1
|
Tuttle JB, Allais C, Allerton CMN, Anderson AS, Arcari JT, Aschenbrenner LM, Avery M, Bellenger J, Berritt S, Boras B, Boscoe BP, Buzon LM, Cardin RD, Carlo AA, Coffman KJ, Dantonio A, Di L, Eng H, Farley KA, Ferre RA, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lachapelle EA, Lanyon LF, Lee J, Lee J, Lian Y, Liu W, Martínez-Alsina LA, Mason SW, Noell S, Novak J, Obach RS, Ogilvie K, O'Neil SV, Ostner G, Owen DR, Patel NC, Pettersson M, Singh RS, Rai DK, Reese MR, Sakata S, Sammons MF, Sathish JG, Sharma R, Steppan CM, Stewart A, Updyke L, Verhoest PR, Wei L, Wright SW, Yang E, Yang Q, Zhu Y. Discovery of Nirmatrelvir (PF-07321332): A Potent, Orally Active Inhibitor of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) Main Protease. J Med Chem 2025; 68:7003-7030. [PMID: 40019854 DOI: 10.1021/acs.jmedchem.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
In early 2020, severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infections leading to COVID-19 disease reached a global level leading to the World Health Organization (WHO) declaration of a pandemic. Scientists around the globe rapidly responded to try and discover novel therapeutics and repurpose extant drugs to treat the disease. This work describes the preclinical discovery efforts that led to the invention of PF-07321332 (nirmatrelvir, 14), a potent and orally active inhibitor of the SARS CoV-2 main protease (Mpro) enzyme. At the outset we focused on modifying PF-00835231 (1) discovered in 2004 as a potent inhibitor of the SARS CoV-1 Mpro with poor systemic exposure. Our effort was focused on modifying 1 with the goal of engineering in oral bioavailability by design, while maintaining cellular potency and low metabolic clearance. Modifications of 1 ultimately led to the invention of nirmatrelvir 14, the Mpro inhibitor component in PAXLOVID.
Collapse
Affiliation(s)
- Jamison B Tuttle
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Christophe Allais
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | | | | | - Joel T Arcari
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | | | - Melissa Avery
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Justin Bellenger
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Britton Boras
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Brian P Boscoe
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Leanne M Buzon
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Rhonda D Cardin
- Pfizer Research & Development, Pearl River, New York 10965, United States
| | - Anthony A Carlo
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Karen J Coffman
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Alyssa Dantonio
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Li Di
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Heather Eng
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Kathleen A Farley
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Rose Ann Ferre
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Ketan S Gajiwala
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Scott A Gibson
- Institute of Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | | | - Brett L Hurst
- Institute of Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | - Eugene P Kadar
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Erik A Lachapelle
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Lorraine F Lanyon
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Jisun Lee
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Jack Lee
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Yajing Lian
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Wei Liu
- Pfizer Research & Development, La Jolla, California 92121, United States
| | | | - Stephen W Mason
- Pfizer Research & Development, Pearl River, New York 10965, United States
| | - Stephen Noell
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Jonathan Novak
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - R Scott Obach
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Kevin Ogilvie
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Steven V O'Neil
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Gregory Ostner
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Dafydd R Owen
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Nandini C Patel
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Martin Pettersson
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Ravi Shankar Singh
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Devendra K Rai
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Matthew R Reese
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Sylvie Sakata
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Matthew F Sammons
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Jean G Sathish
- Pfizer Research & Development, Pearl River, New York 10965, United States
| | - Raman Sharma
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Claire M Steppan
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Al Stewart
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Lawrence Updyke
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Patrick R Verhoest
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Liuqing Wei
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Stephen W Wright
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Eddie Yang
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Qingyi Yang
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Yuao Zhu
- Pfizer Research & Development, Pearl River, New York 10965, United States
| |
Collapse
|
2
|
Ren J, Zhang Z, Xia Y, Zhao D, Li D, Zhang S. Research Progress on the Structure and Function, Immune Escape Mechanism, Antiviral Drug Development Methods, and Clinical Use of SARS-CoV-2 M pro. Molecules 2025; 30:351. [PMID: 39860219 PMCID: PMC11767629 DOI: 10.3390/molecules30020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The three-year COVID-19 pandemic 'has' caused a wide range of medical, social, political, and financial implications. Since the end of 2020, various mutations and variations in SARS-CoV-2 strains, along with the immune escape phenomenon, have emerged. There is an urgent need to identify a relatively stable target for the development of universal vaccines and drugs that can effectively combat both SARS-CoV-2 strains and their mutants. Currently, the main focus in treating SARS-CoV-2 lies in disrupting the virus's life cycle. The main protease (Mpro) is closely associated with virus replication and maturation and plays a crucial role in the early stages of infection. Consequently, it has become an important target for the development of SARS-CoV-2-specific drugs. This review summarizes the recent research progress on the novel coronavirus's main proteases, including the pivotal role of Mpro in the virus's life cycle, the structure and catalytic mechanism of Mpro, the self-maturation mechanism of Mpro, the role of Mpro in virus immune escape, the current methods of developing antiviral drugs targeting Mpro, and the key drugs that have successfully entered clinical trials. The aim is to provide researchers involved in the development of antiviral drugs targeting Mpro with systematic and comprehensive information.
Collapse
Affiliation(s)
| | | | | | | | - Dingqin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| |
Collapse
|
3
|
Higashi-Kuwata N, Bulut H, Hayashi H, Tsuji K, Ogata-Aoki H, Kiso M, Takamune N, Kishimoto N, Hattori SI, Ishii T, Kobayakawa T, Nakano K, Shimizu Y, Das D, Saruwatari J, Hasegawa K, Murayama K, Sukenaga Y, Takamatsu Y, Yoshimura K, Aoki M, Furusawa Y, Okamura T, Yamayoshi S, Kawaoka Y, Misumi S, Tamamura H, Mitsuya H. An orally available P1'-5-fluorinated M pro inhibitor blocks SARS-CoV-2 replication without booster and exhibits high genetic barrier. PNAS NEXUS 2025; 4:pgae578. [PMID: 39831159 PMCID: PMC11740726 DOI: 10.1093/pnasnexus/pgae578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
We identified a 5-fluoro-benzothiazole-containing small molecule, TKB272, through fluorine-scanning of the benzothiazole moiety, which more potently inhibits the enzymatic activity of SARS-CoV-2's main protease (Mpro) and more effectively blocks the infectivity and replication of all SARS-CoV-2 strains examined including Omicron variants such as SARS-CoV-2XBB1.5 and SARS-CoV-2EG.5.1 than two Mpro inhibitors: nirmatrelvir and ensitrelvir. Notably, the administration of ritonavir-boosted nirmatrelvir and ensitrelvir causes drug-drug interactions warranting cautions due to their CYP3A4 inhibition, thereby limiting their clinical utility. When orally administered, TKB272 blocked SARS-CoV-2XBB1.5 replication without ritonavir in B6.Cg-Tg(K18-hACE2)2-Prlmn/J-transgenic mice, comparably as did ritonavir-boosted nirmatrelvir. When the ancestral SARS-CoV-2 was propagated with nirmatrelvir in vitro, a highly nirmatrelvir-resistant E166V-carrying variant (SARS-CoV-2E166V-P14) readily emerged by passage 14; however, when propagated with TKB272, no variants emerged by passage 25. SARS-CoV-2E166V showed some cross-resistance to TKB272 but was substantially sensitive to the compound. X-ray structural analyses and mass-spectrometric data showed that the E166V substitution disrupts the critical dimerization-initiating Ser1'-E166 interactions, thereby limiting nirmatrelvir's Mpro inhibition but that TKB272 nevertheless forms a tight binding with Mpro's catalytic active sight even in the presence of the E166V substitution. TKB272 shows no apparent genotoxicity as tested in the micro-Ames test. Highly potent TKB272 may serve as a COVID-19 therapeutic, overcome resistance to existing Mpro inhibitors.
Collapse
Affiliation(s)
- Nobuyo Higashi-Kuwata
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hironori Hayashi
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, Aoba-ku, Sendai 980-8575, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hiromi Ogata-Aoki
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto 860-8556, Japan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection & Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Nobutoki Takamune
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shin-ichiro Hattori
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kazuya Hasegawa
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi 980-8579, Japan
| | - Yoshikazu Sukenaga
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kazuhisa Yoshimura
- Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Manabu Aoki
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Medical Technology, Kumamoto Health Science University, 325 Izumimachi, Kita-ku, Kumamoto 861-5598, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
4
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
5
|
Tirehdast A, Sheikhi-Mohammareh S, Sabet-Sarvestani H, Organ MG, Semeniuchenko V, Shiri A. Design and synthesis of novel main protease inhibitors of COVID-19: quinoxalino[2,1- b]quinazolin-12-ones. RSC Adv 2024; 14:29122-29133. [PMID: 39282064 PMCID: PMC11393744 DOI: 10.1039/d4ra06025c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
The COVID-19 pandemic represents a substantial global challenge, being a significant cause of mortality in numerous countries. Thus, it is imperative to conduct research to develop effective therapies to combat COVID-19. The primary aim of this study is to employ a two-step tandem reaction involving 2,3-dichloroquinoxaline and 2-amino-N-substituted benzamides in alkaline media/DMF at an elevated temperature to design and synthesize a series of polycyclic derivatives endowed with quinoxalino[2,1-b]quinazolin-12-one framework. Following synthesis, the newly synthesized heterocycles were evaluated for their potential as inhibitors of the main protease of SARS-CoV-2 by means of molecular docking and dynamic simulation techniques. The in silico investigation demonstrated that all tested compounds effectively establish stable binding interactions, primarily through multiple hydrogen bonding and hydrophobic interactions, at the active site of the enzyme. These findings offer crucial structural insights that can be employed in future endeavors toward designing potent inhibitors targeting the main protease (Mpro). Among the investigated compounds, the p-tolylamino-substituted quinoxalino[2,1-b]quinazolinone derivative exhibited the most promise as an inhibitor of the main protease in COVID-19. Consequently, it warrants further investigation both in vitro and in vivo to identify it as a prospective candidate for anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Atefeh Tirehdast
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| | | | | | - Michael G Organ
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa Ottawa Canada
| | - Volodymyr Semeniuchenko
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa Ottawa Canada
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
6
|
Yamauchi Y, Konno S, Omura N, Yoshioka N, Hingst A, Gütschow M, Müller CE, Taguchi A, Taniguchi A, Kawaguchi A, Hayashi Y. Detection of Active SARS-CoV-2 3CL Protease in Infected Cells Using Activity-Based Probes with a 2,6-Dichlorobenzoyloxymethyl Ketone Reactive Warhead. ACS Chem Biol 2024; 19:1028-1034. [PMID: 38668705 DOI: 10.1021/acschembio.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The 3CL protease (3CLpro) is a viral cysteine protease of SARS-CoV-2 and is responsible for the main processing of the viral polyproteins involved in viral replication and proliferation. Despite the importance of 3CLpro as a drug target, the intracellular dynamics of active 3CLpro, including its expression and subcellular localization in SARS-CoV-2-infected cells, are poorly understood. Herein, we report an activity-based probe (ABP) with a clickable alkyne and an irreversible warhead for the SARS-CoV-2 3CL protease. We designed and synthesized two ABPs that contain a chloromethyl ketone (probe 2) or 2,6-dichlorobenzoyloxymethyl ketone (probe 3) reactive group at the P1' site. Labeling of recombinant 3CLpro by the ABPs in the purified and proteome systems revealed that probe 3 displayed ligand-directed and selective labeling against 3CLpro. Labeling of transiently expressed active 3CLpro in COS-7 cells also validated the good target selectivity of probe 3 for 3CLpro. We finally demonstrated that endogenously expressed 3CLpro in SARS-CoV-2-infected cells can be detected by fluorescence microscopy imaging using probe 3, suggesting that active 3CLpro at 5 h postinfection is localized in the juxtanuclear region. To the best of our knowledge, this is the first report investigating the subcellular localization of active 3CLpro by using ABPs. We believe that probe 3 will be a useful chemical tool for acquiring important biological knowledge of active 3CLpro in SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Yuki Yamauchi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Sho Konno
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Noriko Omura
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Narumi Yoshioka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Alexandra Hingst
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Akihiro Taguchi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Kawaguchi
- Institute of Medicine, Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshio Hayashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
7
|
Nazir MS, Ahmad M, Aslam S, Rafiq A, Al-Hussain SA, Zaki MEA. A Comprehensive Update of Anti-COVID-19 Activity of Heterocyclic Compounds. Drug Des Devel Ther 2024; 18:1547-1571. [PMID: 38737333 PMCID: PMC11088867 DOI: 10.2147/dddt.s450499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/24/2024] [Indexed: 05/14/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is one of the most considerable health problems across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major causative agent of COVID-19. The severe symptoms of this deadly disease include shortness of breath, fever, cough, loss of smell, and a broad spectrum of other health issues such as diarrhea, pneumonia, bronchitis, septic shock, and multiple organ failure. Currently, there are no medications available for coronavirus patients, except symptom-relieving drugs. Therefore, SARS-CoV-2 requires the development of effective drugs and specific treatments. Heterocycles are important constituents of more than 85% of the physiologically active pharmaceutical drugs on the market now. Several FDA-approved drugs have been reported including molnupiravir, remdesivir, ritonavir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine for the cure of COVID-19. In this study, we discuss potent anti-SARS-CoV-2 heterocyclic compounds that have been synthesized over the past few years. These compounds included; indole, piperidine, pyrazine, pyrimidine, pyrrole, piperazine, quinazoline, oxazole, quinoline, isoxazole, thiazole, quinoxaline, pyrazole, azafluorene, imidazole, thiadiazole, triazole, coumarin, chromene, and benzodioxole. Both in vitro and in silico studies were performed to determine the potential of these heterocyclic compounds in the fight against various SARS-CoV-2 proteins.
Collapse
Affiliation(s)
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
9
|
Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur J Med Chem 2023; 260:115772. [PMID: 37659195 PMCID: PMC10529944 DOI: 10.1016/j.ejmech.2023.115772] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected ∼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Zhang FM, Huang T, Wang F, Zhang GS, Liu D, Dai J, Zhang JW, Li QH, Lin GQ, Gao D, Zhao J, Tian P. Discovery of highly potent covalent SARS-CoV-2 3CL pro inhibitors bearing 2-sulfoxyl-1,3,4-oxadiazole scaffold for combating COVID-19. Eur J Med Chem 2023; 260:115721. [PMID: 37598484 DOI: 10.1016/j.ejmech.2023.115721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a major public health crisis, posing a significant threat to human well-being. Despite the availability of vaccines, COVID-19 continues to spread owing to the emergence of SARS-CoV-2 mutants. This highlights the urgent need for the discovery of more effective drugs to combat COVID-19. As an important target for COVID-19 treatment, 3C-like protease (3CLpro) plays a crucial role in the replication of SARS-CoV-2. In our previous research, we demonstrated the potent inhibitory activities of compound A1, which contains a 2-sulfonyl-1,3,4-oxadiazole scaffold, against SARS-CoV-2 3CLpro. Herein, we present a detailed investigation of structural optimization of A1 and conduct a study on the structure-activity relationship. Among the various compounds tested, sulfoxide D6 demonstrates a potent irreversible inhibitory activity (IC50 = 0.030 μM) against SARS-CoV-2 3CLpro, as well as a favorable selectivity towards host cysteine proteases such as cathepsin B and cathepsin L. Utilizing mass spectrometry-based peptide profiling, we found that D6 covalently binds to Cys145 of SARS-CoV-2 3CLpro. Some representative compounds, namely C11, D9 and D10 also demonstrates antiviral activity against SARS-CoV-2 in Vero E6 cells. Overall, the investigation of the 2-sulfoxyl-1,3,4-oxadiazole scaffold as a novel cysteine reactive warhead would provide valuable insights into the design of potent covalent 3CLpro inhibitors for COVID-19 treatment.
Collapse
Affiliation(s)
- Fu-Mao Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gui-Shan Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, 510700, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Tsuji K, Ishii T, Kobayakawa T, Higashi-Kuwata N, Shinohara K, Azuma C, Miura Y, Nakano H, Wada N, Hattori SI, Bulut H, Mitsuya H, Tamamura H. Structure-Activity Relationship Studies of SARS-CoV-2 Main Protease Inhibitors Containing 4-Fluorobenzothiazole-2-carbonyl Moieties. J Med Chem 2023; 66:13516-13529. [PMID: 37756225 DOI: 10.1021/acs.jmedchem.3c00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target for the development of drugs to treat COVID-19. Here, we report the design, synthesis, and structure-activity relationship (SAR) studies of highly potent SARS-CoV-2 Mpro inhibitors including TKB245 (5)/TKB248 (6). Since we have previously developed Mpro inhibitors (3) and (4), several hybrid molecules of these previous compounds combined with nirmatrelvir (1) were designed and synthesized. Compounds such as TKB245 (5) and TKB248 (6), containing a 4-fluorobenzothiazole moiety at the P1' site, are highly effective in the blockade of SARS-CoV-2 replication in VeroE6 cells. Replacement of the P1-P2 amide with the thioamide surrogate in TKB248 (6) improved its PK profile in mice compared to that of TKB245 (5). A new diversity-oriented synthetic route to TKB245 (5) derivatives was also developed. The results of the SAR studies suggest that TKB245 (5) and TKB248 (6) are useful lead compounds for the further development of Mpro inhibitors.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chika Azuma
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hiroki Nakano
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoya Wada
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
12
|
Citarella A, Dimasi A, Moi D, Passarella D, Scala A, Piperno A, Micale N. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Biomolecules 2023; 13:1339. [PMID: 37759739 PMCID: PMC10647625 DOI: 10.3390/biom13091339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Alessandro Dimasi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 CA, 09042 Cagliari, Italy;
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| |
Collapse
|
13
|
Stubbing LA, Hubert JG, Bell-Tyrer J, Hermant YO, Yang SH, McSweeney AM, McKenzie-Goldsmith GM, Ward VK, Furkert DP, Brimble MA. P 1 Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the Pisoniviricetes class. RSC Chem Biol 2023; 4:533-547. [PMID: 37547456 PMCID: PMC10398354 DOI: 10.1039/d3cb00075c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Viral infections are one of the leading causes of acute morbidity in humans and much endeavour has been made by the synthetic community for the development of drugs to treat associated diseases. Peptide-based enzyme inhibitors, usually short sequences of three or four residues, are one of the classes of compounds currently under development for enhancement of their activity and pharmaceutical properties. This review reports the advances made in the design of inhibitors targeting the family of highly conserved viral proteases 3C/3CLpro, which play a key role in viral replication and present minimal homology with mammalian proteases. Particular focus is put on the reported development of P1 glutamine isosteres to generate potent inhibitors mimicking the natural substrate sequence at the site of recognition.'
Collapse
Affiliation(s)
- Louise A Stubbing
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Joseph Bell-Tyrer
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Alice M McSweeney
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Geena M McKenzie-Goldsmith
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Vernon K Ward
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| |
Collapse
|
14
|
Luo J, Wang W, Jiang H, Li W, Zeng P, Wang J, Zhou X, Zou X, Chen S, Wang Q, Zhang J, Li J. Crystal structures of main proteases of SARS-CoV-2 variants bound to a benzothiazole-based inhibitor. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1257-1264. [PMID: 37357528 PMCID: PMC10448042 DOI: 10.3724/abbs.2023053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 06/27/2023] Open
Abstract
Main protease (M pro) serves as an indispensable factor in the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as its constantly emerging variants and is therefore considered an attractive target for antiviral drug development. Benzothiazole-based inhibitors targeting M pro have recently been investigated by several groups and proven to be promising leads for coronaviral drug development. In the present study, we determine the crystal structures of a benzothiazole-based inhibitor, YH-53, bound to M pro mutants from SARS-CoV-2 variants of concern (VOCs) or variants of interest (VOIs), including K90R (Beta, B.1.351), G15S (Lambda, C.37), Y54C (Delta, AY.4), M49I (Omicron, BA.5) and P132H (Omicron, B.1.1.529). The structures show that the benzothiazole group in YH-53 forms a C-S covalent bond with the sulfur atom of catalytic residue Cys145 in SARS-CoV-2 M pro mutants. Structural analysis reveals the key molecular determinants necessary for interaction and illustrates the binding mode of YH-53 to these mutant M pros. In conclusion, structural insights from this study offer more information to develop benzothiazole-based drugs that are broader spectrum, more effective and safer.
Collapse
Affiliation(s)
- Jiqing Luo
- College of Pharmaceutical SciencesGannan Medical UniversityGanzhou341000China
| | - Weiwei Wang
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Haihai Jiang
- School of Basic Medical SciencesNanchang UniversityNanchang330031China
| | - Wenwen Li
- Shenzhen Crystalo Biopharmaceutical Co.Ltd.Shenzhen518118China
- Jiangxi Jmerry Biopharmaceutical Co.Ltd.Ganzhou341000China
| | - Pei Zeng
- Jiangxi Jmerry Biopharmaceutical Co.Ltd.Ganzhou341000China
| | - Jie Wang
- Jiangxi Jmerry Biopharmaceutical Co.Ltd.Ganzhou341000China
| | - Xuelan Zhou
- Jiangxi Jmerry Biopharmaceutical Co.Ltd.Ganzhou341000China
| | - Xiaofang Zou
- Jiangxi Jmerry Biopharmaceutical Co.Ltd.Ganzhou341000China
| | | | - Qisheng Wang
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Jin Zhang
- School of Basic Medical SciencesNanchang UniversityNanchang330031China
| | - Jian Li
- College of Pharmaceutical SciencesGannan Medical UniversityGanzhou341000China
| |
Collapse
|
15
|
Yang H, You M, Shu X, Zhen J, Zhu M, Fu T, Zhang Y, Jiang X, Zhang L, Xu Y, Zhang Y, Su H, Zhang Q, Shen J. Design, synthesis and biological evaluation of peptidomimetic benzothiazolyl ketones as 3CL pro inhibitors against SARS-CoV-2. Eur J Med Chem 2023; 257:115512. [PMID: 37253309 DOI: 10.1016/j.ejmech.2023.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
A series of peptidomimetic compounds containing benzothiazolyl ketone and [2.2.1] azabicyclic ring was designed, synthesized and evaluated in the hope of obtaining potent oral 3CLpro inhibitors with improved pharmacokinetic properties. Among the target compounds, 11b had the best enzymatic potency (IC50 = 0.110 μM) and 11e had the best microsomal stability (t1/2 > 120 min) and good enzyme activity (IC50 = 0.868 μM). Therefore, compounds 11b and 11e were chosen for further evaluation of pharmacokinetics in ICR mice. The results exhibited that the AUC(0-t) of 11e was 5143 h*ng/mL following single-dose oral administration of 20 mg/kg, and the F was 67.98%. Further structural modification was made to obtain compounds 11g-11j based on 11e. Among them, 11j exhibited the best enzyme inhibition activity against SARS-CoV-2 3CLpro (IC50 = 1.646 μM), the AUC(0-t) was 32473 h*ng/mL (20 mg/kg, po), and the F was 48.1%. In addition, 11j displayed significant anti-SARS-CoV-2 activity (EC50 = 0.18 μM) and low cytotoxicity (CC50 > 50 μM) in Vero E6 cells. All of the above results suggested that compound 11j was a promising lead compound in the development of oral 3CLpro inhibitors and deserved further research.
Collapse
Affiliation(s)
- Hanxi Yang
- College of Chemistry, Zhengzhou University, 100 Kexuedadao Road, Zhengzhou, 450001, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mengyuan You
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyang Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jingyao Zhen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Mengwei Zhu
- College of Pharmacy, An Hui University of Traditional Chinese Medicine, Hefei, 230012, China; Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong, 226133, China
| | - Tiantian Fu
- College of Pharmacy, An Hui University of Traditional Chinese Medicine, Hefei, 230012, China; Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong, 226133, China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qiumeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
16
|
Soleymani N, Ahmadi S, Shiri F, Almasirad A. QSAR and molecular docking studies of isatin and indole derivatives as SARS 3CL pro inhibitors. BMC Chem 2023; 17:32. [PMID: 37024955 PMCID: PMC10079496 DOI: 10.1186/s13065-023-00947-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The 3C-like protease (3CLpro), known as the main protease of SARS-COV, plays a vital role in the viral replication cycle and is a critical target for the development of SARS inhibitor. Comparative sequence analysis has shown that the 3CLpro of two coronaviruses, SARS-CoV-2 and SARS-CoV, show high structural similarity, and several common features are shared among the substrates of 3CLpro in different coronaviruses. The goal of this study is the development of validated QSAR models by CORAL software and Monte Carlo optimization to predict the inhibitory activity of 81 isatin and indole-based compounds against SARS CoV 3CLpro. The models were built using a newer objective function optimization of this software, known as the index of ideality correlation (IIC), which provides favorable results. The entire set of molecules was randomly divided into four sets including: active training, passive training, calibration and validation sets. The optimal descriptors were selected from the hybrid model by combining SMILES and hydrogen suppressed graph (HSG) based on the objective function. According to the model interpretation results, eight synthesized compounds were extracted and introduced from the ChEMBL database as good SARS CoV 3CLpro inhibitor. Also, the activity of the introduced molecules further was supported by docking studies using 3CLpro of both SARS-COV-1 and SARS-COV-2. Based on the results of ADMET and OPE study, compounds CHEMBL4458417 and CHEMBL4565907 both containing an indole scaffold with the positive values of drug-likeness and the highest drug-score can be introduced as selected leads.
Collapse
Affiliation(s)
- Niousha Soleymani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahin Ahmadi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Kronenberger T, Laufer SA, Pillaiyar T. COVID-19 therapeutics: small-molecule drug development targeting SARS-CoV-2 main protease. Drug Discov Today 2023; 28:103579. [PMID: 37028502 PMCID: PMC10074736 DOI: 10.1016/j.drudis.2023.103579] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the causative factor behind the 2019 global coronavirus pandemic (COVID-19). The main protease, known as Mpro, is encoded by the viral genome and is essential for viral replication. It has also been an effective target for drug development. In this review, we discuss the rationale for inhibitors that specifically target SARS-CoV-2 Mpro. Small molecules and peptidomimetic inhibitors are two types of inhibitor with various modes of action and we focus here on novel inhibitors that were only discovered during the COVID-19 pandemic highlighting their binding modes and structures.
Collapse
Affiliation(s)
- Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
18
|
Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. J Med Chem 2023; 66:3664-3702. [PMID: 36857133 PMCID: PMC10005815 DOI: 10.1021/acs.jmedchem.2c01229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Anne Vanet
- Université Paris Cité,
CNRS, Institut Jacques Monod, F-75013 Paris,
France
| | - Valeria Francesconi
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
- Doctorate School in Clinical and Experimental Medicine
(CEM), University of Modena and Reggio Emilia, Via Campi 287,
41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Alberto Venturelli
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology,
University of Turin, Via Giuria 9, 10125 Turin,
Italy
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE,
U.K.
| | - Maria P. Costi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Michele Tonelli
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| |
Collapse
|
19
|
Agrawal K, Patel T, Patel R. Synthesis, biological activity of newly designed sulfonamide based indole derivative as anti-microbial agent. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
Background
In medicinal chemistry, indole and its derivative play an important role. Indole is gaining a lot of importance in medicinal chemistry due to its physiological activity which includes anticancer, antitubercular, antimicrobial, antiviral, antimalarial, anti-inflammatory activities, antileishmanial agents, anti-cholinesterase, and enzyme inhibitory. The spread of antimicrobial resistance becomes a threat to both humans and animals. Antimicrobial resistance has been declared in the top 10 global major health risks by WHO including reported data of 2020 of AMR with 3,106,002 confirmed infections in humans across 70 countries.
Result
In this present work some new sulfonamide-based indole derivatives were synthesized by using 1H-indole -2 carboxylic acid as a starting material. The structure of all synthesized sulfonamide-based indole derivatives was confirmed by 1H NMR and LCMS Spectroscopy.
Conclusion
All the synthesized compounds were screened for anti-microbial activity against Gram Positive Staphylococcus aureus, Bacillus megaterium, and Gram Negative Klebsiella pneumonia, Escherichia coli, Salmonellatyphiae, Shigella sp., Enterobacter aerogenes. Among gram-positive Staphylococcus aureus, and Bacillus megaterium. The compound shows activity against Staphylococcus aureus, and among all gram-negative bacteria against Klebsiella pneumonia shows good activity.
Collapse
|
20
|
Higashi-Kuwata N, Tsuji K, Hayashi H, Bulut H, Kiso M, Imai M, Ogata-Aoki H, Ishii T, Kobayakawa T, Nakano K, Takamune N, Kishimoto N, Hattori SI, Das D, Uemura Y, Shimizu Y, Aoki M, Hasegawa K, Suzuki S, Nishiyama A, Saruwatari J, Shimizu Y, Sukenaga Y, Takamatsu Y, Tsuchiya K, Maeda K, Yoshimura K, Iida S, Ozono S, Suzuki T, Okamura T, Misumi S, Kawaoka Y, Tamamura H, Mitsuya H. Identification of SARS-CoV-2 M pro inhibitors containing P1' 4-fluorobenzothiazole moiety highly active against SARS-CoV-2. Nat Commun 2023; 14:1076. [PMID: 36841831 PMCID: PMC9958325 DOI: 10.1038/s41467-023-36729-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro's active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Nobuyo Higashi-Kuwata
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Hayashi
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, Miyagi, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hiromi Ogata-Aoki
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobutoki Takamune
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Shimizu
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Manabu Aoki
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kazuya Hasegawa
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Satoshi Suzuki
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Akie Nishiyama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshikazu Sukenaga
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenji Maeda
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | | | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Ozono
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
- Kumamoto University Hospital, Kumamoto, Japan.
| |
Collapse
|
21
|
Tsuji K, Kobayakawa T, Ishii T, Higashi-Kuwata N, Azuma C, Shinohara K, Miura Y, Yamamoto K, Nishimura S, Hattori SI, Bulut H, Mitsuya H, Tamamura H. Exploratory Studies of Effective Inhibitors against the SARS-CoV-2 Main Protease by Halogen Incorporation and Amide Bond Replacement. Chem Pharm Bull (Tokyo) 2023; 71:879-886. [PMID: 38044140 DOI: 10.1248/cpb.c23-00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In the development of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs, its main protease (Mpro), which is an essential enzyme for viral replication, is a promising target. To date, the Mpro inhibitors, nirmatrelvir and ensitrelvir, have been clinically developed by Pfizer Inc. and Shionogi & Co., Ltd., respectively, as orally administrable drugs to treat coronavirus disease of 2019 (COVID-19). We have also developed several potent inhibitors of SARS-CoV-2 Mpro that include compounds 4, 5, TKB245 (6), and TKB248 (7), which possesses a 4-fluorobenzothiazole ketone moiety as a reactive warhead. In compounds 5 and TKB248 (7) we have also found that replacement of the P1-P2 amide of compounds 4 and TKB245 (6) with the corresponding thioamide improved their pharmacokinetics (PK) profile in mice. Here, we report the design, synthesis and evaluation of SARS-CoV-2 Mpro inhibitors with replacement of a digestible amide bond by surrogates (9-11, 33, and 34) and introduction of fluorine atoms in a metabolically reactive methyl group on the indole moiety (8). As the results, these compounds showed comparable or less potency compared to the corresponding parent compounds, YH-53/5h (2) and 4. These results should provide useful information for further development of Mpro inhibitors.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
| | - Chika Azuma
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Kenichi Yamamoto
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Soshi Nishimura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health
- Department of Clinical Sciences, Kumamoto University Hospital
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
22
|
Yu W, Zhao Y, Ye H, Wu N, Liao Y, Chen N, Li Z, Wan N, Hao H, Yan H, Xiao Y, Lai M. Structure-Based Design of a Dual-Targeted Covalent Inhibitor Against Papain-like and Main Proteases of SARS-CoV-2. J Med Chem 2022; 65:16252-16267. [PMID: 36503248 PMCID: PMC9762420 DOI: 10.1021/acs.jmedchem.2c00954] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/15/2022]
Abstract
The two proteases, PLpro and Mpro, of SARS-CoV-2 are essential for replication of the virus. Using a structure-based co-pharmacophore screening approach, we developed a novel dual-targeted inhibitor that is equally potent in inhibiting PLpro and Mpro of SARS-CoV-2. The inhibitor contains a novel warhead, which can form a covalent bond with the catalytic cysteine residue of either enzyme. The maximum rate of the covalent inactivation is comparable to that of the most potent inhibitors reported for the viral proteases and covalent inhibitor drugs currently in clinical use. The covalent inhibition appears to be very specific for the viral proteases. The inhibitor has a potent antiviral activity against SARS-CoV-2 and is also well tolerated by mice and rats in toxicity studies. These results suggest that the inhibitor is a promising lead for development of drugs for treatment of COVID-19.
Collapse
Affiliation(s)
- Wenying Yu
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
| | - Yucheng Zhao
- Department
of Resources Science of Traditional Chinese Medicines and State Key
Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Hui Ye
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Jiangsu
Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing210009, China
| | - Nanping Wu
- State
Key Laboratory for Diagnosis and Treatment of Infectious Diseases,
National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou310003, China
- First
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Yixian Liao
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
| | - Nannan Chen
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
| | - Zhiling Li
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
| | - Ning Wan
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Jiangsu
Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing210009, China
| | - Haiping Hao
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Jiangsu
Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing210009, China
| | - Honggao Yan
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Department
of Pharmacology, School of Pharmacy, China
Pharmaceutical University, Nanjing310003, China
| | - Yibei Xiao
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Department
of Pharmacology, School of Pharmacy, China
Pharmaceutical University, Nanjing310003, China
| | - Maode Lai
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- State
Key Laboratory for Diagnosis and Treatment of Infectious Diseases,
National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou310003, China
- School
of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|
23
|
Tsuji K, Ishii T, Kobayakawa T, Higashi-Kuwata N, Azuma C, Nakayama M, Onishi T, Nakano H, Wada N, Hori M, Shinohara K, Miura Y, Kawada T, Hayashi H, Hattori SI, Bulut H, Das D, Takamune N, Kishimoto N, Saruwatari J, Okamura T, Nakano K, Misumi S, Mitsuya H, Tamamura H. Potent and biostable inhibitors of the main protease of SARS-CoV-2. iScience 2022; 25:105365. [PMID: 36338434 PMCID: PMC9623849 DOI: 10.1016/j.isci.2022.105365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Potent and biostable inhibitors of the main protease (Mpro) of SARS-CoV-2 were designed and synthesized based on an active hit compound 5h (2). Our strategy was based not only on the introduction of fluorine atoms into the inhibitor molecule for an increase of binding affinity for the pocket of Mpro and cell membrane permeability but also on the replacement of the digestible amide bond by a surrogate structure to increase the biostability of the compounds. Compound 3 is highly potent and blocks SARS-CoV-2 infection in vitro without a viral breakthrough. The derivatives, which contain a thioamide surrogate in the P2-P1 amide bond of these compounds (2 and 3), showed remarkably preferable pharmacokinetics in mice compared with the corresponding parent compounds. These data show that compounds 3 and its biostable derivative 4 are potential drugs for treating COVID-19 and that replacement of the digestible amide bond by its thioamide surrogate structure is an effective method.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Chika Azuma
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Miyuki Nakayama
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takato Onishi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hiroki Nakano
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoya Wada
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Miki Hori
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuma Kawada
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hironori Hayashi
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Shin-ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nobutoki Takamune
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
24
|
Chtita S, Belaidi S, Qais FA, Ouassaf M, AlMogren MM, Al-Zahrani AA, Bakhouch M, Belhassan A, Zaki H, Bouachrine M, Lakhlifi T. Unsymmetrical aromatic disulfides as SARS-CoV-2 Mpro inhibitors: Molecular docking, molecular dynamics, and ADME scoring investigations. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102226. [PMID: 35875823 PMCID: PMC9296233 DOI: 10.1016/j.jksus.2022.102226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
COVID-19 pandemic caused by very severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) agent is an ongoing major global health concern. The disease has caused more than 452 million affected cases and more than 6 million death worldwide. Hence, there is an urgency to search for possible medications and drug treatments. There are no approved drugs available to treat COVID-19 yet, although several vaccine candidates are already available and some of them are listed for emergency use by the world health organization (WHO). Identifying a potential drug candidate may make a significant contribution to control the expansion of COVID-19. The in vitro biological activity of asymmetric disulfides against coronavirus through the inhibition of SARS-CoV-2 main protease (Mpro) protein was reported. Due to the lack of convincing evidence those asymmetric disulfides have favorable pharmacological properties for the clinical treatment of Coronavirus, in silico evaluation should be performed to assess the potential of these compounds to inhibit the SARS-CoV-2 Mpro. In this context, we report herein the molecular docking for a series of 40 unsymmetrical aromatic disulfides as SARS-CoV-2 Mpro inhibitor. The optimal binding features of disulfides within the binding pocket of SARS-CoV-2 endoribonuclease protein (Protein Data Bank [PDB]: 6LU7) was described. Studied compounds were ranked for potential effectiveness, and those have shown high molecular docking scores were proposed as novel drug candidates against SARS-CoV-2. Moreover, the outcomes of drug similarity and ADME (Absorption, Distribution, Metabolism, and Excretion) analyses have may have the effectiveness of acting as medicines, and would be of interest as promising starting point for designing compounds against SARS-CoV-2. Finally, the stability of these three compounds in the complex with Mpro was validated through molecular dynamics (MD) simulation, in which they displayed stable trajectory and molecular properties with a consistent interaction profile.
Collapse
Affiliation(s)
- Samir Chtita
- Laboratory of Analytical and Molecular Chemistry of Sciences Ben M'Sik, Hassan II University of Casablanca, B.P. 7955 Sidi Othmane, Casablanca, Morocco
| | - Salah Belaidi
- Laboratory of Molecular Chemistry and Environment, University of Biskra, BP145, 07000 Biskra, Algeria
- Pharmaceutical Sciences Research Center (CRSP), New City Ali Mendjeli, Constantine, Algeria
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Mebarka Ouassaf
- Laboratory of Molecular Chemistry and Environment, University of Biskra, BP145, 07000 Biskra, Algeria
| | | | - Ateyah A Al-Zahrani
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Bakhouch
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida M-24000, Morocco
| | - Assia Belhassan
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes, Morocco
| | - Hanane Zaki
- Higher School of Technology Khenifra, Sultane Moulay Slimane University, Khenifra, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes, Morocco
- Higher School of Technology Khenifra, Sultane Moulay Slimane University, Khenifra, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes, Morocco
| |
Collapse
|
25
|
Hu X, Lin C, Xu Q, Zhou X, Zeng P, McCormick PJ, Jiang H, Li J, Zhang J. Structural Basis for the Inhibition of Coronaviral Main Proteases by a Benzothiazole-Based Inhibitor. Viruses 2022; 14:v14092075. [PMID: 36146880 PMCID: PMC9505605 DOI: 10.3390/v14092075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The ongoing spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused hundreds of millions of cases and millions of victims worldwide with serious consequences to global health and economies. Although many vaccines protecting against SARS-CoV-2 are currently available, constantly emerging new variants necessitate the development of alternative strategies for prevention and treatment of COVID-19. Inhibitors that target the main protease (Mpro) of SARS-CoV-2, an essential enzyme that promotes viral maturation, represent a key class of antivirals. Here, we showed that a peptidomimetic compound with benzothiazolyl ketone as warhead, YH-53, is an effective inhibitor of SARS-CoV-2, SARS-CoV, and MERS-CoV Mpros. Crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV bound to the inhibitor YH-53 revealed a unique ligand-binding site, which provides new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures defined the key molecular determinants required for inhibition and illustrate the binding mode of Mpros from other coronaviruses. In consideration of the important role of Mpro in developing antivirals against coronaviruses, insights derived from this study should add to the design of pan-coronaviral Mpro inhibitors that are safer and more effective.
Collapse
Affiliation(s)
- Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Cheng Lin
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xuelan Zhou
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen 518118, China
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou 341000, China
| | - Pei Zeng
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen 518118, China
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou 341000, China
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London E1 4NS, UK
| | - Haihai Jiang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
- Correspondence: (H.J.); (J.L.); (J.Z.)
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (H.J.); (J.L.); (J.Z.)
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
- Correspondence: (H.J.); (J.L.); (J.Z.)
| |
Collapse
|
26
|
Minetti CA, Remeta DP. Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization. Life (Basel) 2022; 12:1438. [PMID: 36143474 PMCID: PMC9504344 DOI: 10.3390/life12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022] Open
Abstract
Drug discovery strategies have advanced significantly towards prioritizing target selectivity to achieve the longstanding goal of identifying "magic bullets" amongst thousands of chemical molecules screened for therapeutic efficacy. A myriad of emerging and existing health threats, including the SARS-CoV-2 pandemic, alarming increase in bacterial resistance, and potentially fatal chronic ailments, such as cancer, cardiovascular disease, and neurodegeneration, have incentivized the discovery of novel therapeutics in treatment regimens. The design, development, and optimization of lead compounds represent an arduous and time-consuming process that necessitates the assessment of specific criteria and metrics derived via multidisciplinary approaches incorporating functional, structural, and energetic properties. The present review focuses on specific methodologies and technologies aimed at advancing drug development with particular emphasis on the role of thermodynamics in elucidating the underlying forces governing ligand-target interaction selectivity and specificity. In the pursuit of novel therapeutics, isothermal titration calorimetry (ITC) has been utilized extensively over the past two decades to bolster drug discovery efforts, yielding information-rich thermodynamic binding signatures. A wealth of studies recognizes the need for mining thermodynamic databases to critically examine and evaluate prospective drug candidates on the basis of available metrics. The ultimate power and utility of thermodynamics within drug discovery strategies reside in the characterization and comparison of intrinsic binding signatures that facilitate the elucidation of structural-energetic correlations which assist in lead compound identification and optimization to improve overall therapeutic efficacy.
Collapse
Affiliation(s)
- Conceição A. Minetti
- Department of Chemistry and Chemical Biology, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David P. Remeta
- Department of Chemistry and Chemical Biology, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
27
|
Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. J Biomed Sci 2022; 29:65. [PMID: 36064696 PMCID: PMC9444709 DOI: 10.1186/s12929-022-00847-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023] Open
Abstract
Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
28
|
X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation. Nat Commun 2022; 13:5196. [PMID: 36057636 PMCID: PMC9440467 DOI: 10.1038/s41467-022-32854-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes COVID-19, produces polyproteins 1a and 1ab that contain, respectively, 11 or 16 non-structural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for viral assembly and maturation. Using C-terminally substituted Mpro chimeras, we have determined X-ray crystallographic structures of Mpro in complex with 10 of its 11 viral cleavage sites, bound at full occupancy intermolecularly in trans, within the active site of either the native enzyme and/or a catalytic mutant (C145A). Capture of both acyl-enzyme intermediate and product-like complex forms of a P2(Leu) substrate in the native active site provides direct comparative characterization of these mechanistic steps as well as further informs the basis for enhanced product release of Mpro’s own unique C-terminal P2(Phe) cleavage site to prevent autoinhibition. We characterize the underlying noncovalent interactions governing binding and specificity for this diverse set of substrates, showing remarkable plasticity for subsites beyond the anchoring P1(Gln)-P2(Leu/Val/Phe), representing together a near complete analysis of a multiprocessing viral protease. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for antiviral therapeutic development. The SARS-CoV-2 protease Mpro is essential for viral replication. Here, the authors have determined the structures of Mpro in complex with 10 of the 11 viral cleavage sequences including a covalent acyl-enzyme intermediate, providing mechanistic and structural insights for antiviral development.
Collapse
|
29
|
Vankadara S, Dawson MD, Fong JY, Oh QY, Ang QA, Liu B, Chang HY, Koh J, Koh X, Tan QW, Joy J, Chia CSB. A Warhead Substitution Study on the Coronavirus Main Protease Inhibitor Nirmatrelvir. ACS Med Chem Lett 2022; 13:1345-1350. [PMID: 35971455 PMCID: PMC9331150 DOI: 10.1021/acsmedchemlett.2c00260] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 01/08/2023] Open
Abstract
![]()
The SARS-CoV-2 pandemic is currently causing an unprecedented
global
health emergency since its emergence in December 2019. In December
2021, the FDA granted emergency use authorization to nirmatrelvir,
a SARS-CoV-2 main protease inhibitor, for treating infected patients.
This peptidomimetic is designed with a nitrile warhead, which forms
a covalent bond to the viral protease. Herein, we investigate nirmatrelvir
analogs with different warheads and their inhibitory activities. In
addition, antiviral activities against human alphacoronavirus 229E
was also investigated along with a cell-based assay. We discovered
that the hydroxymethylketone and ketobenzothiazole warheads were equipotent
to the nitrile warhead, suggesting that these analogs can also be
used for treating coronavirus infections.
Collapse
Affiliation(s)
- Subramanyam Vankadara
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | | | - Jia Yi Fong
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Qin Yao Oh
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Qi An Ang
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Boping Liu
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Hong Yun Chang
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Judice Koh
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Xiaoying Koh
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Qian Wen Tan
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Joma Joy
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| | - Cheng San Brian Chia
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670 Singapore
| |
Collapse
|
30
|
Pillaiyar T, Flury P, Krüger N, Su H, Schäkel L, Barbosa Da Silva E, Eppler O, Kronenberger T, Nie T, Luedtke S, Rocha C, Sylvester K, Petry MR, McKerrow JH, Poso A, Pöhlmann S, Gütschow M, O’Donoghue AJ, Xu Y, Müller CE, Laufer SA. Small-Molecule Thioesters as SARS-CoV-2 Main Protease Inhibitors: Enzyme Inhibition, Structure-Activity Relationships, Antiviral Activity, and X-ray Structure Determination. J Med Chem 2022; 65:9376-9395. [PMID: 35709506 PMCID: PMC9216242 DOI: 10.1021/acs.jmedchem.2c00636] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 02/08/2023]
Abstract
The main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target in coronaviruses because of its crucial involvement in viral replication and transcription. Here, we report on the design, synthesis, and structure-activity relationships of novel small-molecule thioesters as SARS-CoV-2 Mpro inhibitors. Compounds 3w and 3x exhibited excellent SARS-CoV-2 Mpro inhibition with kinac/Ki of 58,700 M-1 s-1 (Ki = 0.0141 μM) and 27,200 M-1 s-1 (Ki = 0.0332 μM), respectively. In Calu-3 and Vero76 cells, compounds 3h, 3i, 3l, 3r, 3v, 3w, and 3x displayed antiviral activity in the nanomolar range without host cell toxicity. Co-crystallization of 3w and 3af with SARS-CoV-2 Mpro was accomplished, and the X-ray structures showed covalent binding with the catalytic Cys145 residue of the protease. The potent SARS-CoV-2 Mpro inhibitors also inhibited the Mpro of other beta-coronaviruses, including SARS-CoV-1 and MERS-CoV, indicating that they might be useful to treat a broader range of coronaviral infections.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls
University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed
Tumor Therapies”, University of Tübingen,
Tübingen 72076, Germany
| | - Philipp Flury
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls
University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed
Tumor Therapies”, University of Tübingen,
Tübingen 72076, Germany
| | - Nadine Krüger
- Infection Biology Unit, German Primate
Center, Leibniz Institute for Primate Research Göttingen,
Kellnerweg 4, Göttingen 37077, Germany
| | - Haixia Su
- CAS Key Laboratory of Receptor Research, and Stake Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai 201203, China
| | - Laura Schäkel
- PharmaCenter Bonn, Pharmaceutical Institute,
Pharmaceutical & Medicinal Chemistry, University of Bonn,
An der Immenburg 4, Bonn D-53121, Germany
| | - Elany Barbosa Da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, La Jolla, California
92093, United States
| | - Olga Eppler
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls
University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed
Tumor Therapies”, University of Tübingen,
Tübingen 72076, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls
University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed
Tumor Therapies”, University of Tübingen,
Tübingen 72076, Germany
| | - Tianqing Nie
- CAS Key Laboratory of Receptor Research, and Stake Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai 201203, China
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, La Jolla, California
92093, United States
| | - Cheila Rocha
- Infection Biology Unit, German Primate
Center, Leibniz Institute for Primate Research Göttingen,
Kellnerweg 4, Göttingen 37077, Germany
| | - Katharina Sylvester
- PharmaCenter Bonn, Pharmaceutical Institute,
Pharmaceutical & Medicinal Chemistry, University of Bonn,
An der Immenburg 4, Bonn D-53121, Germany
| | - Marvin R.I. Petry
- PharmaCenter Bonn, Pharmaceutical Institute,
Pharmaceutical & Medicinal Chemistry, University of Bonn,
An der Immenburg 4, Bonn D-53121, Germany
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, La Jolla, California
92093, United States
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls
University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed
Tumor Therapies”, University of Tübingen,
Tübingen 72076, Germany
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, Kuopio 70211,
Finland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate
Center, Leibniz Institute for Primate Research Göttingen,
Kellnerweg 4, Göttingen 37077, Germany
- Faculty of Biology and Psychology,
University Göttingen,Göttingen 37073,
Germany
| | - Michael Gütschow
- PharmaCenter Bonn, Pharmaceutical Institute,
Pharmaceutical & Medicinal Chemistry, University of Bonn,
An der Immenburg 4, Bonn D-53121, Germany
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, La Jolla, California
92093, United States
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, and Stake Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai 201203, China
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute,
Pharmaceutical & Medicinal Chemistry, University of Bonn,
An der Immenburg 4, Bonn D-53121, Germany
| | - Stefan A. Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls
University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed
Tumor Therapies”, University of Tübingen,
Tübingen 72076, Germany
| |
Collapse
|
31
|
Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7341493. [PMID: 35845944 PMCID: PMC9283023 DOI: 10.1155/2022/7341493] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
In this work, the discovery and description of PF-07321332, a major bioavailable oral SARS-CoV-2 protease inhibitor with in vitro human coronavirus antiviral activity, and excellent selection of off-target and in vivo immune profiles are reported. Various drugs and novel compound candidates for the treatment of the COVID-19 pandemic have been developed. PF-07321332 (or nirmatrelvir) is a new oral antiviral drug developed by Pfizer. In response to the pandemic, Pfizer has developed the COVID vaccine and in 2022 will launch its new major anti-SARS-Cov-2 protease inhibitor (PI). The combination of ritonavir and nirmatrelvir is under study in phase III of the clinical trial with a brand name Paxlovid. Paxlovid is an active 3Cl protease inhibitor. Paxlovid exerts its antiviral efficacy by inhibiting a necessary protease in the viral replication procedure. Proteases of coronavirus cleave several sites in the viral polyprotein where pyrrolidone was replaced by flexible glutamine. Due to the coronavirus pandemic, there is high demand for synthesis and development of this novel drug. Herein, we report the synthetic route and the mechanism of action was recently published on nirmatrelvir. Also, a comparison of the performance of two new oral antiviruses (molnupiravir and nirmatrelvir) for the treatment of COVID-19 is described. This review will be helpful for different disciplines such as biochemistry, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- Department of Internal Medicine, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Maryam Bahmanyar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
32
|
Tang B, He F, Liu D, He F, Wu T, Fang M, Niu Z, Wu Z, Xu D. AI-Aided Design of Novel Targeted Covalent Inhibitors against SARS-CoV-2. Biomolecules 2022. [PMID: 35740872 DOI: 10.1101/2020.03.03.972133v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The drug repurposing of known approved drugs (e.g., lopinavir/ritonavir) has failed to treat SARS-CoV-2-infected patients. Therefore, it is important to generate new chemical entities against this virus. As a critical enzyme in the lifecycle of the coronavirus, the 3C-like main protease (3CLpro or Mpro) is the most attractive target for antiviral drug design. Based on a recently solved structure (PDB ID: 6LU7), we developed a novel advanced deep Q-learning network with a fragment-based drug design (ADQN-FBDD) for generating potential lead compounds targeting SARS-CoV-2 3CLpro. We obtained a series of derivatives from the lead compounds based on our structure-based optimization policy (SBOP). All of the 47 lead compounds obtained directly with our AI model and related derivatives based on the SBOP are accessible in our molecular library. These compounds can be used as potential candidates by researchers to develop drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361000, China
- MindRank AI Ltd., Hangzhou 310000, China
| | - Fengming He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361000, China
| | - Dongpeng Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Fei He
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Tong Wu
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100006, China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361000, China
| | | | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361000, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
33
|
Tang B, He F, Liu D, He F, Wu T, Fang M, Niu Z, Wu Z, Xu D. AI-Aided Design of Novel Targeted Covalent Inhibitors against SARS-CoV-2. Biomolecules 2022; 12:746. [PMID: 35740872 PMCID: PMC9220321 DOI: 10.3390/biom12060746] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
The drug repurposing of known approved drugs (e.g., lopinavir/ritonavir) has failed to treat SARS-CoV-2-infected patients. Therefore, it is important to generate new chemical entities against this virus. As a critical enzyme in the lifecycle of the coronavirus, the 3C-like main protease (3CLpro or Mpro) is the most attractive target for antiviral drug design. Based on a recently solved structure (PDB ID: 6LU7), we developed a novel advanced deep Q-learning network with a fragment-based drug design (ADQN-FBDD) for generating potential lead compounds targeting SARS-CoV-2 3CLpro. We obtained a series of derivatives from the lead compounds based on our structure-based optimization policy (SBOP). All of the 47 lead compounds obtained directly with our AI model and related derivatives based on the SBOP are accessible in our molecular library. These compounds can be used as potential candidates by researchers to develop drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (B.T.); (D.L.); (F.H.); (T.W.)
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361000, China; (F.H.); (M.F.)
- MindRank AI Ltd., Hangzhou 310000, China;
| | - Fengming He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361000, China; (F.H.); (M.F.)
| | - Dongpeng Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (B.T.); (D.L.); (F.H.); (T.W.)
| | - Fei He
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (B.T.); (D.L.); (F.H.); (T.W.)
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Tong Wu
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (B.T.); (D.L.); (F.H.); (T.W.)
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100006, China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361000, China; (F.H.); (M.F.)
| | | | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361000, China; (F.H.); (M.F.)
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (B.T.); (D.L.); (F.H.); (T.W.)
| |
Collapse
|
34
|
Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nat Commun 2022; 13:2268. [PMID: 35477935 PMCID: PMC9046211 DOI: 10.1038/s41467-022-29915-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Emerging SARS-CoV-2 variants continue to threaten the effectiveness of COVID-19 vaccines, and small-molecule antivirals can provide an important therapeutic treatment option. The viral main protease (Mpro) is critical for virus replication and thus is considered an attractive drug target. We performed the design and characterization of three covalent hybrid inhibitors BBH-1, BBH-2 and NBH-2 created by splicing components of hepatitis C protease inhibitors boceprevir and narlaprevir, and known SARS-CoV-1 protease inhibitors. A joint X-ray/neutron structure of the Mpro/BBH-1 complex demonstrates that a Cys145 thiolate reaction with the inhibitor’s keto-warhead creates a negatively charged oxyanion. Protonation states of the ionizable residues in the Mpro active site adapt to the inhibitor, which appears to be an intrinsic property of Mpro. Structural comparisons of the hybrid inhibitors with PF-07321332 reveal unconventional F···O interactions of PF-07321332 with Mpro which may explain its more favorable enthalpy of binding. BBH-1, BBH-2 and NBH-2 exhibit comparable antiviral properties in vitro relative to PF-07321332, making them good candidates for further design of improved antivirals. Three covalent hybrid inhibitors of SARS-CoV-2 main protease (Mpro) have been designed and compared to Pfizer’s nirmatrelvir (PF-07321332), providing atomic and thermodynamic details of their binding to the enzyme, and antiviral potency.
Collapse
|
35
|
Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents. Molecules 2022; 27:molecules27092700. [PMID: 35566055 PMCID: PMC9101374 DOI: 10.3390/molecules27092700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses have been a long-term source of infectious diseases that can lead to large-scale infections and massive deaths. Especially with the recent highly contagious coronavirus (COVID-19), antiviral drugs were developed nonstop to deal with the emergence of new viruses and subject to drug resistance. Nitrogen-containing heterocycles have compatible structures and properties with exceptional biological activity for the drug design of antiviral agents. They provided a broad spectrum of interference against viral infection at various stages, from blocking early viral entry to disrupting the viral genome replication process by targeting different enzymes and proteins of viruses. This review focused on the synthesis and application of antiviral agents derived from various nitrogen-containing heterocycles, such as indole, pyrrole, pyrimidine, pyrazole, and quinoline, within the last ten years. The synthesized scaffolds target HIV, HCV/HBV, VZV/HSV, SARS-CoV, COVID-19, and influenza viruses.
Collapse
|
36
|
Moghimi P, Sabet-Sarvestani H, Kohandel O, Shiri A. Pyrido[1,2- e]purine: Design and Synthesis of Appropriate Inhibitory Candidates against the Main Protease of COVID-19. J Org Chem 2022; 87:3922-3933. [PMID: 35225616 PMCID: PMC8905926 DOI: 10.1021/acs.joc.1c02237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/28/2022]
Abstract
A series of tricyclic and polycyclic pyrido[1,2-e]purine derivatives were designed and synthesized via a two-step, one-pot reaction of 2,4-dichloro-5-amino-6-methylpyrimidine with pyridine under reflux conditions. Various derivatives of pyrido[1,2-e]purine were also synthesized by substituting the chlorine atom with secondary amines. After careful physiochemical and pharmacokinetic predictions, the inhibitory effects of the synthesized compounds against the main protease of SARS-CoV-2 have been evaluated by molecular docking and molecular dynamics approaches. The in silico results revealed that among all of the studied compounds, the morpholine/piperidine-substituted pyrido[1,2-e]purine derivatives are the best candidates as effective inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Parvin Moghimi
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| | | | - Omid Kohandel
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| |
Collapse
|
37
|
Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. J Med Chem 2022; 65:2716-2746. [PMID: 33186044 PMCID: PMC7688049 DOI: 10.1021/acs.jmedchem.0c01140] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 02/07/2023]
Abstract
The newly emerged coronavirus, called SARS-CoV-2, is the causing pathogen of pandemic COVID-19. The identification of drugs to treat COVID-19 and other coronavirus diseases is an urgent global need, thus different strategies targeting either virus or host cell are still under investigation. Direct-acting agents, targeting protease and polymerase functionalities, represent a milestone in antiviral therapy. The 3C-like (or Main) protease (3CLpro) and the nsp12 RNA-dependent RNA-polymerase (RdRp) are the best characterized SARS-CoV-2 targets and show the highest degree of conservation across coronaviruses fostering the identification of broad-spectrum inhibitors. Coronaviruses also possess a papain-like protease, another essential enzyme, still poorly characterized and not equally conserved, limiting the identification of broad-spectrum agents. Herein, we provide an exhaustive comparative analysis of SARS-CoV-2 proteases and RdRp with respect to other coronavirus homologues. Moreover, we highlight the most promising inhibitors of these proteins reported so far, including the possible strategies for their further development.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department
of Pharmacy, University of Naples “Federico
II”, via D. Montesano 49, 80131 Napoli, Italy
| | - Carmen Cerchia
- Department
of Pharmacy, University of Naples “Federico
II”, via D. Montesano 49, 80131 Napoli, Italy
| | | | - Francesco Saverio Di Leva
- Department
of Pharmacy, University of Naples “Federico
II”, via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Summa
- Department
of Pharmacy, University of Naples “Federico
II”, via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
38
|
Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. J Med Chem 2022. [PMID: 33186044 DOI: 10.1021/acs.jmedchem.0c01140/suppl_file/jm0c01140_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The newly emerged coronavirus, called SARS-CoV-2, is the causing pathogen of pandemic COVID-19. The identification of drugs to treat COVID-19 and other coronavirus diseases is an urgent global need, thus different strategies targeting either virus or host cell are still under investigation. Direct-acting agents, targeting protease and polymerase functionalities, represent a milestone in antiviral therapy. The 3C-like (or Main) protease (3CLpro) and the nsp12 RNA-dependent RNA-polymerase (RdRp) are the best characterized SARS-CoV-2 targets and show the highest degree of conservation across coronaviruses fostering the identification of broad-spectrum inhibitors. Coronaviruses also possess a papain-like protease, another essential enzyme, still poorly characterized and not equally conserved, limiting the identification of broad-spectrum agents. Herein, we provide an exhaustive comparative analysis of SARS-CoV-2 proteases and RdRp with respect to other coronavirus homologues. Moreover, we highlight the most promising inhibitors of these proteins reported so far, including the possible strategies for their further development.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Carmen Cerchia
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
39
|
Konno S, Kobayashi K, Senda M, Funai Y, Seki Y, Tamai I, Schäkel L, Sakata K, Pillaiyar T, Taguchi A, Taniguchi A, Gütschow M, Müller CE, Takeuchi K, Hirohama M, Kawaguchi A, Kojima M, Senda T, Shirasaka Y, Kamitani W, Hayashi Y. 3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV-2 Agents. J Med Chem 2022; 65:2926-2939. [PMID: 34313428 PMCID: PMC8340582 DOI: 10.1021/acs.jmedchem.1c00665] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 02/08/2023]
Abstract
The novel coronavirus, SARS-CoV-2, has been identified as the causative agent for the current coronavirus disease (COVID-19) pandemic. 3CL protease (3CLpro) plays a pivotal role in the processing of viral polyproteins. We report peptidomimetic compounds with a unique benzothiazolyl ketone as a warhead group, which display potent activity against SARS-CoV-2 3CLpro. The most potent inhibitor YH-53 can strongly block the SARS-CoV-2 replication. X-ray structural analysis revealed that YH-53 establishes multiple hydrogen bond interactions with backbone amino acids and a covalent bond with the active site of 3CLpro. Further results from computational and experimental studies, including an in vitro absorption, distribution, metabolism, and excretion profile, in vivo pharmacokinetics, and metabolic analysis of YH-53 suggest that it has a high potential as a lead candidate to compete with COVID-19.
Collapse
Affiliation(s)
- Sho Konno
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Kiyotaka Kobayashi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of
Materials Structure Science, High Energy Accelerator Research Organization
(KEK), Tsukuba 305-0801, Japan
| | - Yuta Funai
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Yuta Seki
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Kyousuke Sakata
- School of Life Sciences, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392,
Japan
| | - Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical/Medicinal Chemistry,
University of Tübingen, Tübingen 72076,
Germany
| | - Akihiro Taguchi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Atsuhiko Taniguchi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research
Institute, National Institute of Advanced Industrial Science and
Technology, Koto, Tokyo 135-0064, Japan
| | - Mikako Hirohama
- Faculty of Medicine, Transborder Medical Research
Center, University of Tsukuba, Tsukuba 305-8575,
Japan
| | - Atsushi Kawaguchi
- Faculty of Medicine, Transborder Medical Research
Center, University of Tsukuba, Tsukuba 305-8575,
Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392,
Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of
Materials Structure Science, High Energy Accelerator Research Organization
(KEK), Tsukuba 305-0801, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense,
Gunma University Graduate School of Medicine, Maebashi
371-8511, Japan
| | - Yoshio Hayashi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| |
Collapse
|
40
|
Kneller D, Li H, Phillips G, Weiss K, Zhang Q, Arnould M, Jonsson C, Surendranathan S, Parvathareddy J, Blakeley M, Coates L, Louis J, Bonnesen P, Kovalevsky A. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease: room-temperature X-ray and neutron crystallography, binding thermodynamics, and antiviral activity. RESEARCH SQUARE 2022:rs.3.rs-1318037. [PMID: 35169792 PMCID: PMC8845512 DOI: 10.21203/rs.3.rs-1318037/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The COVID-19 pandemic continues to disrupt everyday life, with constantly emerging SARS-CoV-2 variants threatening to render current vaccines ineffective. Small-molecule antivirals can provide an important therapeutic treatment option that is subject to challenges caused by the virus variants. The viral main protease (M pro ) is critical for the virus replication and thus is considered an attractive drug target for specific protease inhibitors. We performed the design and characterization of three reversible covalent hybrid inhibitors BBH-1, BBH-2 and NBH-2, whose structures were derived from those of hepatitis C protease inhibitors boceprevir and narlaprevir. A joint X-ray/neutron structure of the M pro /BBH-1 complex demonstrated that a Cys145 thiolate reaction with the inhibitor’s keto-warhead creates a negatively charged oxyanion, similar to that proposed for the M pro -catalyzed peptide bond hydrolysis. Protonation states of the ionizable residues in the M pro active site adapt to the inhibitor, which appears to be an intrinsic property of M pro . Structural comparisons of the hybrid inhibitors with PF-07321332 revealed unconventional interactions of PF-07321332 with M pro which may explain its more favorable enthalpy of binding and consequently higher potency. BBH-1, BBH-2 and NBH-2 demonstrated comparable antiviral properties in vitro relative to PF-07321332, making them good candidates for further design of improved antivirals.
Collapse
|
41
|
Abstract
The main protease (Mpro) plays a crucial role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and is highly conserved, rendering it one of the most attractive therapeutic targets for SARS-CoV-2 inhibition. Currently, although two drug candidates targeting SARS-CoV-2 Mpro designed by Pfizer are under clinical trials, no SARS-CoV-2 medication is approved due to the long period of drug development. Here, we collect a comprehensive list of 817 available SARS-CoV-2 and SARS-CoV Mpro inhibitors from the literature or databases and analyze their molecular mechanisms of action. The structure-activity relationships (SARs) among each series of inhibitors are discussed. Additionally, we broadly examine available antiviral activity, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and animal tests of these inhibitors. We comment on their druggability or drawbacks that prevent them from becoming drugs. This Perspective sheds light on the future development of Mpro inhibitors for SARS-CoV-2 and future coronavirus diseases.
Collapse
Affiliation(s)
- Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
42
|
Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, Dantonio A, Di L, Eng H, Ferre R, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lee JC, Lee J, Liu W, Mason SW, Noell S, Novak JJ, Obach RS, Ogilvie K, Patel NC, Pettersson M, Rai DK, Reese MR, Sammons MF, Sathish JG, Singh RSP, Steppan CM, Stewart AE, Tuttle JB, Updyke L, Verhoest PR, Wei L, Yang Q, Zhu Y. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 2021; 374:1586-1593. [PMID: 34726479 DOI: 10.1126/science.abl4784] [Citation(s) in RCA: 1235] [Impact Index Per Article: 308.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dafydd R Owen
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | | | | | | | - Melissa Avery
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Simon Berritt
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Britton Boras
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Rhonda D Cardin
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Anthony Carlo
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Karen J Coffman
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Alyssa Dantonio
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Li Di
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Heather Eng
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - RoseAnn Ferre
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Ketan S Gajiwala
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Scott A Gibson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University; Logan, UT 84322, USA
| | | | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University; Logan, UT 84322, USA
| | - Eugene P Kadar
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Amit S Kalgutkar
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Jack C Lee
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Jisun Lee
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Wei Liu
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Stephen W Mason
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Stephen Noell
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Jonathan J Novak
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - R Scott Obach
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Kevin Ogilvie
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Nandini C Patel
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Martin Pettersson
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Devendra K Rai
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Matthew R Reese
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Matthew F Sammons
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Jean G Sathish
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | | | - Claire M Steppan
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Al E Stewart
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Jamison B Tuttle
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Lawrence Updyke
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Patrick R Verhoest
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Liuqing Wei
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Qingyi Yang
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Yuao Zhu
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| |
Collapse
|
43
|
Vuong W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby KD, Lu J, Arutyunova E, Joyce MA, Saffran HA, Shields JA, Young HS, Nieman JA, Tyrrell DL, Lemieux MJ, Vederas JC. Improved SARS-CoV-2 M pro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. Eur J Med Chem 2021; 222:113584. [PMID: 34118724 PMCID: PMC8164773 DOI: 10.1016/j.ejmech.2021.113584] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 12/31/2022]
Abstract
Replication of SARS-CoV-2, the coronavirus causing COVID-19, requires a main protease (Mpro) to cleave viral proteins. Consequently, Mpro is a target for antiviral agents. We and others previously demonstrated that GC376, a bisulfite prodrug with efficacy as an anti-coronaviral agent in animals, is an effective inhibitor of Mpro in SARS-CoV-2. Here, we report structure-activity studies of improved GC376 derivatives with nanomolar affinities and therapeutic indices >200. Crystallographic structures of inhibitor-Mpro complexes reveal that an alternative binding pocket in Mpro, S4, accommodates the P3 position. Alternative binding is induced by polar P3 groups or a nearby methyl. NMR and solubility studies with GC376 show that it exists as a mixture of stereoisomers and forms colloids in aqueous media at higher concentrations, a property not previously reported. Replacement of its Na+ counter ion with choline greatly increases solubility. The physical, biochemical, crystallographic, and cellular data reveal new avenues for Mpro inhibitor design.
Collapse
Affiliation(s)
- Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Kurtis D Willoughby
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Jimmy Lu
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Elena Arutyunova
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Michael A Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Holly A Saffran
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Justin A Shields
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Howard S Young
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - James A Nieman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada.
| |
Collapse
|
44
|
Skwarecki AS, Nowak MG, Milewska MJ. Amino Acid and Peptide-Based Antiviral Agents. ChemMedChem 2021; 16:3106-3135. [PMID: 34254457 DOI: 10.1002/cmdc.202100397] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 01/10/2023]
Abstract
A significant number of antiviral agents used in clinical practice are amino acids, short peptides, or peptidomimetics. Among them, several HIV protease inhibitors (e. g. lopinavir, atazanavir), HCV protease inhibitors (e. g. grazoprevir, glecaprevir), and HCV NS5A protein inhibitors have contributed to a significant decrease in mortality from AIDS and hepatitis. However, there is an ongoing need for the discovery of new antiviral agents and the development of existing drugs; amino acids, both proteinogenic and non-proteinogenic in nature, serve as convenient building blocks for this purpose. The synthesis of non-proteinogenic amino acid components of antiviral agents could be challenging due to the need for enantiomerically or diastereomerically pure products. Herein, we present a concise review of antiviral agents whose structures are based on amino acids of both natural and unnatural origin. Special attention is paid to the synthetic aspects of non-proteinogenic amino acid components of those agents.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
45
|
Synthetic and computational efforts towards the development of peptidomimetics and small-molecule SARS-CoV 3CLpro inhibitors. Bioorg Med Chem 2021; 46:116301. [PMID: 34332853 PMCID: PMC8254399 DOI: 10.1016/j.bmc.2021.116301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) is a severe febrile respiratory disease caused by the beta genus of human coronavirus, known as SARS-CoV. Last year, 2019-n-CoV (COVID-19) was a global threat for everyone caused by the outbreak of SARS-CoV-2. 3CLpro, chymotrypsin-like protease, is a major cysteine protease that substantially contributes throughout the viral life cycle of SARS-CoV and SARS-CoV-2. It is a prospective target for the development of SARS-CoV inhibitors by applying a repurposing strategy. This review focuses on a detailed overview of the chemical synthesis and computational chemistry perspectives of peptidomimetic inhibitors (PIs) and small-molecule inhibitors (SMIs) targeting viral proteinase discovered from 2004 to 2020. The PIs and SMIs are one of the primary therapeutic inventions for SARS-CoV. The journey of different analogues towards the evolution of SARS-CoV 3CLpro inhibitors and complete synthetic preparation of nineteen derivatives of PIs and ten derivatives of SMIs and their computational chemistry perspectives were reviewed. From each class of derivatives, we have identified and highlighted the most compelling PIs and SMIs for SARS-CoV 3CLpro. The protein-ligand interaction of 29 inhibitors were also studied that involved with the 3CLpro inhibition, and the frequent amino acid residues of the protease were also analyzed that are responsible for the interactions with the inhibitors. This work will provide an initiative to encourage further research for the development of effective and drug-like 3CLpro inhibitors against coronaviruses in the near future.
Collapse
|
46
|
Prediction of inhibitory constants of compounds against SARS-CoV 3CLpro enzyme with 2D-QSAR model. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [PMCID: PMC8139336 DOI: 10.1016/j.jscs.2021.101262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Developing broad-spectrum anti-coronavirus drugs is greatly important, since the novel SARS-CoV-2 has rapidly become a threat to the public health and economy worldwide. SARS-CoV 3-chymotrypsin-like protease (3CLpro), as highly conserved in betacoronavirus, is a viable target for anti-SARS drugs. A quantitative structure–activity relationship (QSAR) for inhibitory constants (pKi) of 89 compounds against SARS-CoV 3CLpro enzyme was developed by using support vector machine (SVM) and genetic algorithm. The optimal SVM model (C = 90.2339 and γ = 1.19826 × 10−5) based on six molecular descriptors has determination coefficients of 0.839 for the training set (65 compounds) and 0.747 for test set (24 compounds), and rms errors of 0.435 and 0.525, respectively. These results are accurate and acceptable compared with that in other models reported, although our SVM model deals with more samples in the dada set. The SVM model could be beneficial for search of novel 3CLpro enzyme inhibitors against SARS-CoV.
Collapse
|
47
|
Sun LY, Chen C, Su J, Li JQ, Jiang Z, Gao H, Chigan JZ, Ding HH, Zhai L, Yang KW. Ebsulfur and Ebselen as highly potent scaffolds for the development of potential SARS-CoV-2 antivirals. Bioorg Chem 2021; 112:104889. [PMID: 33915460 PMCID: PMC8026246 DOI: 10.1016/j.bioorg.2021.104889] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/25/2023]
Abstract
The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised a global catastrophe. To date, there is no specific antiviral drug available to combat this virus, except the vaccine. In this study, the main protease (Mpro) required for SARS-CoV-2 viral replication was expressed and purified. Thirty-six compounds were tested as inhibitors of SARS-CoV-2 Mpro by fluorescence resonance energy transfer (FRET) technique. The half-maximal inhibitory concentration (IC50) values of Ebselen and Ebsulfur analogs were obtained to be in the range of 0.074-0.91 μM. Notably, the molecules containing furane substituent displayed higher inhibition against Mpro, followed by Ebselen 1i (IC50 = 0.074 μM) and Ebsulfur 2k (IC50 = 0.11 μM). The action mechanism of 1i and 2k were characterized by enzyme kinetics, pre-incubation and jump dilution assays, as well as fluorescent labeling experiments, which suggested that both compounds covalently and irreversibly bind to Mpro, while molecular docking suggested that 2k formed an SS bond with the Cys145 at the enzymatic active site. This study provides two very potent scaffolds Ebsulfur and Ebselen for the development of covalent inhibitors of Mpro to combat COVID-19.
Collapse
Affiliation(s)
- Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jianpeng Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Zhihui Jiang
- Department of Pharmacy, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, PR China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Zhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Huan-Huan Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le Zhai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 72101, Shaanxi Province, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
48
|
Zhuo LS, Wang MS, Yang JF, Xu HC, Huang W, Shang LQ, Yang GF. Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Top Curr Chem (Cham) 2021; 379:23. [PMID: 33886017 PMCID: PMC8061463 DOI: 10.1007/s41061-021-00335-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/03/2021] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still a pandemic around the world. Currently, specific antiviral drugs to control the epidemic remain deficient. Understanding the details of SARS-CoV-2 structural biology is extremely important for development of antiviral agents that will enable regulation of its life cycle. This review focuses on the structural biology and medicinal chemistry of various key proteins (Spike, ACE2, TMPRSS2, RdRp and Mpro) in the life cycle of SARS-CoV-2, as well as their inhibitors/drug candidates. Representative broad-spectrum antiviral drugs, especially those against the homologous virus SARS-CoV, are summarized with the expectation they will drive the development of effective, broad-spectrum inhibitors against coronaviruses. We are hopeful that this review will be a useful aid for discovery of novel, potent anti-SARS-CoV-2 drugs with excellent therapeutic results in the near future.
Collapse
Affiliation(s)
- Lin-Sheng Zhuo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Ming-Shu Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Hong-Chuang Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wei Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Lu-Qing Shang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
49
|
Yang H, Yang J. A review of the latest research on M pro targeting SARS-COV inhibitors. RSC Med Chem 2021; 12:1026-1036. [PMID: 34355175 DOI: 10.1039/d1md00066g] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Since the outbreak of COVID-19, the pandemic caused by SARS-CoV-2 infection is still spreading at an alarming rate and has caused huge loss of life and economic damage worldwide. Although more than one year has passed, effective treatments for COVID-19 and other pathogenic coronaviruses have not yet been developed. Therefore, the development of SARS-CoV-2 inhibitors is an urgent priority. Given that the Mpro sequences of SARS-CoV-2 and SARS-CoV-1 are 100% identical in the catalytic domain for protein cleavage, the viral main protease (Mpro) is one of the most extensive drug targets in all the drug targets being investigated for SARS-CoV-2. To provide scientific researchers with timely anti-SARS-CoV drug development information for Mpro, we focus on the past and current drug design and development strategies for MPro in this review. We believe that this review will provide meaningful guidance for the design and development of innovative drugs against COVID-19 and other pathogenic coronaviruses in the future.
Collapse
Affiliation(s)
- Huihui Yang
- Medical School Institute of Reproductive Medicine, Nantong University Nantong 226019 China
| | - Jinfei Yang
- Institute of Modern Rehabilitation, University of Health and Rehabilitation Science Qingdao 266001 China .,Medical School Institute of Reproductive Medicine, Nantong University Nantong 226019 China
| |
Collapse
|
50
|
Amin SA, Banerjee S, Gayen S, Jha T. Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors? Eur J Med Chem 2021; 215:113294. [PMID: 33618158 PMCID: PMC7880840 DOI: 10.1016/j.ejmech.2021.113294] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
The fascinating similarity between the SARS-CoV and SARS-CoV-2, inspires scientific community to investigate deeper into the SARS-CoV proteases such as main protease (Mpro) and papain-like protease (PLpro) and their inhibitors for the discovery of SARS-CoV-2 protease inhibitors. Because of the similarity in the proteases of these two corona viruses, there is a greater chance for the previous SARS-CoV Mpro and PLpro inhibitors to provide effective results against SARS-CoV-2. In this context, the molecular fragments from the SARS-CoV protease inhibitors through the fragment-based drug design and discovery technique can be useful guidance for COVID-19 drug discovery. Here, we have focused on the structure-activity relationship studies of previous SARS-CoV protease inhibitors and discussed about crucial fragments generated from previous SARS-CoV protease inhibitors important for the lead optimization of SARS-CoV-2 protease inhibitors. This study surely offers different strategic options of lead optimization to the medicinal chemists to discover effective anti-viral agent against the devastating disease, COVID-19.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|