synthesis. CHEM REC 2024; 24:e202400112. [PMID: 39434495 DOI: 10.1002/tcr.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/10/2024] [Indexed: 10/23/2024]
Abstract
Pyrrole-embedded organic molecules received a considerable importance due to their numerous biological and material applications. Hence, several synthetic strategies have been devised for the construction of diverse pyrrole analogues over the years. Among these, the Clauson-Kaas reaction is one of the most widely used protocols for the synthesis of various N-substituted pyrroles. This review briefly describes the Clauson-Kaas reaction along with modifications and a detailed account on its applications in the various sectors of organic synthesis.
Collapse
Affiliation(s)
- Pargat Singh
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Abhijeet Singh
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Dileep Kumar Singh
- Department of Chemistry, Bipin Bihari College, Bundelkhand University, Jhansi, 284001, Uttar Pradesh, India
| | - Mahendra Nath
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi, 110007, India
| |
Collapse
|
3
|
Qu CH, Li ST, Liu JB, Chen ZZ, Tang DY, Li JH, Song GT. Site-Selective Access to Functionalized Pyrroloquinoxalinones via H-Atom Transfer from N═C sp2-H Bonds of Quinoxalinones. Org Lett 2024; 26:9244-9250. [PMID: 39440848 DOI: 10.1021/acs.orglett.4c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Site-selective hydrogen atom transfer (HAT) from the N═Csp2-H bonds of quinoxaline-2(1H)-ones is a highly attractive but underdeveloped domain. Reported herein is a highly selective, practical, and economically efficient approach for facile assembly of pyrroloquinoxalinones by synergistic photocatalysis and HAT catalysis. The reaction proceeds through bromine radical-mediated HAT of quinoxalinones and imine radical addition to α-cyano-α,β-unsaturated ketones that establishes a cross-coupling/annulation cascade process, resulting in the synthesis of a series of functionalized pyrroloquinoxalinones. This protocol does not require transition metals or excess oxidants and uses easy-to-synthesize starting materials with excellent scalability and broad substrate scope. The establishment of N═Csp2 radical chemistry illustrates great potential for the synthesis of imine-containing molecules that are not possible with some traditional methods.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Shu-Ting Li
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jian-Bo Liu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jia-Hong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Gui-Ting Song
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
4
|
Aksakal N, Zora M. InCl 3-Catalyzed One-Pot Synthesis of Pyrrolo/Indolo- and Benzooxazepino-Fused Quinoxalines. ACS OMEGA 2024; 9:33251-33260. [PMID: 39100308 PMCID: PMC11292660 DOI: 10.1021/acsomega.4c05239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
In this paper, we describe an efficient InCl3-catalyzed two-component reaction of 1-(2-aminophenyl)pyrroles/indoles and 2-propargyloxybenzaldehydes for the direct synthesis of 12bH-benzo[6,7]1,4-oxazepino[4,5-a]pyrrolo/indolo[2,1-c]quinoxalines. This high atom- and step-economical one-pot process generates three new C/N-C bonds in a single synthetic operation, resulting in the formation of new six- and seven-membered heterocyclic rings. The easy availability of the starting materials, the use of the relatively inexpensive indium catalyst, and the good substrate scope are the salient features of this strategy. The proposed mechanistic pathway involves imine formation, two consecutive cyclizations via electrophilic aromatic substitution and nucleophilic addition reactions, and the H shift step.
Collapse
Affiliation(s)
- Nuray
Esra Aksakal
- Department
of Chemistry, Faculty of Arts and Science, Middle East Technical University, 06800 Ankara, Turkey
- Department
of Nutrition and Dietetics, Faculty of Health Sciences, Halic University, 34060 Istanbul, Turkey
| | - Metin Zora
- Department
of Chemistry, Faculty of Arts and Science, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
5
|
An Z, Miao M, Sun F, Lan XB, Yu JQ, Guo X, Zhang J. Copper-catalyzed oxidative cyclization of 2-(1 H-pyrrol-1-yl)aniline and alkylsilyl peroxides: a route to pyrrolo[1,2- a]quinoxalines. Org Biomol Chem 2024; 22:2370-2374. [PMID: 38416487 DOI: 10.1039/d3ob01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
An efficient method was developed for the one-pot construction of pyrrolo[1,2-a]quinoxalines via a Cu(II)-catalyzed domino reaction between 2-(1H-pyrrol-1-yl)anilines and alkylsilyl peroxides. This reaction proceeds through C-C bond cleavage and new C-C and C-N bond formation. A mechanistic study suggests that alkyl radical species participate in the cascade reaction.
Collapse
Affiliation(s)
- Zhenyu An
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Man Miao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Fengkai Sun
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiao-Bing Lan
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian-Qiang Yu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiaoli Guo
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian Zhang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Li Y, He L, Qin H, Liu Y, Yang B, Xu Z, Yang D. A Facile Ugi/Ullmann Cascade Reaction to Access Fused Indazolo-Quinoxaline Derivatives with Potent Anticancer Activity. Molecules 2024; 29:464. [PMID: 38257377 PMCID: PMC10820152 DOI: 10.3390/molecules29020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
A facile methodology for the construction of a complex heterocycle indazolo-fused quinoxalinone has been developed via an Ugi four-component reaction (U-4CR) followed by an intramolecular Ullmann reaction. The expeditious process features an operationally simple approach, time efficiency, and a broad substrate scope. Biological activity was evaluated and demonstrated that compound 6e inhibits human colon cancer cell HCT116 proliferation with an IC50 of 2.1 μM, suggesting potential applications for developing a drug lead in medicinal chemistry.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liujun He
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hongxia Qin
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yao Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Binxin Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhigang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Donglin Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
7
|
Damai M, Guzzardi N, Lewis V, Rao ZX, Sykes D, Patel B. Crafting mono- and novel bis-methylated pyrroloquinoxaline derivatives from a shared precursor and its application in the total synthesis of marinoquinoline A. RSC Adv 2023; 13:29561-29567. [PMID: 37822662 PMCID: PMC10562898 DOI: 10.1039/d3ra05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The synthesis of mono- and novel bis-methylated pyrrolo[1,2-a]quinoxalines through the addition of unstable methyl radicals to aryl isocyanides is described contingent upon the reaction conditions employed. The strategy has been effectively employed in the total synthesis of the natural product marinoquinoline A.
Collapse
Affiliation(s)
- Margarita Damai
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Norman Guzzardi
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Viliyana Lewis
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Zenobia X Rao
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Daniel Sykes
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Bhaven Patel
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| |
Collapse
|
8
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
9
|
Sheng X, Xian J, Liu S, Zhang X, Li B, Wang J, Chen X, Xie F. Green Synthesis of Pyrrolo[1,2-α]quinoxalines by Palladium-Catalyzed Transfer Hydrogenation with Nitriles as Carbon Synthons. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Liu H, Mai X, Xian J, Liu S, Zhang X, Li B, Chen X, Li Y, Xie F. Construction of Spirocyclic Pyrrolo[1,2- a]quinoxalines via Palladium-Catalyzed Hydrogenative Coupling of Phenols and Nitroarenes. J Org Chem 2022; 87:16449-16457. [PMID: 36455265 DOI: 10.1021/acs.joc.2c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The replacement of fossil resources with biomass resources in the construction of N-heterocycles is rapidly attracting research interest. Herein, we report palladium-catalyzed selective hydrogenative coupling of nitroarenes and phenols based on a transfer hydrogenation strategy, allowing straightforward access to spirocyclic pyrrolo- and indolo-fused quinoxalines, a class of compounds found in numerous natural alkaloids. The synthetic protocol is characterized by a broad substrate scope and the utilization of biomass-derived reactants and commercially available catalysts. In such transformations, high-pressure and explosive hydrogen are not required. This report provides a new protocol for converting biomass-derived phenols into value-added nitrogen-containing chemicals.
Collapse
Affiliation(s)
- Haibo Liu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiaomin Mai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Jiayi Xian
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Shuting Liu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiangyu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| |
Collapse
|
11
|
Copper-promoted C1−H amination of pyrrolo[1,2-a]quinoxaline with N‑fluorobenzenesulfonimide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Wang Q, Hu X, Shi W, Long H, Wang H. Design, synthesis and biological evaluation of chromone derivatives as novel protein kinase CK2 inhibitors. Bioorg Med Chem Lett 2022; 69:128799. [PMID: 35580724 DOI: 10.1016/j.bmcl.2022.128799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Protein kinase CK2 is a potential target for the discovery of anticancer drugs. Flavonoids are reported to be effective CK2 inhibitors. Herein, based on structural trimming of flavonoids, a series of chromone-2-aminothiazole derivatives (1a-d, 2a-g, 4a-j, 5a-k) were designed and synthesized by hybridizing the chromone skeleton with 2-aminothiazole scaffold. Among these compounds, compound 5i was the most effective CK2 inhibitor (IC50 = 0.08 μM) and possessed potent anti-proliferative activity against HL-60 tumor cells (IC50 = 0.25 μM). Cellular thermal shift assay (CESTA) confirmed that 5i directly bound to the CK2, and the possible binding mode of 5i toward CK2 was also simulated. Further studies showed that 5i induced the apoptosis of HL-60 cells and arrested the cell cycle. Finally, western-blot analysis showed that 5i could inhibit the downstream of CK2, including α-catenin/Akt pathway and PARP/Survivin pathway.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - XiaoLong Hu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huan Long
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
13
|
Samanta SK, Sarkar R, Sengupta U, Das S, Ganguly D, Hasija A, Chopra D, Bera MK. A direct entry to polycyclic quinoxaline derivatives via I 2-DMSO mediated oxidative decarboxylation of α-amino acids and the subsequent Pictet-Spengler cyclization reaction. Org Biomol Chem 2022; 20:4650-4658. [PMID: 35612282 DOI: 10.1039/d2ob00503d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A facile and highly efficient iodine-promoted strategy has been delineated for the synthesis of indolo and pyrrolo[1,2-a]quinoxaline derivatives via an oxidative Pictet-Spengler type amino cyclo-annulation reaction using ∝-amino acids as aldehyde surrogates. The concomitant benzylic oxidation and the compatibility of different starting materials under standard conditions made the current method versatile. The salient features of the protocol such as readily available starting materials, inexpensive promoters, environmental benignity, broad substrate scope, scalability, and good to excellent yield make the method more attractive to practitioners of organic synthesis.
Collapse
Affiliation(s)
- Surya Kanta Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Rumpa Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Utsav Sengupta
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Sayan Das
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Avantika Hasija
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| |
Collapse
|
14
|
Divya KM, Savitha DP, Krishna GA, Dhanya TM, Mohanan PV. Crystal structure, DFT studies, Hirshfeld surface and energy framework analysis of 4-(5-nitro-thiophen-2-yl)-pyrrolo [1, 2-a] quinoxaline: A potential SARS-CoV-2 main protease inhibitor. J Mol Struct 2022; 1251:131932. [PMID: 36536784 PMCID: PMC9749918 DOI: 10.1016/j.molstruc.2021.131932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
The title compound 4-(5-nitro-thiophen-2-yl)-pyrrolo[1,2-a] quinoxaline (5NO2TAAPP) was obtained by a straightforward catalyst-free reaction of 5-nitro-2- thiophene carboxaldehyde and 1-(2-aminophenyl) pyrrole in methanol and was structurally characterized by FT IR, UV-Vis, NMR spectroscopic techniques and elemental analysis. The structure of the compound has been confirmed by the single-crystal X-ray diffraction technique. The compound crystallizes in a monoclinic crystal system with space group P21/c. Unit cell dimensions: a = 12.2009(17) A0, b = 8.3544(9) A0, c = 13.9179(17) A0 and β = 104.980(5) A0. Hirshfeld surface analysis was carried out to understand the different intermolecular interactions. The two-dimensional fingerprint plot revealed the most prominent interactions in the compound. Theoretical calculations were executed using Density functional theory (DFT) by Gaussian09 software to develop optimized geometry and frontier molecular orbital analysis. Molecular docking studies revealed that the title compound is a potent inhibitor of Main protease 3CLpro with PDB ID: 6LU7, the viral protease which is responsible for the new Corona Virus Disease (COVID-19).
Collapse
Affiliation(s)
- K M Divya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
- Department of Chemistry, N.S.S College, University of Kerala, Cherthala, Alappuzha, India
| | - D P Savitha
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
| | - G Anjali Krishna
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
| | - T M Dhanya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
| | - P V Mohanan
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
| |
Collapse
|
15
|
Chemboli R, Prasad K, Rao PR, Kumar ADN, Tej MB, Kapavarapu R, Rao MVB, Pal M. Sonochemical synthesis of indolo[1,2-a]quinoxaline derivatives in the presence of Amberlyst-15: Their evaluation as potential cytotoxic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Hao D, Yang Z, Liu Y, Li Y, Li C, Gu Y, Vaccaro L, Liu J, Liu P. Pd-Catalyzed direct C-H arylation of pyrrolo[1,2- a]quinoxalines. Org Biomol Chem 2022; 20:847-851. [PMID: 34994375 DOI: 10.1039/d1ob02248b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient Pd-catalyzed direct C-H arylation of pyrrolo[1,2-a]quinoxalines with aryl iodides is described, providing a selective route toward a series of 1-arylated and 1,3-diarylated pyrrolo[1,2-a]quinoxalines in good yields. This method features a broad substrate scope, good functional group tolerance and gram-scale synthesis. Furthermore, the C3-thiocyanation of the arylated product is also achieved. We believe that these novel aryl-substituted pyrrolo [1,2-a]quinoxalines will have a variety of applications in organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Di Hao
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832004, China.
| | - Zhen Yang
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832004, China.
| | - Yali Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832004, China.
| | - Yang Li
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832004, China.
| | - Chuntian Li
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832004, China.
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan City, 430074, China
| | - Luigi Vaccaro
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Jichang Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832004, China.
| | - Ping Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832004, China.
| |
Collapse
|
17
|
Escalante CH, Carmona-Hernández FA, Hernández-López A, Martínez-Mora EI, Delgado F, Tamariz J. Cascade synthesis of indolizines and pyrrolo[1,2- a]pyrazines from 2-formyl-1-propargylpyrroles. Org Biomol Chem 2022; 20:396-409. [PMID: 34904608 DOI: 10.1039/d1ob01839f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward synthesis of indolizines and pyrrolo[1,2-a]pyrazines was performed through a cascade condensation/cyclization/aromatization reaction of substituted 2-formyl-N-propargylpyrroles with active methylene compounds such as nitromethane, alkyl malonates, methyl cyanoacetate and malononitrile. Under basic conditions, the reaction proceeded satisfactorily to provide the corresponding 6,7-disubstituted indolizines. The condensation of the pyrrolic analogues with ammonium acetate gave rise to pyrrolo[1,2-a]pyrazines in high yields. N-Allenyl-2-formylpyrroles behaved as more reactive substrates than 2-formyl-N-propargylpyrroles, furnishing the expected indolizines in higher yields. Hence, an allenyl-containing intermediate was probably generated as the reactive species in the reaction mechanism of some N-propargyl pyrroles prior to the cyclization reaction.
Collapse
Affiliation(s)
- Carlos H Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Fernando A Carmona-Hernández
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Alberto Hernández-López
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Eder I Martínez-Mora
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico. .,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza e Ing. J. Cárdenas S/N, 25280 Saltillo, Coah., Mexico
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| |
Collapse
|
18
|
reda R, Al-Karmalawy AA, Alotaibi M, saleh M. Quinoxaline Derivatives as a Promising Scaffold for Breast Cancer Treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj00050d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
According to Global Cancer Statistics 2021, female breast cancer has exceeded lung cancer as the most frequently diagnosed cancer. As a result of this widespread breast cancer, it was necessary...
Collapse
|
19
|
Li Y, Liu Y, Hao D, Li C, Liu Y, Gu Y, Vaccaro L, Liu P. Cu-catalyzed direct C1–H trifluoromethylation of pyrrolo[1,2-a]quinoxalines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Borah B, Chowhan LR. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv 2021; 11:37325-37353. [PMID: 35496411 PMCID: PMC9043781 DOI: 10.1039/d1ra06942j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023] Open
Abstract
Quinoxalines, also known as benzo[a]pyrazines, constitute an important class of nitrogen-containing heterocyclic compounds as a result of their widespread prevalence in natural products, biologically active synthetic drug candidates, and optoelectronic materials. Owing to their importance and chemists' ever-increasing imagination of new transformations of these products, tremendous efforts have been dedicated to finding more efficient approaches toward the synthesis of quinoxaline rings. The last decades have witnessed a marvellous outburst in modifying organic synthetic methods to create them sustainable for the betterment of our environment. The exploitation of transition-metal-free catalysis in organic synthesis leads to a new frontier to access biologically active heterocycles and provides an alternative method from the perspective of green and sustainable chemistry. Despite notable developments achieved in transition-metal catalyzed synthesis, the high cost involved in the preparation of the catalyst, toxicity, and difficulty in removing it from the final products constitute disadvantageous effects on the atom economy and eco-friendly nature of the transformation. In this review article, we have summarized the recent progress achieved in the synthesis of quinoxalines under transition-metal-free conditions and cover the reports from 2015 to date. This aspect is presented alongside the mechanistic rationalization and limitations of the reaction methodologies. The scopes of future developments are also highlighted.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
21
|
Saini KM, Saunthwal RK, Kumar A, Verma AK. Tandem 6π-Azatriene Electrocyclization of Fused Amino-cyclopentenones: Synthesis of Functionalized Pyrrolo- and Indolo-quinoxalines. Org Lett 2021; 23:7586-7591. [PMID: 34543027 DOI: 10.1021/acs.orglett.1c02782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A tandem 6π-azacyclization approach for the synthesis of diversified pyrrolo/indolo[1,2-a]quinoxalines from amino-cyclopentenones has been developed. The reaction proceeds through a trifluoroacetic-acid-mediated 6π-electrocyclization and concomitant opening of the cyclopentenone ring. The advantageous features of the developed chemistry include transition-metal-free conditions, operational simplicity, and a broad substrate scope. Further X-ray crystallographic studies confirm the assigned structures of the fused heterocycles.
Collapse
Affiliation(s)
- Kapil Mohan Saini
- Kalindi College, Department of Chemistry, University of Delhi, Delhi 110008, India
| | - Rakesh K Saunthwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign 61801, United States
| | - Ankit Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
22
|
An Effient Synthesis of Pyrrolo[1,2‐
a
]quinoxaline Derivatives via Isocyanide Insertion into the N−H Bond of 2‐(1
H
‐pyrrol‐1‐yl)anilines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Li Y, Yang Z, Liu Y, Liu Y, Gu Y, Liu P. Cu-catalyzed direct C1−H difluoromethylation of pyrrolo[1,2-a]quinoxalines. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Liu Y, Wei Y, Yang Z, Li Y, Liu Y, Liu P. Highly selective C3-H iodination of pyrrolo[1,2- a]quinoxalines. Org Biomol Chem 2021; 19:5191-5196. [PMID: 34042149 DOI: 10.1039/d1ob00759a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a C3-H direct iodination of pyrrolo[1,2-a]quinoxalines with TBAI or I2; a series of novel 3-iodopyrrolo[1,2-a]quinoxaline derivatives were obtained with excellent regioselectivity and broad substrate scope. Mechanism studies show that a catalytic amount of p-toluenesulfonic acid significantly promotes the selectivity and conversion of the reaction. Notably, the reaction can be performed on a gram scale, and the iodinated products can be further transformed into potentially biologically active pyrrolo[1,2-a]quinoxaline derivatives by palladium-catalyzed coupling reactions.
Collapse
Affiliation(s)
- Yali Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832004, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832004, China.
| | - Zhen Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832004, China.
| | - Yang Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832004, China.
| | - Yan Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832004, China.
| | - Ping Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832004, China.
| |
Collapse
|
25
|
Ahn J, Lee SB, Song I, Chun S, Oh DC, Hong S. Synthesis of 4-Aryl Pyrrolo[1,2-α]quinoxalines via Iron-Catalyzed Oxidative Coupling from an Unactivated Methyl Arene. J Org Chem 2021; 86:7390-7402. [PMID: 34028267 DOI: 10.1021/acs.joc.1c00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, we describe the direct synthesis of pyrrolo[1,2-α]quinoxaline via oxidative coupling between methyl arene and 1-(2-aminophenyl) pyrroles. Oxidation of the benzylic carbon of the methyl arene was achieved by di-t-butyl peroxide in the presence of an iron catalyst, followed by conversion to an activated aldehyde in situ. Oxygen played a crucial role in the oxidation process to accelerate benzaldehyde formation. Subsequent Pictet-Spengler-type annulation completed the quinoxaline structure. The protocol tolerated various kinds of functional groups and provided 22 4-aryl pyrrolo[1,2-α]quinoxalines when various methyl arene derivatives were used. The developed method proceeded in air, and all catalysts, reagents, and solvents were easily accessible.
Collapse
Affiliation(s)
- Jiwon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Injae Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
26
|
Zhang G, Yu Y, He C, Wang Z, Chen Y. Palladium(II)-Catalyzed C(sp)–C(sp2) Coupling: A Direct Approach to Multi-Substituted Pyrrolo[1,2-a]pyrazines. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A direct synthesis of multi-substituted pyrrolo[1,2-a]pyrazines via palladium(II)-catalyzed C(sp)–C(sp2) cascade coupling and intramolecular cyclization in the presence of ligand was developed. This reaction originates from phenylboronic acids and readily synthesized 2-carbonyl- or 2-formylpyrroloacetonitriles, and affords products in good to excellent yields for a diversity of substrates. Additionally, a possible mechanism for the transformation is proposed.
Collapse
|
27
|
Li S, Feng L, Ma C. Simple and green synthesis of benzimidazoles and pyrrolo[1,2- a]quinoxalines via Mamedov heterocycle rearrangement. NEW J CHEM 2021. [DOI: 10.1039/d1nj01251g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This method is metal and catalyst-free and only solvent (HOAc) is required with H2O as the sole byproduct.
Collapse
Affiliation(s)
- Shichen Li
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| |
Collapse
|
28
|
Liu Y, Yang Z, Li Y, Liu Y, Liu P. Solvent Mediated Selective C—H Bond Iodination of Pyrrolo[1,2-a]quinoxaline. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung JK. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2- a]quinoxalines, quinazolinones, and other N-heterocycles via decarboxylative oxidative annulation reaction. RSC Adv 2020; 10:37202-37208. [PMID: 35521290 PMCID: PMC9057147 DOI: 10.1039/d0ra07093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Mayavan Viji
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Manjunatha Vishwanath
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Jaeuk Sim
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Yunjeong Park
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Chanhyun Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Seohu Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Heesoon Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Kiho Lee
- College of Pharmacy, Korea University Sejong 30019 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| |
Collapse
|
30
|
Makane VB, Vamshi Krishna E, Karale UB, Babar DA, Kalari S, Rekha EM, Shukla M, Kaul G, Sriram D, Chopra S, Misra S, Rode HB. Synthesis of novel 4,5-dihydropyrrolo[1,2-a]quinoxalines, pyrrolo[1,2-a]quinoxalin]-2-ones and their antituberculosis and anticancer activity. Arch Pharm (Weinheim) 2020; 353:e2000192. [PMID: 32786042 DOI: 10.1002/ardp.202000192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/25/2023]
Abstract
A facile strategy was developed for the synthesis of biologically important 4,5-dihydropyrrolo[1,2-a]quinoxalines and pyrrolo[1,2-a]quinoxalin]-2-ones by treating 2-(1H-pyrrol-1-yl)anilines with imidazo[1,2-a]pyridine-3-carbaldehyde or isatin, using amidosulfonic acid (NH3 SO3 ) as a solid catalyst in water at room temperature. The protocol has been extended to electrophile ninhydrin. The catalyst could be recycled for six times without the loss of activity. The compounds were evaluated for their antituberculosis, antibacterial, and anticancer activities. It is worth noting that compounds 3d and 3e demonstrated a minimum inhibitory concentration value of 6.25 µM against Mycobacterium tuberculosis H37Rv, whereas compounds 3d, 3g, 5d, 5e, and 5i showed a remarkable inhibition of A549, DU145, HeLa, HepG2, MCF-7, and B16-F10 cell lines, respectively. Staphylococcus aureus was inhibited by compounds 5b, 5e, 5d, 5g, and 5l at 32 µg/ml.
Collapse
Affiliation(s)
- Vitthal B Makane
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Eruva Vamshi Krishna
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Uattam B Karale
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Dattatraya A Babar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Saradhi Kalari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Estharla M Rekha
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| | - Manjulika Shukla
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sunil Misra
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
31
|
Li S, Xie C, Chu X, Dai Z, Feng L, Ma C. KI-Mediated One-Pot Transition-Metal-Rree Synthesis of 4-Phenylpyrrolo[1,2-a
]quinoxalines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shichen Li
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Caixia Xie
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 255049 Zibo P.R. China
| | - Xianglong Chu
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Zhen Dai
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| |
Collapse
|
32
|
Azzam RA, Mohareb RM, Helal MH, Eisa KK. Cytotoxicity, tyrosine kinase inhibition of novel pyran, pyridine, thiophene, and imidazole derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rasha A. Azzam
- Department of Chemistry, Faculty of ScienceHelwan University Cairo Egypt
| | - Rafat M. Mohareb
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | - Maher H. Helal
- Department of Chemistry, Faculty of ScienceHelwan University Cairo Egypt
| | - Kholoud K. Eisa
- Department of Chemistry, Faculty of ScienceHelwan University Cairo Egypt
| |
Collapse
|
33
|
Synthesis, characterization of some pyrazine derivatives as anti-cancer agents: In vitro and in Silico approaches. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Zhou K, Bao M, Huang J, Kang Z, Xu X, Hu W, Qian Y. Iron-catalyzed [3 + 2]-cycloaddition of in situ generated N-ylides with alkynes or olefins: access to multi-substituted/polycyclic pyrrole derivatives. Org Biomol Chem 2020; 18:409-414. [PMID: 31894231 DOI: 10.1039/c9ob02571e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An iron-catalyzed one-pot three-component reaction of 1-substituted benzimidazoles with diazoacetates and electron-deficient alkynes or alkenes has been reported. Mechanistically, the reaction goes through a 1,3-dipolar cycloaddition of catalytically generated benzimidazolium N-ylides with various activated alkynes or alkenes, leading to multi-substituted and polycyclic fused pyrrole derivatives, respectively.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Guillon J, Nim S, Moreau S, Ronga L, Savrimoutou S, Thivet E, Marchivie M, Di Pietro A, Prasad R, Le Borgne M. Synthesis of new piperazinyl-pyrrolo[1,2- a]quinoxaline derivatives as inhibitors of Candida albicans multidrug transporters by a Buchwald-Hartwig cross-coupling reaction. RSC Adv 2020; 10:2915-2931. [PMID: 35496110 PMCID: PMC9048445 DOI: 10.1039/c9ra09348f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Two series of piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives were prepared via a Buchwald–Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of CaCdr1p and CaMdr1p transporters of Candida albicans overexpressed in a Saccharomyces cerevisiae strain. In the initial screening of twenty-nine piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives, twenty-three compounds behaved as dual inhibitors of CaCdr1p and CaMdr1p. Only four compounds showed exclusive inhibition of CaCdr1p or CaMdr1p. Further biological investigations were developed and for example, their antifungal potential was evaluated by measuring the growth of control yeast cells (AD1-8u−) and efflux pump-overexpressing cells (AD-CDR1 and AD-MDR1) after exposition to variable concentrations of the tested compounds. The MIC80 values of nineteen compounds ranging from 100 to 901 μM for AD-CDR1 demonstrated that relative resistance index (RI) values were between 8 and 274. In comparison, only seven compounds had RI values superior to 4 in cells overexpressing Mdr1p. These results indicated substrate behavior for nineteen compounds for CaCdr1p and seven compounds for CaMdr1p, as these compounds were transported via MDR transporter overexpressing cells and not by the AD1-8u− cells. Finally, in a combination assay with fluconazole, two compounds (1d and 1f) have shown a synergistic effect (fractional inhibitory concentration index (FICI) values ≤ 0.5) at micromolar concentrations in the AD-MDR1 yeast strain overexpressing CaMdr1p-protein, indicating an excellent potency toward chemosensitization. Two series of piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives were prepared via a Buchwald–Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of two Candida albicans transporters.![]()
Collapse
Affiliation(s)
- Jean Guillon
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Shweta Nim
- School of Life Sciences, Jawaharlal Nehru University 110067 New Delhi India
| | - Stéphane Moreau
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Luisa Ronga
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Solène Savrimoutou
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Elisabeth Thivet
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026 F-33608 Pessac Cedex France
| | - Attilio Di Pietro
- DRMP Group, IBCP, UMR 5086 (MMSB), CNRS/Lyon I University 69367 Lyon France
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Education Valley Gurgaon 122413 India
| | - Marc Le Borgne
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7 Lyon France
| |
Collapse
|
36
|
Strätker K, Haidar S, Amesty Á, El-Awaad E, Götz C, Estévez-Braun A, Jose J. Development of an in vitro screening assay for PIP5K1α lipid kinase and identification of potent inhibitors. FEBS J 2020; 287:3042-3064. [PMID: 31876381 DOI: 10.1111/febs.15194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) participates in the phosphoinositide-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Despite the evidence that hPIP5K1α plays a role in the development of prostate cancer (PCa), only one inhibitor is known to date. With the aim of identifying new inhibitors, a nonradiometric assay for measurement of the hPIP5K1α enzyme activity was developed. The assay is based on the separation of the fluorescently labeled substrate phosphatidylinositol-4-phosphate (PI(4)P) and the resulting product phosphatidylinositol-4,5-bisphosphate (PIP2 ) by capillary electrophoresis (CE). Furthermore, an inactive mutant K261A of hPIP5K1α was generated by site-directed mutagenesis and used as a control. Michaelis-Menten analysis revealed a Km value of 21.6 µm and Vmax of 0.65 pmol·min-1 for the cosubstrate ATP. The average Z' value was determined to be 0.86, indicating a high reliability of the assay. An in silico screening of an in-house compound library was performed employing the crystal structure of zebrafish PIP5K1α. By applying this strategy, three compounds with a 2-amino-3-cyano-4H-pyranobenzoquinone scaffold were identified and tested using the CE-based assay. These compounds inhibited hPIP5K1α to > 90% at a concentration of 50 µm. Subsequently, the inhibitory activity of all compounds with a pyranobenzoquinone scaffold (29) was tested on hPIP5K1α. Compound 4-(2-amino-3-cyano-6-hydroxy-5,8-dioxo-7-undecyl-5,8-dihydro-4H-chromen-4-yl)benzoic acid appeared to be the most potent inhibitor of hPIP5K1α identified so far with an IC50 value of 1.55 µm, exhibiting a substrate-competitive mode of action. The effects of this compound on cell viability and the induction of apoptosis were investigated in LNCaP, DU145, and PC3 PCa cells.
Collapse
Affiliation(s)
- Katja Strätker
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany
| | - Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.,Faculty of Pharmacy, Damascus University, Syria
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Universidad de La Laguna, Spain
| | - Ehab El-Awaad
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Claudia Götz
- Universität des Saarlandes Medizinische Biochemie und Molekularbiologie Geb, Homburg, Germany
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Universidad de La Laguna, Spain
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany
| |
Collapse
|
37
|
Yang Z, He J, Wei Y, Li W, Liu P, Zhao J, Wei Y. NCS-promoted thiocyanation and selenocyanation of pyrrolo[1,2-a]quinoxalines. Org Biomol Chem 2020; 18:9088-9094. [DOI: 10.1039/d0ob01818j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient NCS-promoted thiocyanation of pyrrolo[1,2-a]quinoxalines with NH4SCN or KSCN was developed. Moreover, in the presence of KSeCN, the selenocyanation of pyrrolo[1,2-a]quinoxalines was also achieved.
Collapse
Affiliation(s)
- Zhen Yang
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Jing He
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Yueting Wei
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Weiwei Li
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Ping Liu
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Jixing Zhao
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Yu Wei
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| |
Collapse
|
38
|
Yang Z, He J, Wei Y, Li W, Liu P. KI/TBHP-promoted [3 + 2] cycloaddition of pyrrolo[1,2-a]quinoxalines and N-arylsulfonylhydrazones. Org Biomol Chem 2020; 18:3360-3366. [DOI: 10.1039/d0ob00494d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of diverse fused [1,2,4]triazolo[3,4-c]quinoxalines was obtained by an efficient KI/TBHP-promoted [3 + 2] cycloaddition of pyrrolo[1,2-a]quinoxalines and N-arylsulfonylhydrazones.
Collapse
Affiliation(s)
- Zhen Yang
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Jing He
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Yueting Wei
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Weiwei Li
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Ping Liu
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| |
Collapse
|
39
|
Wang X, Liu H, Xie C, Zhou F, Ma C. Terminal methyl as a one-carbon synthon: synthesis of quinoxaline derivatives via radical-type transformation. NEW J CHEM 2020. [DOI: 10.1039/c9nj04910j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An iron-promoted method for the construction of pyrrolo[1,2-a]quinoxaline derivatives has been developed. Various solvents with terminal methyl group, including ethers, amines and dimethyl sulfoxide, were utilized as carbon sources for the synthesis.
Collapse
Affiliation(s)
- Xinfeng Wang
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Huanhuan Liu
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Caixia Xie
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Feiyu Zhou
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Chen Ma
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| |
Collapse
|
40
|
Haidar S, Marminon C, Aichele D, Nacereddine A, Zeinyeh W, Bouzina A, Berredjem M, Ettouati L, Bouaziz Z, Le Borgne M, Jose J. QSAR Model of Indeno[1,2- b]indole Derivatives and Identification of N-isopentyl-2-methyl-4,9-dioxo-4,9-Dihydronaphtho[2,3- b]furan-3-carboxamide as a Potent CK2 Inhibitor. Molecules 2019; 25:molecules25010097. [PMID: 31888043 PMCID: PMC6982966 DOI: 10.3390/molecules25010097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/25/2022] Open
Abstract
Casein kinase II (CK2) is an intensively studied enzyme, involved in different diseases, cancer in particular. Different scaffolds were used to develop inhibitors of this enzyme. Here, we report on the synthesis and biological evaluation of twenty phenolic, ketonic, and para-quinonic indeno[1,2-b]indole derivatives as CK2 inhibitors. The most active compounds were 5-isopropyl-1-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione 4h and 1,3-dibromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione 4w with identical IC50 values of 0.11 µM. Furthermore, the development of a QSAR model based on the structure of indeno[1,2-b]indoles was performed. This model was used to predict the activity of 25 compounds with naphtho[2,3-b]furan-4,9-dione derivatives, which were previously predicted as CK2 inhibitors via a molecular modeling approach. The activities of four naphtho[2,3-b]furan-4,9-dione derivatives were determined in vitro and one of them (N-isopentyl-2-methyl-4,9-dioxo-4,9-dihydronaphtho[2,3-b]furan-3-carboxamide) turned out to inhibit CK2 with an IC50 value of 2.33 µM. All four candidates were able to reduce the cell viability by more than 60% after 24 h of incubation using 10 µM.
Collapse
Affiliation(s)
- Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
- Faculty of Pharmacy, 17 April street, Damascus University, Damascus P.O. Box 9411, Syria
| | - Christelle Marminon
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
| | - Abdelhamid Nacereddine
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Wael Zeinyeh
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Abdeslem Bouzina
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar—Annaba University, Box 12, Annaba 23000, Algeria;
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar—Annaba University, Box 12, Annaba 23000, Algeria;
| | - Laurent Ettouati
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Zouhair Bouaziz
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Marc Le Borgne
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
- Correspondence: ; Tel.: +49-251-8332200; Fax: +49-251-8332211
| |
Collapse
|
41
|
Patil BN, Lade JJ, Pardeshi SD, Patil P, Chaskar AC. Polyethylene‐Glycol‐ (PEG‐400) Mediated Environmentally Benign Protocol for the Synthesis of Pyrrolo[1,2‐a]quinoxalines from Benzyl Amines at Room Temperature. ChemistrySelect 2019. [DOI: 10.1002/slct.201902656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bhausaheb N. Patil
- National Centre for Nanosciences and NanotechnologyUniversity of Mumbai, VidyanagariKalina Campus, Santacruz (East) Mumbai- 400098, Maharashtra India
| | - Jatin J. Lade
- National Centre for Nanosciences and NanotechnologyUniversity of Mumbai, VidyanagariKalina Campus, Santacruz (East) Mumbai- 400098, Maharashtra India
| | - Sachin D. Pardeshi
- National Centre for Nanosciences and NanotechnologyUniversity of Mumbai, VidyanagariKalina Campus, Santacruz (East) Mumbai- 400098, Maharashtra India
| | - Prashant Patil
- VERT Chemmie, Naupada, Thane (W) 400602 Maharashtra India
| | - Atul C. Chaskar
- National Centre for Nanosciences and NanotechnologyUniversity of Mumbai, VidyanagariKalina Campus, Santacruz (East) Mumbai- 400098, Maharashtra India
| |
Collapse
|
42
|
To TA, Nguyen CT, Tran MH, Huynh TQ, Nguyen TT, Le NT, Nguyen AD, Tran PD, Phan NT. A new pathway to pyrrolo[1,2-a]quinoxalines via solvent-free one-pot strategy utilizing FeMoSe nanosheets as efficient recyclable synergistic catalyst. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
|
44
|
An Efficient Synthesis of Aryl-Substituted Pyrroles by the Suzuki⁻Miyaura Coupling Reaction of SEM-Protected Pyrroles. Molecules 2019; 24:molecules24081594. [PMID: 31013677 PMCID: PMC6514742 DOI: 10.3390/molecules24081594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 11/17/2022] Open
Abstract
An efficient arylation of SEM-protected pyrroles by the Suzuki-Miyaura coupling reaction has been developed. The reaction can be carried out under mild conditions to provide aryl-substituted pyrroles in moderate to excellent yields. The scope and limitations of the methodology were evaluated, and the reaction was tolerant of a wide range of functionalities. Compared to the reported methods, the protocol has some advantages, such as commercially available materials, no debrominated by-products being formed, and the amine-protecting group being stable under the reaction conditions. The synthetic utility of the product has also been demonstrated, with several common transformations of the aryl-substituted pyrrole product being conducted. This protocol will offer the opportunity to explore other metal-catalyzed cross-coupling reactions employing SEM-protected pyrroles.
Collapse
|
45
|
Krishna T, Reddy TN, Laxminarayana E, Kalita D. Copper-Catalyzed One-Pot Synthesis of Pyrrolo[1,2-a
]quinoxaline Derivatives from 1-(2-Aminophenyl)-pyrroles and Aldehydes. ChemistrySelect 2019. [DOI: 10.1002/slct.201803538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thalishetti Krishna
- Technology Development Centre; Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd; Hyderabad 500049 India
- Department of Chemistry; Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad -; 500 085 Telangana India
| | - Thatikonda Narendar Reddy
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Telangana; Hyderabad-500007 India
| | - Eppakayala Laxminarayana
- Department of Chemistry, Sreenidhi Institute of Science and Technology (Autonomous), Ghatkesar; Hyderabad- 501301, Telangana India
| | - Dipak Kalita
- Technology Development Centre; Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd; Hyderabad 500049 India
| |
Collapse
|
46
|
Montana M, Mathias F, Terme T, Vanelle P. Antitumoral activity of quinoxaline derivatives: A systematic review. Eur J Med Chem 2018; 163:136-147. [PMID: 30503938 DOI: 10.1016/j.ejmech.2018.11.059] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and a major health problem worldwide. While many effective anticancer agents are available, the majority of drugs currently on the market are not specific, raising issues like the common side effects of chemotherapy. However, recent research hold promise for the development of more efficient and safer anticancer drugs. Quinoxaline and its derivatives are becoming recognized as a novel class of chemotherapeutic agents with activity against different tumors. The present review compiles and discusses studies concerning the therapeutic potential of the anticancer activity of quinoxaline derivatives, covering articles published between July 2013 and July 2018.
Collapse
Affiliation(s)
- M Montana
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), Oncopharma, Hôpital Nord, Marseille, France
| | - F Mathias
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France
| | - T Terme
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France
| | - P Vanelle
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), Service Central de la qualité et de l'information pharmaceutiques (SCQIP), Marseille, France.
| |
Collapse
|
47
|
Wu D, Chen L, Ma S, Luo H, Cao J, Chen R, Duan Z, Mathey F. Synthesis of 1,3-Azaphospholes with Pyrrolo[1,2- a]quinoline Skeleton and Their Optical Applications. Org Lett 2018; 20:4103-4106. [PMID: 29931983 DOI: 10.1021/acs.orglett.8b01663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile synthesis of 1,3-azaphospholes with a pyrrolo[1,2- a]quinoline skeleton has been described. These new annulated 1,3-azaphospholes exhibit good photoelectric performance and can be used as the emitting dopant in organic light-emitting diodes (OLEDs) and dye for bioimaging.
Collapse
Affiliation(s)
- Di Wu
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Lingfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials , Nanjing University of Posts & Telecommunications , Nanjing 210023 , P. R. China
| | - Shuangliang Ma
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Huiying Luo
- Department of Anatomy, College of Basic Medicine , Zhengzhou University , Zhengzhou 450001 , P. R. China.,Guangzhou University of Chinese Medicine , Guangzhou 510000 , P. R. China
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials , Nanjing University of Posts & Telecommunications , Nanjing 210023 , P. R. China
| | - Zheng Duan
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Francois Mathey
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province , Zhengzhou University , Zhengzhou 450001 , P. R. China
| |
Collapse
|
48
|
Huang H, Wei Z, Hou J, Wang R, Tao G, Wang M, Duan Z, Mathey F. λ 3
-Pyrroloazaphosphinines with Relatively Stable P=C Double Bonds. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haiyang Huang
- College of Chemistry and Molecular Engineering; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Zhibin Wei
- College of Chemistry and Molecular Engineering; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Jingjing Hou
- College of Chemistry and Molecular Engineering; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Ruoqing Wang
- College of Chemistry and Molecular Engineering; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Guanyu Tao
- College of Chemistry and Molecular Engineering; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Mincan Wang
- College of Chemistry and Molecular Engineering; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Zheng Duan
- College of Chemistry and Molecular Engineering; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province Zhengzhou University; 450001 Zhengzhou P. R. China
| | - François Mathey
- College of Chemistry and Molecular Engineering; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province Zhengzhou University; 450001 Zhengzhou P. R. China
| |
Collapse
|
49
|
Besharati-Seidani T, Keivanloo A, Kaboudin B, Yoshida A, Yokomatsu T. Regioselective synthesis of 2,3-disubstituted 1-alkyl pyrrolo[2,3-b] quinoxalines through palladium-catalyzed Heck reaction of chalcones and evaluation of their anti-bacterial activities. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
An Z, Jiang Y, Guan X, Yan R. Copper-catalyzed tandem aerobic oxidative cyclization for the synthesis of 4-cyanoalkylpyrrolo[1,2-a]quinoxalines from 1-(2-aminophenyl)pyrroles and cyclobutanone oxime esters. Chem Commun (Camb) 2018; 54:10738-10741. [DOI: 10.1039/c8cc06256k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A copper-catalyzed tandem ring-opening/cyclization reaction for the synthesis of 4-cyanoalkylpyrrolo[1,2-a]quinoxalines from 1-(2-aminophenyl)pyrroles and cyclobutanone oxime esters has been developed.
Collapse
Affiliation(s)
- Zhenyu An
- State Key Laboratory of Applied Organic Chemistry
- Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Yong Jiang
- School of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing
- China
| | - Xin Guan
- State Key Laboratory of Applied Organic Chemistry
- Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry
- Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|