1
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
2
|
Kalamatianou A, Ludwig C, Zhong S, Cariou K, Gasser G. Synthetic strategies for the incorporation of metallocenes into anti-infective scaffolds. Chem Soc Rev 2025; 54:3930-3961. [PMID: 40091793 DOI: 10.1039/d4cs01216j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
With the rates of infectious diseases and (pan)drug-resistant pathogens constantly increasing, there is a pressing need for the development of new drug candidates. To fight this global health crisis, new medicines should propose improved or novel modes of action. A successful strategy to fight microbial resistance is the incorporation of metallocenes into drug scaffolds. This review aims at encouraging the scientific community to follow this approach by giving an overview of all published synthetic strategies either for the derivatization of anti-infective drug scaffolds with metallocenes or for the de novo synthesis of original metallocenyl anti-infectives. This should facilitate future research as published articles are classified depending on the reaction type that is employed for the incorporation of the metallocenes, namely addition-elimination, condensation, "click" chemistry, cross-coupling, nucleophilic substitution and other methods. Overall, this review exhibits the impressive but somewhat unexploited potential of anti-infective metallocenyl compounds to treat infectious diseases.
Collapse
Affiliation(s)
- Apollonia Kalamatianou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Corentin Ludwig
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Shuai Zhong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
3
|
Dash A, Panda J, Samanta B, Mohapatra S. Advancements in synthetic methodologies and biological applications of lawsone derivatives. Org Biomol Chem 2025; 23:2302-2322. [PMID: 39912761 DOI: 10.1039/d5ob00020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
2-Hydroxy-1,4-naphthoquinone, widely recognized as lawsone, is a natural dye obtained from the henna plant (Lawsonia inermis), known for its biological activity and diverse applications in biochemistry and analytical chemistry. As a versatile precursor, it plays a crucial role in synthesizing a wide range of structurally diverse and bioactive molecular scaffolds. This review highlights recent progress in the development of lawsone derivatives, emphasizing their extensive biological activities, such as anticancer, antimicrobial, antioxidant, antimalarial, and metabolic enzyme-targeting activities, as well as their structure-activity relationships. Remarkably, this is the first detailed exploration covering both the biological activities and chemical synthesis of significant lawsone derivatives from 2016 to the present.
Collapse
Affiliation(s)
- Ananya Dash
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Jasmine Panda
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Barsha Samanta
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| |
Collapse
|
4
|
Duay SS, Yap RCY, Gaitano AL, Santos JAA, Macalino SJY. Roles of Virtual Screening and Molecular Dynamics Simulations in Discovering and Understanding Antimalarial Drugs. Int J Mol Sci 2023; 24:ijms24119289. [PMID: 37298256 DOI: 10.3390/ijms24119289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Malaria continues to be a global health threat, with approximately 247 million cases worldwide. Despite therapeutic interventions being available, patient compliance is a problem due to the length of treatment. Moreover, drug-resistant strains have emerged over the years, necessitating urgent identification of novel and more potent treatments. Given that traditional drug discovery often requires a great deal of time and resources, most drug discovery efforts now use computational methods. In silico techniques such as quantitative structure-activity relationship (QSAR), docking, and molecular dynamics (MD) can be used to study protein-ligand interactions and determine the potency and safety profile of a set of candidate compounds to help prioritize those tested using assays and animal models. This paper provides an overview of antimalarial drug discovery and the application of computational methods in identifying candidate inhibitors and elucidating their potential mechanisms of action. We conclude with the continued challenges and future perspectives in the field of antimalarial drug discovery.
Collapse
Affiliation(s)
- Searle S Duay
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Rianne Casey Y Yap
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Arturo L Gaitano
- Chemistry Department, Adamson University, Manila 1000, Philippines
| | | | | |
Collapse
|
5
|
Peixoto JF, Gonçalves-Oliveira LF, Souza-Silva F, Côrtes LMDC, Dias-Lopes G, Cardoso FDO, Santos RDO, Patricio BFDC, Nicoletti CD, Lima CGDS, Calabrese KDS, Moreira DDL, Rocha HVA, da Silva FDC, Ferreira VF, Alves CR. Development of a microemulsion loaded with epoxy-α-lapachone against Leishmania (Leishmania) amazonensis murine infection. Int J Pharm 2023; 636:122864. [PMID: 36934883 DOI: 10.1016/j.ijpharm.2023.122864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Epoxy-α-lapachone (ELAP), an oxirane-functionalized molecule synthesized from naturally occurring lapachol, has shown promising activity against murine infection with Leishmania (Leishmania) amazonensis. Herein, we report the successful development of oil-in-water-type (o/w) microemulsions (ME) loaded with ELAP (ELAP-ME) using Capmul MCM, Labrasol, and PEG 400. Stability studies revealed that ELAP-ME (100 µg/mL of ELAP), which was comprised of globule size smaller than 120.4 ± 7.7 nm, displayed a good stability profile over 73 days. ELAP-ME had an effect in BALB/c mice infected with L. (L.) amazonensis, causing reductions in paw lesions after two weeks of treatment (∼2-fold) when compared to untreated animals. Furthermore, there was also a reduction in the parasite load both in the footpad (60.3%) and in the lymph nodes (31.5%). Based on these findings, ELAP-ME emerges as a promising treatment for tegumentar leishmaniasis.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, CEP 21040-900, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Luiz Filipe Gonçalves-Oliveira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, CEP 21040-900, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Franklin Souza-Silva
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, CEP 21040-900, Manguinhos, Rio de Janeiro, RJ, Brazil; Universidade Iguaçu, Avenida Abílio Augusto Távora 2134, CEP 26260-045, Dom Rodrigo, Nova Iguaçu, RJ, Brazil
| | - Luzia Monteiro de Castro Côrtes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, CEP 21040-900, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, CEP 21040-900, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Flávia de Oliveira Cardoso
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunomodulação e Protozoologia, Avenida Brasil 4365, CEP 21040-900, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Rafael de Oliveira Santos
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos, Departamento de Produtos Naturais, Sizenando Nabuco 100, CEP 21041250, Manguinhos, Rio de Janeiro, RJ, Brazil; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Laboratório de Produtos Naturais, Rua Pacheco Leão 15, CEP 22460-030, Jardim Botânico, Rio de Janeiro, RJ, Brazil
| | - Beatriz Ferreira de Carvalho Patricio
- Fundação Oswaldo Cruz, Farmanguinhos, Laboratório de Micro e Nanotecnologia, Avenida Brasil 4036, CEP 21040361, Bonsucesso, Rio de Janeiro, RJ, Brazil; Universidade Federal do Estado do Rio de Janeiro, Instituto Biomédico, Laboratório de Farmacologia, Rua Frei Caneca 94, Centro, CEP 20211040, Rio de Janeiro, RJ, Brazil
| | - Caroline Deckmann Nicoletti
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Outeiro de São João Batista s/n, CEP 24020-141, Niterói, RJ, Brazil
| | - Carolina Guimarães de Souza Lima
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Outeiro de São João Batista s/n, CEP 24020-141, Niterói, RJ, Brazil
| | - Kátia da Silva Calabrese
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunomodulação e Protozoologia, Avenida Brasil 4365, CEP 21040-900, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Davyson de Lima Moreira
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos, Departamento de Produtos Naturais, Sizenando Nabuco 100, CEP 21041250, Manguinhos, Rio de Janeiro, RJ, Brazil; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Laboratório de Produtos Naturais, Rua Pacheco Leão 15, CEP 22460-030, Jardim Botânico, Rio de Janeiro, RJ, Brazil
| | - Helvécio Vinícius Antunes Rocha
- Fundação Oswaldo Cruz, Farmanguinhos, Laboratório de Micro e Nanotecnologia, Avenida Brasil 4036, CEP 21040361, Bonsucesso, Rio de Janeiro, RJ, Brazil
| | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Outeiro de São João Batista s/n, CEP 24020-141, Niterói, RJ, Brazil
| | - Vitor Francisco Ferreira
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Outeiro de São João Batista s/n, CEP 24020-141, Niterói, RJ, Brazil; Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, Rua Dr. Mario Vianna 523, Santa Rosa, CEP 24241-002, Niterói, RJ, Brazil
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, CEP 21040-900, Manguinhos, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Daltoé RD, Rangel LBA, Delarmelina M, Madeira KP, Porto ML, Meirelles SS, Dos Santos Guimarães I, Filho ÉV, Pereira AR, de Queiroz Ferreira R, Dos Santos GFS, de França Schaffel I, de Mesquita Carneiro JW, Silva AMS, Greco SJ. Synthetic Naphthoquinone Derivatives as Anticancer Agents in Ovarian Cancer: Cytotoxicity Assay and Investigation of Possible Biological Mechanisms Action. Chem Biodivers 2023; 20:e202200807. [PMID: 36302719 DOI: 10.1002/cbdv.202200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 01/13/2023]
Abstract
In this study, eight naphthoquinone derivatives were synthesized in yields ranging from 52 to 96% using easy, fast, and low-cost methodologies. All naphthoquinone derivatives were screened for their in vitro anti-proliferative activities against OVCA A2780 cancer cell lines. Amongst all analysed compounds, derivatives 3-5 presented the most prominent cytotoxic potential. Naphthoquinones 3 and 4, bearing sulfur-containing groups, were identified as having high potential for ROS production, in particular the superoxide anion. Furthermore, 3 and 4 compounds caused a decrease in the cell population in G0/G1 and induced more than 90% of the cell population to apoptosis. Compound 5 did not act in any of these processes. Finally, compounds 3-5 were tested for their inhibitory ability against PI3K and MAPK. Compounds 3 and 4 do not inhibit the PI3K enzyme. On the other hand, the naphthoquinone-polyphenol 5 was only able to inhibit the percentage of cells expressing pERK.
Collapse
Affiliation(s)
- Renata Dalmaschio Daltoé
- Pharmaceutical Sciences Department, Federal University of Espirito Santo, Vitória, Espírito Santo, 29047-105, Brazil
| | | | - Maicon Delarmelina
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Klesia Pirola Madeira
- Pharmacy and Nutrition Department, Federal University of Espírito Santo, Alegre, Espírito Santo, 29500-000, Brazil
| | - Marcella Leite Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, Espírito Santo, 29106-010, Brazil
| | - Silvana Santos Meirelles
- Phisiological Sciences Department, Federal University of Espirito Santo, Vitória, Espírito Santo, 29047-105, Brazil
| | | | - Éclair Venturini Filho
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Alan Reinke Pereira
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | | | | | | | | | - Artur M S Silva
- REQUIMTE & Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Sandro José Greco
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| |
Collapse
|
7
|
Hammoud MM, Khattab M, Abdel-Motaal M, Van der Eycken J, Alnajjar R, Abulkhair HS, Al-Karmalawy AA. Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity. J Biomol Struct Dyn 2022:1-18. [PMID: 35674744 DOI: 10.1080/07391102.2022.2082533] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this article, we describe a set of subsequent five-steps chemical reactions to synthesize a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10). Structural characterization of 10 and its intermediate products was also performed and reported to attest to their formation. A molecular docking study was performed to propose the novel synthesized ferrocene derivative (10) as a potential antitumor candidate targeting the mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1. The computed docking score of (10) at -9.50 kcal/mol compared to the native anticancer staurosporine at -8.72 kcal/mol postulated a promising anticancer activity. Also, molecular dynamics (MD) simulations were carried out for 500 ns followed by MM-GBSA-binding free energy calculations for both the docked complexes of ferrocene and staurosporine to give more deep insights into their dynamic behavior in physiological conditions. Furthermore, DFT calculations were performed to unravel some of the physiochemical characteristics of the ferrocene derivative (10). The quantum mechanics calculations shed the light on some of the structural and electrochemical configurations of (10) which would open the horizon for further investigation. HighlightsThe synthesis of a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10) was described.Structural characterizations of ferrocene derivative (10) and its intermediate products were also performed.DFT calculations, molecular docking, molecular dynamics, and MM-GBSA calculations were carried out.Computational studies revealed the antitumor potential of ferrocene derivative (10) through targeting and inhibiting mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed M Hammoud
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute National Research Centre, Dokki, Cairo, Egypt
| | - Marwa Abdel-Motaal
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Johan Van der Eycken
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya.,Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ahmed Ali Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
8
|
Synthesis, and in vitro biological evaluations of novel naphthoquinone conjugated to aryl triazole acetamide derivatives as potential anti-Alzheimer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Solid-state NMR and hyperpolarization methods for the Research, Development, and Innovation in Costa Rican science. Biophys Rev 2022; 14:549-551. [PMID: 35528032 PMCID: PMC9043162 DOI: 10.1007/s12551-022-00946-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022] Open
Abstract
Inter and multidisciplinary collaborations are essential to achieve significant improvements in science and technology. Nuclear Magnetic Resonance (NMR) is a versatile technique that permits connecting different scientific disciplines. Therefore, its implementation and extension in several research fields will help to improve Costa Rican Research and Development. This Commentary intends to present the importance of NMR for Costa Rican science, by numbering some solid-state NMR applications that could be useful and attainable for the country, and by highlighting the advances in the use of hyperpolarization methods.
Collapse
|
10
|
Galy PE, Guitton-Spassky T, Sella C, Thouin L, Vitale MR, Baigl D. Redox Control of Particle Deposition from Drying Drops. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3374-3384. [PMID: 34994535 DOI: 10.1021/acsami.1c18933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coffee-ring effect (CRE), which denotes the accumulation of nonvolatile compounds at the periphery of a pinned sessile drying drop, is a universal and ubiquitous yet complex phenomenon. It is crucial to better understand and control it, either to avoid its various deleterious consequences in many processes requiring homogeneous deposition or to exploit it for applications ranging from controlled particle patterning to low cost diagnostics. Here, we report for the first time the use of a reduction-oxidation (redox) stimulus to cancel the CRE or harness it, leading to a robust and tunable control of particle deposition in drying sessile drops. This is achieved by implementing redox-sensitive ferrocenyl cationic surfactants of different chain lengths in drying drops containing anionic colloids. Varying surfactant hydrophobicity, concentration, and redox state allows us not only to control the overall distribution of deposited particles, including the possibility to fully cancel the CRE, but also to modify the microscopic organization of particles inside the deposit. Notably, with all other parameters being fixed, this method allows the adjustment of the deposited particle patterns, from polycrystalline rings to uniform disks, as a function of the oxidation rate. We show that the redox control can be achieved either chemically by the addition of oxidants or electrochemically by applying a potential for additive-free and reversible actuation in a closed system. This correlation between the redox state and the particle pattern opens a perspective for both redox-programmable particle patterning and original diagnostic applications based on the visual determination of a redox state. It also contributes to clarify the role of surfactant charge and its amphiphilic character in directing particle deposition from drying suspensions.
Collapse
Affiliation(s)
- Pauline E Galy
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Tiffany Guitton-Spassky
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Sella
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Laurent Thouin
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Maxime R Vitale
- UMR 7203, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
11
|
Singh A, Basu A, Sharma A, Priya A, Kaur M, Kaur G, Banerjee B. Lawsone (2-hydroxy-1,4-naphthaquinone) derived anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
2-Hydroxy-1,4-naphthaquinone, commonly known as lawsone, represents an extremely important biologically active naturally occurring compound. It can easily be isolated from Lawsonia inermis (henna) tree leaf extract. Last decade has seen tremendous applications of lawsone as a starting component for the preparation of various organic scaffolds. Many of these synthesized scaffolds showed a wide range of biological activities including potential activities towards several cancer cell lines. This review deals with diverse synthetic methods of lawsone derived scaffolds and their screening against different anti-cancer cell lines along with promising results.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Amartya Basu
- Department of General Medicine , Kalinga Institute of Medical Sciences , Bhubaneswar , Odisha 751024 , India
| | - Aditi Sharma
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Anu Priya
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Manmmet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Gurpreet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Bubun Banerjee
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| |
Collapse
|
12
|
Ribeiro RCB, Ferreira PG, Borges ADA, Forezi LDSM, da Silva FDC, Ferreira VF. 1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis. Beilstein J Org Chem 2022; 18:53-69. [PMID: 35047082 PMCID: PMC8744465 DOI: 10.3762/bjoc.18.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Several low molecular weight naphthoquinones are very useful in organic synthesis. These compounds have given rise to thousands of other naphthoquinones that have been tested against various microorganisms and pharmacological targets, including being used in the preparation of several drugs that are on the pharmaceutical market. Among these naphthoquinones, the series of compounds prepared from 1,2-naphthoquinone-4-sulfonic acid salts (β-NQS) stands out. In addition to being used in organic synthesis, they are excellent analytical derivatization reagents to spectrophotometrically determine drugs containing primary and secondary amino groups. This review summarizes the literature involving β-NQS.
Collapse
Affiliation(s)
- Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Patricia G Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói-RJ, Brazil
| | - Amanda de A Borges
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói-RJ, Brazil
| |
Collapse
|
13
|
Abid M, Singh S, Egan TJ, Joshi MC. Structural activity relationship of metallo-aminoquines as a next generation antimalarials. Curr Top Med Chem 2022; 22:436-472. [PMID: 34986771 DOI: 10.2174/1568026622666220105103751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Apicomplexian parasite of the genus Plasmodium is the causative agent of malaria, one of the most devastating, furious and common infectious disease throughout the world. According to the latest World malaria report, there were 229 million cases of malaria in 2019 majorly consisting of children under 5 years of age. Some of known analogues viz. quinine, quinoline-containing compounds have been used for last century in the clinical treatment of malaria. Past few decades have witnessed the emergence of multi-drug resistance (MDR) strains of Plasmodium species to existing antimalarials pressing the need for new drug candidates. For the past few decades bioorganometallic approach to malaria therapy has been introduced which led to the discovery of noval metalcontaining aminoquinolines analogues viz. ferroquine (FQ or 1), Ruthenoquine (RQ or 2) and other related potent metal-analogues. It observed that some metal containing analogues (Fe-, Rh-, Ru-, Re-, Au-, Zn-, Cr-, Pd-, Sn-, Cd-, Ir-, Co-, Cu-, and Mn-aminoquines) were more potent; however, some were equally potent as Chloroquine (CQ) and 1. This is probably due to the intertion of metals in the CQ via various approaches, which might be a very attractive strategy to develop a SAR of novel metal containing antimalarials. Thus, this review aims to summarize the SAR of metal containing aminoquines towards the discovery of potent antimalarial hybrids to provide an insight for rational designs of more effective and less toxic metal containing amoniquines.
Collapse
Affiliation(s)
- Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi-110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Mehroli Road, New Delhi-110067, India
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town-7700, South Africa
| | - Mukesh C Joshi
- Dept. of Chemistry, Motilal Nehru College, University of Delhi, Benito Juarez marg, South Campus, New Delhi-110021. India
| |
Collapse
|
14
|
Chaves-Carballo K, Lamoureux GV, Perez AL, Bella Cruz A, Cechinel Filho V. Novel one-pot synthesis of a library of 2-aryloxy-1,4-naphthoquinone derivatives. Determination of antifungal and antibacterial activity. RSC Adv 2022; 12:18507-18523. [PMID: 35799928 PMCID: PMC9218966 DOI: 10.1039/d2ra01814d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
The development of new antibiotics and inexpensive antifungals is an important field of research. Based on the privileged pharmacophore of lawsone, a series of phenolic ether derivatives of 1,4-naphthoquinone were synthesized easily in one step in reasonable yields. All the new compounds were characterized and tested as potential antifungal and antibacterial agents against Candida albicans, Escherichia coli and Staphylococcus aureus. Compound 55 has significant antibacterial action (as good as or better than the controls) against E. coli and S. aureus. Against C. albicans, compounds 38, 46, 47 and 60 were the best candidates as antifungals. Using a qualitative structure–activity analysis, a correlation between molar mass and antimicrobial activity was identified, regardless of the substituent group on the phenolic moiety, except for 55 and 63, where electronic effects seem more important. An in silico evaluation of the absorption, distribution, metabolism and excretion (ADME) for 37, 50, 55 and 63 was made, indicating that the classic Lipinski's rule of five applies in all cases. The development of new antibiotics and inexpensive antifungals is an important field of research. Based on the privileged pharmacophore of lawsone, a series of phenolic ether derivatives of 1,4-naphthoquinone were synthesized easily in one step in reasonable yields.![]()
Collapse
Affiliation(s)
- Katherine Chaves-Carballo
- Centro de Investigaciones en Productos Naturales and Escuela de Química, Universidad de Costa Rica, San Pedro 2060, San José, Costa Rica
| | - Guy V. Lamoureux
- Centro de Investigaciones en Productos Naturales and Escuela de Química, Universidad de Costa Rica, San Pedro 2060, San José, Costa Rica
| | - Alice L. Perez
- Centro de Investigaciones en Productos Naturales and Escuela de Química, Universidad de Costa Rica, San Pedro 2060, San José, Costa Rica
| | - Alexandre Bella Cruz
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), CCS, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Valdir Cechinel Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), CCS, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| |
Collapse
|
15
|
Ceylan Ü, Yalcin S, Kilic A, Aytar E, Aygun M. Design, spectroscopy, quantum chemical study and Hirshfeld analysis of single crystal ferrocene-based boronate ester. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Sghyar R, Moussaoui O, Sebbar NK, Ait Elmachkouri Y, Irrou E, Hökelek T, Mague JT, Bentama A, El hadrami EM. Crystal structure and Hirshfeld surface analysis study of ( E)-1-(4-chloro-phen-yl)- N-(4-ferrocenylphen-yl)methanimine. Acta Crystallogr E Crystallogr Commun 2021; 77:875-879. [PMID: 34584753 PMCID: PMC8423021 DOI: 10.1107/s2056989021008033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022]
Abstract
The substituted cyclo-penta-dienyl ring in the title mol-ecule, [Fe(C5H5)(C18H13ClN)], is nearly coplanar with the phenyl-1-(4-chloro-phen-yl)methanimine substituent, with dihedral angles between the planes of the phenyl-ene ring and the Cp and 4-(chloro-phen-yl)methanimine units of 7.87 (19) and 9.23 (10)°, respectively. The unsubstituted cyclo-penta-dienyl ring is rotationally disordered, the occupancy ratio for the two orientations refined to a 0.666 (7)/0.334 (7) ratio. In the crystal, the mol-ecules pack in 'bilayers' parallel to the ab plane with the ferrocenyl groups on the outer faces and the substituents directed towards the regions between them. The ferrocenyl groups are linked by C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (46.1%), H⋯C/C⋯ H (35.4%) and H⋯Cl/Cl⋯H (13.8%) inter-actions. Thus C-H⋯π(ring) and van der Waals inter-actions are the dominant inter-actions in the crystal packing.
Collapse
Affiliation(s)
- Riham Sghyar
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco
| | - Oussama Moussaoui
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco
| | - Nada Kheira Sebbar
- Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Younesse Ait Elmachkouri
- Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Ezaddine Irrou
- Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Abdesslam Bentama
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco
| | - El Mestafa El hadrami
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco
| |
Collapse
|
17
|
Rocamora F, Gupta P, Istvan ES, Luth MR, Carpenter EF, Kümpornsin K, Sasaki E, Calla J, Mittal N, Carolino K, Owen E, Llinás M, Ottilie S, Goldberg DE, Lee MCS, Winzeler EA. PfMFR3: A Multidrug-Resistant Modulator in Plasmodium falciparum. ACS Infect Dis 2021; 7:811-825. [PMID: 33715347 PMCID: PMC8042660 DOI: 10.1021/acsinfecdis.0c00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
In
malaria, chemical genetics is a powerful method for assigning
function to uncharacterized genes. MMV085203 and GNF-Pf-3600 are two
structurally related napthoquinone phenotypic screening hits that
kill both blood- and sexual-stage P. falciparum parasites in the low nanomolar to low micromolar range. In order
to understand their mechanism of action, parasites from two different
genetic backgrounds were exposed to sublethal concentrations of MMV085203
and GNF-Pf-3600 until resistance emerged. Whole genome sequencing
revealed all 17 resistant clones acquired nonsynonymous mutations
in the gene encoding the orphan apicomplexan transporter PF3D7_0312500
(pfmfr3) predicted to encode a member of the major
facilitator superfamily (MFS). Disruption of pfmfr3 and testing against a panel of antimalarial compounds showed decreased
sensitivity to MMV085203 and GNF-Pf-3600 as well as other compounds
that have a mitochondrial mechanism of action. In contrast, mutations
in pfmfr3 provided no protection against compounds
that act in the food vacuole or the cytosol. A dihydroorotate dehydrogenase
rescue assay using transgenic parasite lines, however, indicated a
different mechanism of action for both MMV085203 and GNF-Pf-3600 than
the direct inhibition of cytochrome bc1. Green fluorescent protein
(GFP) tagging of PfMFR3 revealed that it localizes to the parasite
mitochondrion. Our data are consistent with PfMFR3 playing roles in
mitochondrial transport as well as drug resistance for clinically
relevant antimalarials that target the mitochondria. Furthermore,
given that pfmfr3 is naturally polymorphic, naturally
occurring mutations may lead to differential sensitivity to clinically
relevant compounds such as atovaquone.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Purva Gupta
- VA San Diego Healthcare System, Medical and Research Sections, La Jolla, California 92161, United States
- Department of Medicine, Division of Pulmonary and Critical Care, University of California, San Diego, La Jolla, California 92037, United States
| | - Eva S. Istvan
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | | | | | - Erika Sasaki
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jaeson Calla
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Nimisha Mittal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Krypton Carolino
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Edward Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | | | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Patel OPS, Beteck RM, Legoabe LJ. Antimalarial application of quinones: A recent update. Eur J Med Chem 2020; 210:113084. [PMID: 33333397 DOI: 10.1016/j.ejmech.2020.113084] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Atovaquone belongs to a naphthoquinone class of drugs and is used in combination with proguanil (Malarone) for the treatment of acute, uncomplicated malaria caused by Plasmodium falciparum (including chloroquine-resistant P. falciparum/P. vivax). Numerous quinone-derived compounds have attracted considerable attention in the last few decades due to their potential in antimalarial drug discovery. Several semi-synthetic derivatives of natural quinones, synthetic quinones (naphtho-/benzo-quinone, anthraquinones, thiazinoquinones), and quinone-based hybrids were explored for their in vitro and in vivo antimalarial activities. A careful literature survey revealed that this topic has not been compiled as a review article so far. Therefore, we herein summarise the recent discovery (the year 2009-2020) of quinone based antimalarial compounds in chronological order. This compilation would be very useful towards the exploration of novel quinone-derived compounds against malarial parasites with promising efficacy and lesser side effects.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
19
|
Kilic A, Beyazsakal L, Işık M, Türkeş C, Necip A, Takım K, Beydemir Ş. Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Assessing the biological potential of new symmetrical ferrocene based bisthiourea analogues. Bioorg Chem 2020; 106:104180. [PMID: 33276979 DOI: 10.1016/j.bioorg.2020.104180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 01/10/2023]
Abstract
In the present work synthesis and characterization of five new bisferrocenyl bisthiourea analogues (G2M, S2M, G3F, G4F and T2M) is reported. UV-Visible and electrochemical studies were performed in order to have optical (absorption maximum, Molar absorption coefficient and optical band gap) and electrochemical parameters (Oxidation/reduction potentials and nature of the electrochemical process) of the compounds. In vitro various biological studies such as antibacterial, antifungal, anti-oxidant and antidiabetic activities were carried out to have comparative overview of the phermacochemical strength of the newly synthesized compounds. Similarly, theoretical analysis was accomplished utilizing density functional theory calculations. DFT/B3LYP (6-31G d, p) technique was used. With a view to explore the structure activity relationship (SAR) of the compounds theoretical docking analysis (against α-amylase, α-glucosidase) was also performed to have pictorial view and understanding of the actual interactions responsible for the activity. S2M displayed best antibacterial activity. Similarly, Antifungal and antidiabetic activities showed G3F as a best candidate, whereas T2M proved to be the best antioxidant agent.
Collapse
|
21
|
Chen Y, Wang Y, Zhong R, Li J. HFIP Promoted C3 Alkylation of Lawsone and 4-Hydroxycoumarin with Alcohols by Dehydrative Cross-Coupling. J Org Chem 2020; 85:10638-10647. [DOI: 10.1021/acs.joc.0c01207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yixin Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yurong Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Rong Zhong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
22
|
Kilic A, Balci TE, Arslan N, Aydemir M, Durap F, Okumuş V, Tekin R. Synthesis of
cis
‐1,2‐diol‐type chiral ligands and their dioxaborinane derivatives: Application for the asymmetric transfer hydrogenation of various ketones and biological evaluation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmet Kilic
- Art and Science Faculty, Chemistry Department Harran University Sanliurfa 63190 Turkey
| | - Tuğba Ersayan Balci
- Art and Science Faculty, Chemistry Department Harran University Sanliurfa 63190 Turkey
| | - Nevin Arslan
- Department of Field Crops, Faculty of Agriculture Şırnak University Şırnak 73000 Turkey
| | - Murat Aydemir
- Department of Chemistry, Science Faculty Dicle University Diyarbakir 21280 Turkey
| | - Feyyaz Durap
- Department of Chemistry, Science Faculty Dicle University Diyarbakir 21280 Turkey
| | - Veysi Okumuş
- Department of Biology, Faculty of Science and Art University of Siirt Siirt 56100 Turkey
| | - Recep Tekin
- Department of Infectious Diseases and Clinical Microbiology DicleUniversity Faculty of Medicine Diyarbakir 21280 Turkey
| |
Collapse
|
23
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
24
|
Oramas-Royo S, López-Rojas P, Amesty Á, Gutiérrez D, Flores N, Martín-Rodríguez P, Fernández-Pérez L, Estévez-Braun A. Synthesis and Antiplasmodial Activity of 1,2,3-Triazole-Naphthoquinone Conjugates. Molecules 2019; 24:molecules24213917. [PMID: 31671684 PMCID: PMC6864696 DOI: 10.3390/molecules24213917] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
A series of 34 1,2,3-triazole-naphthoquinone conjugates were synthesized via copper-catalyzed cycloaddition (CuAAC). They were evaluated for their in vitro antimalarial activity against chloroquine-sensitive strains of Plasmodium falciparum and against three different tumor cell lines (SKBr-3, MCF-7, HEL). The most active antimalarial compounds showed a low antiproliferative activity. Simplified analogues were also obtained and some structure–activity relationships were outlined. The best activity was obtained by compounds 3s and 3j, having IC50 of 0.8 and 1.2 μM, respectively. Molecular dockings were also carried on Plasmodium falciparum enzyme dihydroorotate dehydrogenase (PfDHODH) in order to rationalize the results.
Collapse
Affiliation(s)
- Sandra Oramas-Royo
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206 Tenerife, Spain.
| | - Priscila López-Rojas
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206 Tenerife, Spain.
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206 Tenerife, Spain.
| | - David Gutiérrez
- Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, Av. Saavedra 2024, 2° piso, Miraflores, La Paz 2314, Bolivia.
| | - Ninoska Flores
- Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, Av. Saavedra 2024, 2° piso, Miraflores, La Paz 2314, Bolivia.
| | - Patricia Martín-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Departamento de Ciencias Clínicas, BIOPHARM, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain.
| | - Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Departamento de Ciencias Clínicas, BIOPHARM, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain.
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206 Tenerife, Spain.
| |
Collapse
|
25
|
Pérez-Pertejo Y, Escudero-Martínez JM, Reguera RM, Balaña-Fouce R, García PA, Jambrina PG, San Feliciano A, Castro MÁ. Antileishmanial activity of terpenylquinones on Leishmania infantum and their effects on Leishmania topoisomerase IB. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:70-79. [PMID: 31678841 PMCID: PMC6904838 DOI: 10.1016/j.ijpddr.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 10/31/2022]
Abstract
Leishmania is the aethiological agent responsible for the visceral leishmaniasis, a serious parasite-borne disease widely spread all over the World. The emergence of resistant strains makes classical treatments less effective; therefore, new and better drugs are necessary. Naphthoquinones are interesting compounds for which many pharmacological properties have been described, including leishmanicidal activity. This work shows the antileishmanial effect of two series of terpenyl-1,4-naphthoquinones (NQ) and 1,4-anthraquinones (AQ) obtained from natural terpenoids, such as myrcene and myrceocommunic acid. They were evaluated both in vitro and ex vivo against the transgenic iRFP-Leishmania infantum strain and also tested on liver HepG2 cells to determine their selectivity indexes. The results indicated that NQ derivatives showed better antileishmanial activity than AQ analogues, and among them, compounds with a diacetylated hydroquinone moiety provided better results than their corresponding quinones. Regarding the terpenic precursor, compounds obtained from the monoterpenoid myrcene displayed good antiparasitic efficiency and low cytotoxicity for mammalian cells, whereas those derived from the diterpenoid showed better antileishmanial activity without selectivity. In order to explore their mechanism of action, all the compounds have been tested as potential inhibitors of Leishmania type IB DNA topoisomerases, but only some compounds that displayed the quinone ring were able to inhibit the recombinant enzyme in vitro. This fact together with the docking studies performed on LTopIB suggested the existence of another mechanism of action, alternative or complementary to LTopIB inhibition. In silico druglikeness and ADME evaluation of the best leishmanicidal compounds has shown good predictable druggability.
Collapse
Affiliation(s)
- Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas. Campus de Vegazana, University of León, León, Spain
| | | | - Rosa M Reguera
- Departamento de Ciencias Biomédicas. Campus de Vegazana, University of León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas. Campus de Vegazana, University of León, León, Spain
| | - Pablo A García
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, Salamanca, Spain
| | - Pablo G Jambrina
- Departamento de Química Física. Facultad de Ciencias Químicas, University of Salamanca, Salamanca, Spain
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, Salamanca, Spain
| | - María-Ángeles Castro
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
26
|
Xiao J, Sun Z, Kong F, Gao F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur J Med Chem 2019; 185:111791. [PMID: 31669852 DOI: 10.1016/j.ejmech.2019.111791] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
Hybrid molecules have the potential to enhance the efficacy against both drug-sensitive and drug-resistant organisms, and Ferroquine, a ferrocene hybrid, has demonstrated great potency in clinical trials against both drug-sensitive and drug-resistant malaria. Accordingly, hybridization of ferrocene with other antimalarial pharmacophores represents a promising strategy to develop novel antimalarial candidates. This work attempts to systematically review the recent study of ferrocene hybrids in the design and development of antimalarial agents, and the structure-activity relationship (SAR) is also discussed to provide an insight for rational design of more effective antibacterial candidates.
Collapse
Affiliation(s)
- Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
27
|
Combination Therapy Strategies for the Treatment of Malaria. Molecules 2019; 24:molecules24193601. [PMID: 31591293 PMCID: PMC6804225 DOI: 10.3390/molecules24193601] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
Malaria is a vector- and blood-borne infection that is responsible for a large number of deaths around the world. Most of the currently used antimalarial therapeutics suffer from drug resistance. The other limitations associated with the currently used antimalarial drugs are poor drug bioavailability, drug toxicity, and poor water solubility. Combination therapy is one of the best approaches that is currently used to treat malaria, whereby two or more therapeutic agents are combined. Different combination therapy strategies are used to overcome the aforementioned limitations. This review article reports two strategies of combination therapy; the incorporation of two or more antimalarials into polymer-based carriers and hybrid compounds designed by hybridization of two antimalarial pharmacophores.
Collapse
|
28
|
Mali JK, Sutar YB, Pahelkar AR, Verma PM, Telvekar VN. Novel fatty acid-thiadiazole derivatives as potential antimycobacterial agents. Chem Biol Drug Des 2019; 95:174-181. [PMID: 31581353 DOI: 10.1111/cbdd.13634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022]
Abstract
The discovery of antibiotics around the middle twentieth century led to a decrease in the interest in antimycobacterial fatty acids. In order to re-establish the importance of naturally abundant fatty acid, a series of fatty acid-thiadiazole derivatives were designed and synthesized based on molecular hybridization approach. In vitro antimycobacterial potential was established by a screening of synthesized compounds against Mycobacterium tuberculosis H37Rv strain. Among them, compounds 5a, 5d, 5h, and 5j were the most active, with compound 5j exhibiting minimum inhibitory concentration of 2.34 μg/ml against M.tb H37Rv. Additionally, the compounds were docked to determine the probable binding interactions and understand the mechanism of action of most active molecules on enoyl-acyl carrier protein reductases (InhA), which is involved in the mycobacterium fatty acid biosynthetic pathway.
Collapse
Affiliation(s)
- Jaishree K Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Yogesh B Sutar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Akshata R Pahelkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Preeti M Verma
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Vikas N Telvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
29
|
|
30
|
Gonçalves-Oliveira LF, Souza-Silva F, de Castro Côrtes LM, Veloso LB, Santini Pereira BA, Cysne-Finkelstein L, Lechuga GC, Bourguignon SC, Almeida-Souza F, da Silva Calabrese K, Ferreira VF, Alves CR. The combination therapy of meglumine antimoniate and oxiranes (epoxy-α-lapachone and epoxymethyl-lawsone) enhance the leishmanicidal effect in mice infected by Leishmania (Leishmania) amazonensis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:101-108. [PMID: 31430693 PMCID: PMC6712286 DOI: 10.1016/j.ijpddr.2019.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 12/14/2022]
Abstract
Current treatment of cutaneous leishmaniasis includes pentavalent antimonials as first-line drugs, but this therapy has shown severe adverse effects. An alternative to minimize this issue is based on combination therapy scheme with other drugs. In this study we analyzed the potential of the association of meglumine antimoniate (MA) with the oxiranes epoxy-α-lapachone (LAP) or epoxymethyl-lawsone (LAW). Results demonstrated that association between these drugs enhanced leishmanicidal activity on Leishmania (Leishmania) amazonensis infection. The compounds were tested in monotherapy or in combinations (3:1; 1:1 and 1:3) and reduced intracellular parasite numbers, measured by the endocytic index, in all tested conditions. The most effective combination regimens were MA/LAP or MA/LAW in 3:1 ratio, which achieved a reduction of 98.3% and 93.6% in the endocytic index, respectively. BALB/c mice challenged with L. (L.) amazonensis showed significant reduction in lesion size and parasite load in both footpad and lymph nodes, after four weeks of treatment. Although, MA, LAP or LAW monotherapy were able to control the evolution of lesions when compared to untreated animals (30%, 40% and 40% of reduction, respectively), the combination of MA/LAP and LAW in 3:1 ratio showed better results reducing 61.7 and 54.4%, respectively. The results indicate that the association of meglumine antimoniate to oxiranes lead to an increment in the antileishmanial activity and represent a promising approach for the cutaneous leishmaniasis treatment. Meglumine antimoniate with oxiranes enhanced effect against Leishmania infection. The most effective treatment in vitro infection was observed in a 3:1 ratio. Mice treatment with drugs caused reductions in lesion size and parasite load. Antimony-based combination has the potential for leishmaniasis treatment.
Collapse
Affiliation(s)
- Luiz Filipe Gonçalves-Oliveira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil n(o) 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil.
| | - Franklin Souza-Silva
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil n(o) 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil; Fundação Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Avenida Brasil n(o) 4365 - Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Luzia Monteiro de Castro Côrtes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil n(o) 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil.
| | - Laura Barral Veloso
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil n(o) 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil.
| | - Bernardo Acácio Santini Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil n(o) 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil.
| | - Lea Cysne-Finkelstein
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Avenida Brasil n(o) 4365 - Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Guilherme Curty Lechuga
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Av. Brasil n(o) 4365 - Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Saulo Cabral Bourguignon
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Laboratório de Interação Celular e Molecular, Outeiro São João Batista s/n, Centro, 24020-141, Niterói, RJ, Brazil.
| | - Fernando Almeida-Souza
- Universidade Estadual do Maranhão, Pós-graduação em Ciência Animal, Cidade Universitária Paulo VI, Av. Lourenço Vieira da Silva no 1000, Jardim São Cristóvão, 65055-310, São Luís, MA, Brazil; Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunomodulação e Protozoologia, Avenida Brasil n(o) 4365 - Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Kátia da Silva Calabrese
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunomodulação e Protozoologia, Avenida Brasil n(o) 4365 - Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Vitor Francisco Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, Rua Doutor Mário Viana n(o) 523- Santa Rosa, 24241-002, Niterói, RJ, Brazil.
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil n(o) 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil.
| |
Collapse
|
31
|
Darvin SS, Esakkimuthu S, Toppo E, Balakrishna K, Paulraj MG, Pandikumar P, Ignacimuthu S, Al-Dhabi NA. Hepatoprotective effect of lawsone on rifampicin-isoniazid induced hepatotoxicity in in vitro and in vivo models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 61:87-94. [PMID: 29859372 DOI: 10.1016/j.etap.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The Drug-induced liver injury is one of the common unfavourable impacts, which seriously affects any drug therapy. This study documented the hepatoprotective efficacy of lawsone, the major bioactive naphthoquinone present in Lawsonia inermis L. (Lythraceae) using in vitro and in vivo models. Lawsone was isolated from the leaves of L. inermis and its structure was confirmed using spectroscopic data. In-vitro antioxidant effect of lawsone was evaluated using ABTS assay. Hepatoprotective effect of lawsone was determined with RIF-INH treated HepG2 cells and Wistar rats. Administration of RIF-INH reduced the viability of the HepG2 cells and the treatment with lawsone significantly restored the viability of the cells even at lower concentration (7.5 μM). The other parameters such as the leakage of transaminases and MDA levels were also significantly reduced by the treatment with lawsone. Oral administration of lawsone to the animals did not show any toxicity up to 2 g/kg b.w. concentration. Treatment with lawsone to the RIF-INH administered animals significantly lowered the serum transaminases levels. The ratio of albumin to globulin was improved and the level of bilirubin was lowered. This study indicated the hepatoprotective effect of lawsone; detailed investigations will give deeper understanding of the application of lawsone for hepatoprotection.
Collapse
Affiliation(s)
- S Sylvester Darvin
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - S Esakkimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - Erenius Toppo
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - K Balakrishna
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - M Gabriel Paulraj
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - P Pandikumar
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - S Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India; International Scientific Partnership Programme, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - N A Al-Dhabi
- Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
32
|
Kilic A, Kaya İH, Ozaslan I, Aydemir M, Durap F. Catechol-type ligand containing new modular design dioxaborinane compounds: Use in the transfer hydrogenation of various ketones. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Forti KM, Bernard F, Santiago-Collazo G, Garcia W, Vera JL, Meléndez E, Suarez-Martinez EB. Para-Substituted Functionalised Ferrocene Esters with Novel Antibacterial Properties. J Clin Diagn Res 2018; 12:DC01-DC04. [PMID: 29780759 DOI: 10.7860/jcdr/2018/30149.11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introduction Bacterial antibiotic resistance is on rise despite advances in the development of new antibiotics. In an attempt to circumvent resistance, scientists are shifting focus from modifying existent antibiotics to identifying new antibiotic compounds. Aim To assess the potential antibiotic effects of functionalised ferrocenecarboxylates para-substituted on the phenoxy pendant group to form: 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl and 4-(H-pyrrol-1-yl)phenyl. Materials and Methods For this, we employed the Kirby-Bauer disc diffusion method using a collection of nine bacterial species: Staphylococcus aureus, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa, Serratia marcescens, Klebsiella pneumoniae, Bacillus subtilis, Proteus vulgaris and Enterobacter aerogenes. Results The results show that all four-halogen substituted ferrocenecarboxylates 4-fluorophenyl (23.33 μM, 11.66 μM, 5.83 μM), 4-chlorophenyl (10.16 μM, 5.08 μM, 2.54 μM), 4-bromophenyl (9.0 μM, 4.5 μM, 2.25 μM), and 4-iodophenyl (17.12 μM, 8.56 μM, 4.28 μM) exhibited an antibacterial effect by reducing proliferation of Bacillus subtilis. Meanwhile, only 4-bromophenyl (9.0 μM) and 4-chlorophenyl (10.16 μM) ferrocenecarboxylates were able to decrease the growth of Micrococcus luteus. Conclusion Hence, functionalised ferrocenecarboxylates para-substituted with small and simple groups represent a novel class of bio-organometallic compounds with the potential to be used as antibacterial agents.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Graduate Student, Department of Biotechnology, Pontifical Catholic University of Puerto Rico, Ponce PR 00731; Research Coordinator, Department of Biology, University of Puerto Rico, Ponce PR 00716
| | - Faviola Bernard
- Student, Department of Biology, University of Puerto Rico, Ponce PR 00716
| | | | - Waldemar Garcia
- Technician, Department of Biology, University of Puerto Rico, Ponce PR 00716
| | - Jose L Vera
- Professor, Department of Chemistry, University of Puerto Rico, Mayagüez PR 00681; Inter American University of San German Biology, Chemistry, and Environmental Science Department Calle Luna, San Germán 00683
| | - Enrique Meléndez
- Professor, Inter American University of San German Biology, Chemistry, and Environmental Science Department Calle Luna, San Germán 00683
| | - Edu B Suarez-Martinez
- Professor, Department of Biology, University of Puerto Rico, Ponce PR 00716; Professor, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico 00732
| |
Collapse
|
34
|
Janeczko M, Kubiński K, Martyna A, Muzyczka A, Boguszewska-Czubara A, Czernik S, Tokarska-Rodak M, Chwedczuk M, Demchuk OM, Golczyk H, Masłyk M. 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos. J Med Microbiol 2018; 67:598-609. [PMID: 29461185 DOI: 10.1099/jmm.0.000700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications. METHODOLOGY These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans. KEY FINDINGS 1,4-Naphthoquinones significantly affected fungal strains at 8-250 mg l-1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8-31.2 mg l-1), it did not exert any evident toxic effects on zebrafish embryos. CONCLUSIONS Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Angelika Muzyczka
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, ul. Chodźki 4A, 20-093, Lublin, Poland
| | - Sławomir Czernik
- Innovation Research Centre, Pope John Paul II State School of Higher Education in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
| | - Małgorzata Tokarska-Rodak
- Institute of Health Sciences, Pope John Paul II State School of Higher Education in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
| | - Marta Chwedczuk
- Innovation Research Centre, Pope John Paul II State School of Higher Education in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
| | - Oleg M Demchuk
- Organic Chemistry Department, Faculty of Chemistry, Maria Curie-Skłodowska University, ul. Gliniana 33, 20-614 Lublin, Poland
| | - Hieronim Golczyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| |
Collapse
|
35
|
Shin S, Lee H, Jeon C, Preya UH, Choi JH, Park JH. Anticancer Activity of 2-Amino-substituted-1,4-naphthoquinone Derivatives in Ovarian Cancer Cells. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sujeong Shin
- Department of Chemical and Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
| | - Haneul Lee
- Department of Chemical and Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
| | - Cheolmin Jeon
- Department of Chemical and Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
| | - Umma Hafsa Preya
- Department of Life and Nanopharmaceutical Sciences and College of Pharmacy; Kyung Hee University; Seoul 02447 South Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences and College of Pharmacy; Kyung Hee University; Seoul 02447 South Korea
| | - Jeong Ho Park
- Department of Chemical and Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
| |
Collapse
|
36
|
Korb M, Mahrholdt J, Lang H. (Planar‐Chiral) Ferrocenylmethanols: From Anionic Homo Phospho‐Fries Rearrangements to α‐Ferrocenyl Carbenium Ions. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marcus Korb
- Technische Universität Chemnitz Faculty of Natural Sciences Institute of Chemistry Inorganic Chemistry 09107 Chemnitz Germany
| | - Julia Mahrholdt
- Technische Universität Chemnitz Faculty of Natural Sciences Institute of Chemistry Inorganic Chemistry 09107 Chemnitz Germany
| | - Heinrich Lang
- Technische Universität Chemnitz Faculty of Natural Sciences Institute of Chemistry Inorganic Chemistry 09107 Chemnitz Germany
| |
Collapse
|
37
|
Nalet´ko SA, Pervova MG, Kodess MI, Toporova MS, Gorbunova TI, Zapevalov AY, Saloutin VI. A comparative study of the reactions of fluorinated oxi- and thiiranes with acyl chlorides. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1848-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Singh A, Rani A, Gut J, Rosenthal PJ, Kumar V. Piperazine-linked 4-aminoquinoline-chalcone/ferrocenyl-chalcone conjugates: Synthesis and antiplasmodial evaluation. Chem Biol Drug Des 2017; 90:590-595. [DOI: 10.1111/cbdd.12982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Amandeep Singh
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
| | - Anu Rani
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
| | - Jiri Gut
- Department of Medicine; University of California; San Francisco CA USA
| | | | - Vipan Kumar
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
| |
Collapse
|
39
|
Kumar BS, Ravi K, Verma AK, Fatima K, Hasanain M, Singh A, Sarkar J, Luqman S, Chanda D, Negi AS. Synthesis of pharmacologically important naphthoquinones and anticancer activity of 2-benzyllawsone through DNA topoisomerase-II inhibition. Bioorg Med Chem 2017; 25:1364-1373. [DOI: 10.1016/j.bmc.2016.12.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 01/15/2023]
|
40
|
Larik FA, Saeed A, Fattah TA, Muqadar U, Channar PA. Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3664] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fayaz Ali Larik
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | - Aamer Saeed
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | | | - Urooj Muqadar
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | | |
Collapse
|
41
|
Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 2016; 125:1300-1320. [PMID: 27886547 DOI: 10.1016/j.ejmech.2016.11.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/14/2023]
Abstract
The resistance of malaria parasites to existing drugs carries on growing and progressively limiting our ability to manage this severe disease and finally lead to a massive global health burden. Till now, malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the past 50 years. Among recent approaches, identification of novel chemotherapeutic targets, exploration of natural products with medicinal significance, covalent bitherapy having a dual mode of action into a single hybrid molecule and malaria vaccine development are explored heavily. The proper execution of these approaches and proper investment from international agencies will accelerate the discovery of drugs that provide new hope for the control or eventual eradication of this global infectious disease. This review explores various strategies for assessment and development of new antimalarial drugs. Current status and scientific value of previous approaches are systematically reviewed and new approaches provide a pragmatic forecast for future developments are introduced as well.
Collapse
Affiliation(s)
- Mitali Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vikash K Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Varsha Kashaw
- SVN Institute of Pharmaceutical Sciences, SVN University, Sagar, MP, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India; Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
42
|
Triaki N, Zaater S, Abtouche S, Brahimi M. Structure and electronics properties of novel antimalarial molecules: Comparative study of ferrotriborodiazoquine and ferrodiborotriazoquine with ferroquine using density functional theory. Polyhedron 2016; 119:471-482. [DOI: 10.1016/j.poly.2016.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Błauż A, Rychlik B, Makal A, Szulc K, Strzelczyk P, Bujacz G, Zakrzewski J, Woźniak K, Plażuk D. Ferrocene-Biotin Conjugates: Synthesis, Structure, Cytotoxic Activity and Interaction with Avidin. Chempluschem 2016; 81:1191-1201. [DOI: 10.1002/cplu.201600320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Andrzej Błauż
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; 141/143 Pomorska St. 90-236 Łódź Poland
| | - Błażej Rychlik
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; 141/143 Pomorska St. 90-236 Łódź Poland
| | - Anna Makal
- Department of Chemistry; University of Warsaw; Pasteura, 1 02-093 Warszawa Poland
| | - Katarzyna Szulc
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; 141/143 Pomorska St. 90-236 Łódź Poland
| | - Paweł Strzelczyk
- Institute of Technical Biochemistry; Łódź University of Technology; Stefanowskiego 4/10 90-924 Łódź Poland
| | - Grzegorz Bujacz
- Institute of Technical Biochemistry; Łódź University of Technology; Stefanowskiego 4/10 90-924 Łódź Poland
| | - Janusz Zakrzewski
- Department of Organic Chemistry; Faculty of Chemistry; University of Łódź; Tamka 12 41-403 Łódź Poland
| | - Krzysztof Woźniak
- Department of Chemistry; University of Warsaw; Pasteura, 1 02-093 Warszawa Poland
| | - Damian Plażuk
- Department of Organic Chemistry; Faculty of Chemistry; University of Łódź; Tamka 12 41-403 Łódź Poland
| |
Collapse
|
44
|
Oparina LA, Artem'ev AV, Vysotskaya OV, Tarasova OA, Shagun VA, Bagryanskaya IY, Trofimov BA. Unexpected acid-catalyzed ferrocenylmethylation of diverse nucleophiles with vinyloxymethylferrocene. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Synthesis, structural characterization, in vitro bioactivities, interaction with SS-DNA and DFT study of 4-chloro-3-ferrocenylaniline. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Lu B, Wang Q, Zhao M, Xie X, Zhang Z. Ruthenium-Catalyzed Enantioselective Hydrogenation of Ferrocenyl Ketones: A Synthetic Method for Chiral Ferrocenyl Alcohols. J Org Chem 2015; 80:9563-9. [DOI: 10.1021/acs.joc.5b01548] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Lu
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Qun Wang
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Mengmeng Zhao
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xiaomin Xie
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Zhaoguo Zhang
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
- Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
47
|
Liu J, Xie Y, Zeng W, Lin D, Deng Y, Lu X. Pd(II)-Catalyzed Pyridine N-Oxides Directed Arylation of Unactivated Csp3–H Bonds. J Org Chem 2015; 80:4618-26. [DOI: 10.1021/acs.joc.5b00489] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianzhong Liu
- Chengdu
Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ying Xie
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Dongen Lin
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuanfu Deng
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaoxia Lu
- Chengdu
Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
48
|
Castro MÁ, Gamito AM, Tangarife-Castaño V, Roa-Linares V, Miguel del Corral JM, Mesa-Arango AC, Betancur-Galvis L, Francesch AM, San Feliciano A. New 1,4-anthracenedione derivatives with fused heterocyclic rings: synthesis and biological evaluation. RSC Adv 2015. [DOI: 10.1039/c4ra11726c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New 1,4-anthracenediones bearing fused-heterocycle rings were synthesized and evaluated as cytotoxics, antifungals and antivirals. Some of them showed GI50 at the μM level.
Collapse
Affiliation(s)
- Ma. Ángeles Castro
- Departamento de Química Farmacéutica
- Facultad de Farmacia
- CIETUS-IBSAL
- Campus Miguel de Unamuno
- Universidad de Salamanca
| | - Ana Ma. Gamito
- Departamento de Química Farmacéutica
- Facultad de Farmacia
- CIETUS-IBSAL
- Campus Miguel de Unamuno
- Universidad de Salamanca
| | - Verónica Tangarife-Castaño
- Grupo de Investigación Dermatológica
- Facultad de Medicina
- Departamento de Medicina Interna
- Universidad de Antioquia
- Medellín
| | - Vicky Roa-Linares
- Grupo de Investigación Dermatológica
- Facultad de Medicina
- Departamento de Medicina Interna
- Universidad de Antioquia
- Medellín
| | - José Ma. Miguel del Corral
- Departamento de Química Farmacéutica
- Facultad de Farmacia
- CIETUS-IBSAL
- Campus Miguel de Unamuno
- Universidad de Salamanca
| | - Ana C. Mesa-Arango
- Grupo de Investigación Dermatológica
- Facultad de Medicina
- Departamento de Medicina Interna
- Universidad de Antioquia
- Medellín
| | - Liliana Betancur-Galvis
- Grupo de Investigación Dermatológica
- Facultad de Medicina
- Departamento de Medicina Interna
- Universidad de Antioquia
- Medellín
| | | | - Arturo San Feliciano
- Departamento de Química Farmacéutica
- Facultad de Farmacia
- CIETUS-IBSAL
- Campus Miguel de Unamuno
- Universidad de Salamanca
| |
Collapse
|
49
|
Abstract
Lawsone has been used as the starting material for the synthesis of a variety of biologically active compounds and materials.
Collapse
Affiliation(s)
- Alessandro K. Jordão
- Universidade Federal Fluminense
- Institute of Chemistry
- Niterói
- Brazil
- Unidade Universitária de Farmácia
| | - Maria D. Vargas
- Universidade Federal Fluminense
- Institute of Chemistry
- Niterói
- Brazil
| | - Angelo C. Pinto
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | | | | |
Collapse
|
50
|
Lai HW, Liu ZQ. Thiaflavan scavenges radicals and inhibits DNA oxidation: a story from the ferrocene modification. Eur J Med Chem 2014; 81:227-36. [PMID: 24842241 DOI: 10.1016/j.ejmech.2014.04.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
4-Thiaflavan is a sulfur-substituted flavonoid with a benzoxathiin scaffold. The aim of this work is to compare abilities of sulfur and oxygen atom, hydroxyl groups, and ferrocene moiety at different positions of 4-thiaflavan to trap radicals and to inhibit DNA oxidation. It is found that abilities of thiaflavans to trap radicals and to inhibit DNA oxidation are increased in the presence of ferrocene moiety and are further improved by the electron-donating group attaching to thiaflavan skeleton. It can be concluded that the ferrocene moiety plays the major role for thiaflavans to be antioxidants even in the absence of phenolic hydroxyl groups. On the other hand, the antioxidant effectiveness of phenolic hydroxyl groups in thiaflavans can be improved by the electron-donating group. The influences of sulfur and oxygen atoms in thiaflavans on the antioxidant property of para-hydroxyl group exhibit different manners when the thiaflavans are used to trap radicals and to inhibit DNA oxidation.
Collapse
Affiliation(s)
- Hai-Wang Lai
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|