1
|
Wątor E, Wilk P, Kochanowski P, Grudnik P. Structural characterization of the (deoxy)hypusination in Trichomonas vaginalis questions the bifunctionality of deoxyhypusine synthase. FEBS J 2024; 291:3856-3869. [PMID: 38923395 DOI: 10.1111/febs.17207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Trichomonas vaginalis, the causative agent of trichomoniasis, is a prevalent anaerobic protozoan parasite responsible for the most common nonviral sexually transmitted infection globally. While metronidazole and its derivatives are approved drugs for this infection, rising resistance necessitates the exploration of new antiparasitic therapies. Protein posttranslational modifications (PTMs) play crucial roles in cellular processes, and among them, hypusination, involving eukaryotic translation factor 5A (eIF5A), has profound implications. Despite extensive studies in various organisms, the role of hypusination in T. vaginalis and its potential impact on parasite biology and pathogenicity remain poorly understood. This study aims to unravel the structural basis of the hypusination pathway in T. vaginalis using X-ray crystallography and cryo-electron microscopy. The results reveal high structural homology between T. vaginalis and human orthologs, providing insights into the molecular architecture of eIF5A and deoxyhypusine synthase (DHS) and their interaction. Contrary to previous suggestions of bifunctionality, our analyses indicate that the putative hydroxylation site in tvDHS is nonfunctional, and biochemical assays demonstrate exclusive deoxyhypusination capability. These findings challenge the notion of tvDHS functioning as both deoxyhypusine synthase and hydroxylase. The study enhances understanding of the hypusination pathway in T. vaginalis, shedding light on its functional relevance and potential as a drug target, and contributing to the development of novel therapeutic strategies against trichomoniasis.
Collapse
Affiliation(s)
- Elżbieta Wątor
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Piotr Wilk
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł Kochanowski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Przemysław Grudnik
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Azzman N, Anwar S, Syazani Mohamed WA, Ahemad N. Quinolone Derivatives as Anticancer Agents: Importance in Medicinal Chemistry. Curr Top Med Chem 2024; 24:1134-1157. [PMID: 38591202 DOI: 10.2174/0115680266300736240403075307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Quinolone is a heterocyclic compound containing carbonyl at the C-2 or C-4 positions with nitrogen at the C-1 position. The scaffold was first identified for its antibacterial properties, and the derivatives were known to possess many pharmacological activities, including anticancer. In this review, the quinolin-2(H)-one and quinolin-4(H)-one derivatives were identified to inhibit several various proteins and enzymes involved in cancer cell growth, such as topoisomerase, microtubules, protein kinases, phosphoinositide 3-kinases (PI3K) and histone deacetylase (HDAC). Hybrids of quinolone with curcumin or chalcone, 2-phenylpyrroloquinolin-4-one and 4-quinolone derivatives have demonstrated strong potency against cancer cell lines. Additionally, quinolones have been explored as inhibitors of protein kinases, including EGFR and VEGFR. Therefore, this review aims to consolidate the medicinal chemistry of quinolone derivatives in the pipeline and discuss their similarities in terms of their pharmacokinetic profiles and potential target sites to provide an understanding of the structural requirements of anticancer quinolones.
Collapse
Affiliation(s)
- Nursyuhada Azzman
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Wan Ahmad Syazani Mohamed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Level 3, Block C, Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia (MOH), No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Oliveira LR, Trein MR, Assis LR, Rigo GV, Simões LPM, Batista VS, Macedo AJ, Trentin DS, Nascimento-Júnior NM, Tasca T, Regasini LO. Phenolic chalcones as agents against Trichomonas vaginalis. Bioorg Chem 2023; 141:106888. [PMID: 37839143 DOI: 10.1016/j.bioorg.2023.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Trichomonas vaginalis, a flagellated and anaerobic protozoan, is a causative agent of trichomoniasis. This disease is among the world's most common non-viral sexually transmitted infection. A single class drug, nitroimidazoles, is currently available for the trichomoniasis treatment. However, resistant isolates have been identified from unsuccessfully treated patients. Thus, there is a great challenge for a discovery of innovative anti-T. vaginalis agents. As part of our ongoing search for antiprotozoal chalcones, we designed and synthesized a series of 21 phenolic chalcones, which were evaluated against T. vaginalis trophozoites. Structure-activity relationship indicated hydroxyl group plays a role key in antiprotozoal activity. 4'-Hydroxychalcone (4HC) was the most active compound (IC50 = 27.5 µM) and selected for detailed bioassays. In vitro and in vivo evaluations demonstrated 4HC was not toxic against human erythrocytes and Galleria mellonella larvae. Trophozoites of T. vaginalis were treated with 4HC and did not present significant reactive oxygen species (ROS) accumulation. However, compound 4HC was able to increase ROS accumulation in neutrophils coincubated with T. vaginalis. qRT-PCR Experiments indicated that 4HC did not affect the expression of pyruvate:ferredoxin oxidoreductase (PFOR) and β-tubulin genes. In silico simulations, using purine nucleoside phosphorylase of T. vaginalis (TvPNP), corroborated 4HC as a promising ligand. Compound 4HC was able to establish interactions with residues D21, G20, M180, R28, R87 and T90 through hydrophobic interactions, π-donor hydrogen bond and hydrogen bonds. Altogether, these results open new avenues for phenolic chalcones to combat trichomoniasis, a parasitic neglected infection.
Collapse
Affiliation(s)
- Lígia R Oliveira
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), 15054-000 São José do Rio Preto, SP, Brazil
| | - Márcia R Trein
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Letícia R Assis
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), 15054-000 São José do Rio Preto, SP, Brazil
| | - Graziela V Rigo
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Leonardo P M Simões
- Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil
| | - Victor S Batista
- Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil
| | - Alexandre J Macedo
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Danielle S Trentin
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, 90050-170 Porto Alegre, RS, Brazil
| | - Nailton M Nascimento-Júnior
- Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil
| | - Tiana Tasca
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil.
| | - Luis O Regasini
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
4
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
5
|
Santos HLC, Rebello KM. An Overview of Mucosa-Associated Protozoa: Challenges in Chemotherapy and Future Perspectives. Front Cell Infect Microbiol 2022; 12:860442. [PMID: 35548465 PMCID: PMC9084232 DOI: 10.3389/fcimb.2022.860442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections caused by protozoans that infect the mucosal surfaces are widely neglected worldwide. Collectively, Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Trichomonas vaginalis infect more than a billion people in the world, being a public health problem mainly in developing countries. However, the exact incidence and prevalence data depend on the population examined. These parasites ultimately cause pathologies that culminate in liver abscesses, malabsorption syndrome, vaginitis, and urethritis, respectively. Despite this, the antimicrobial agents currently used to treat these diseases are limited and often associated with adverse side effects and refractory cases due to the development of resistant parasites. The paucity of drug treatments, absence of vaccines and increasing problems of drug resistance are major concerns for their control and eradication. Herein, potential candidates are reviewed with the overall aim of determining the knowledge gaps and suggest future perspectives for research. This review focuses on this public health problem and focuses on the progress of drug repositioning as a potential strategy for the treatment of mucosal parasites.
Collapse
Affiliation(s)
- Helena Lucia Carneiro Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Metronidazole-conjugates: A comprehensive review of recent developments towards synthesis and medicinal perspective. Eur J Med Chem 2020; 210:112994. [PMID: 33234343 DOI: 10.1016/j.ejmech.2020.112994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nitroimidazoles based compounds remain a hot topic of research in medicinal chemistry due to their numerous biological activities. Moreover, many clinical candidates based on this chemical core have been reported to be valuable in the treatment of human diseases. Metronidazole (MTZ) derived conjugates demonstrated a potential application in medicinal chemistry research over the last decade. In this review, we summarize the synthesis, key structure-activity-relationship (SAR) and associated biological activities such as antimicrobial, anticancer, antidiabetic, anti-inflammatory, anti-HIV and anti-parasitic (Anti-trichomonas, antileishmanial, antiamoebic and anti-giardial) of explored MTZ-conjugates. The molecular docking analysis is also presented simultaneously, which will assist in developing an understanding towards designing of new MTZ-conjugates for target-based drug discovery against multiple disease areas.
Collapse
|
7
|
Rigo GV, Tasca T. Vaginitis: Review on Drug Resistance. Curr Drug Targets 2020; 21:1672-1686. [PMID: 32753007 DOI: 10.2174/1389450121666200804112340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Female genital tract infections have a high incidence among different age groups and represent an important impact on public health. Among them, vaginitis refers to inflammation of the vulva and/or vagina due to the presence of pathogens that cause trichomoniasis, bacterial vaginosis, and vulvovaginal candidiasis. Several discomforts are associated with these infections, as well as pregnancy complications and the facilitation of HIV transmission and acquisition. The increasing resistance of microorganisms to drugs used in therapy is remarkable, since women report the recurrence of these infections and associated comorbidities. Different resistant mechanisms already described for the drugs used in the therapy against Trichomonas vaginalis, Candida spp., and Gardnerella vaginalis, as well as aspects related to pathogenesis and treatment, are discussed in this review. This study aims to contribute to drug design, avoiding therapy ineffectiveness due to drug resistance. Effective alternative therapies to treat vaginitis will reduce the recurrence of infections and, consequently, the high costs generated in the health system, improving women's well-being.
Collapse
Affiliation(s)
- Graziela Vargas Rigo
- Research Group on Trichomonas, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Research Group on Trichomonas, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
das Neves RN, Sena-Lopes Â, Alves MSD, da Rocha Fonseca B, da Silva CC, Casaril AM, Savegnago L, de Pereira CMP, Ramos DF, Borsuk S. 2'-Hydroxychalcones as an alternative treatment for trichomoniasis in association with metronidazole. Parasitol Res 2019; 119:725-736. [PMID: 31853622 DOI: 10.1007/s00436-019-06568-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 12/01/2022]
Abstract
The treatment for trichomoniasis, based on 5'-nitroimidazol agents, has been presenting failures related to allergic reactions, side effects, and the emergence of resistant isolates. There are no alternative drugs approved for the treatment of these cases; thus, the search for new active molecules is necessary. In this scenario, chalcones have been extensively studied for their promising biological activities. Here, we presented the synthesis of three hydroxychalcones (3a, b, and c), in vitro and in silico analyses against Trichomonas vaginalis. The in vitro biological evaluation showed that hydroxychalcone 3c presented anti-T. vaginalis activity, with complete death in 12 h of incubation at minimum inhibitory concentration (MIC) of 100 μM. 3c showed a dose-dependent cytotoxicity against mammalian VERO cell line, but the association of 3c at 12.5 μM and metronidazole (MTZ) at 40 μM showed 95.31% activity against T. vaginalis trophozoites after 24 h of exposure and did not affect the VERO cell growth, appearing to be a good alternative. In silico analysis by molecular docking showed that 3c could inhibit the activity of TvMGL (methionine gamma-lyase), TvLDH (lactate dehydrogenase), and TvPNP (purine nucleoside phosphorylase) affecting the T. vaginalis survival and also suggesting a different mechanism of action from MTZ. Therefore, these results propose that hydroxychalcones are promising anti-T. vaginalis agents and must be considered for further investigations regarding trichomoniasis treatment.
Collapse
Affiliation(s)
- Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil
| | - Mirna Samara Dié Alves
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil
| | - Bárbara da Rocha Fonseca
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil
| | - Caroline Carapina da Silva
- Laboratório de Lipidômica e Bio-orgânicass, Grupo de Ciências Químicas Farmacêuticas e de Alimentos, UFPel, Pelotas, RS, Brazil
| | - Angela Maria Casaril
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, Brazil
| | | | - Daniela Fernandes Ramos
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
9
|
Lee SM, Kim MS, Hayat F, Shin D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019; 24:E3886. [PMID: 31661934 PMCID: PMC6864685 DOI: 10.3390/molecules24213886] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012-2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Seong-Min Lee
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Min-Sun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
10
|
Upadhyay A, Chandrakar P, Gupta S, Parmar N, Singh SK, Rashid M, Kushwaha P, Wahajuddin M, Sashidhara KV, Kar S. Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J Med Chem 2019; 62:5655-5671. [PMID: 31124675 DOI: 10.1021/acs.jmedchem.9b00628] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, a series of quinoline-metronidazole hybrid compounds was synthesized and tested against the murine model of visceral leishmaniasis. Among all synthesized derivatives, 15b and 15i showed significant antileishmanial efficacy against both extracellular promastigote (IC50 9.54 and 5.42 μM, respectively) and intracellular amastigote (IC50 9.81 and 3.75 μM, respectively) forms of Leishmania donovani with negligible cytotoxicity toward the host (J774 macrophages, Vero cells). However, compound 15i effectively inhibited the parasite burden in the liver and spleen (>80%) of infected BALB/c mice. Mechanistic studies revealed that 15i triggers oxidative stress which induces bioenergetic collapse and apoptosis of the parasite by decreasing ATP production and mitochondrial membrane potential. Structure-activity analyses and pharmacokinetic studies suggest 15i as a promising antileishmanial lead and emphasize the importance of quinoline-metronidazole series as a suitable platform for the future development of antileishmanial agents.
Collapse
Affiliation(s)
- Akanksha Upadhyay
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Pragya Chandrakar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Sampa Gupta
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Naveen Parmar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Sandeep Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Pragati Kushwaha
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Koneni V Sashidhara
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Susanta Kar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| |
Collapse
|
11
|
Trein MR, Rodrigues E Oliveira L, Rigo GV, Garcia MAR, Petro-Silveira B, da Silva Trentin D, Macedo AJ, Regasini LO, Tasca T. Anti-Trichomonas vaginalis activity of chalcone and amino-analogues. Parasitol Res 2018; 118:607-615. [PMID: 30535524 DOI: 10.1007/s00436-018-6164-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
Abstract
Trichomoniasis is the most common non-viral sexually transmitted disease worldwide and can lead to serious consequences in reproductive health, cancer, and HIV acquisition. The current approved treatment present adverse effects and drug resistance data on this neglected parasitic infection is underestimated. Chalcones are a family of molecules that present biological applications, such as activity against many pathogenic organisms including protozoan pathogens. Chalcone (1) and three amino-analogues (2-4) were synthesized by Claisen-Schmidt condensation reaction and had their activity evaluated against the parasitic protozoan Trichomonas vaginalis. This bioassay indicated the presence and position of the amino group on ring A was crucial for anti-T. vaginalis activity. Among these, 3'-aminochalcone (3) presented the most potent effect and showed high cytotoxicity against human vaginal cells. On the other hand, 3 was not able to exhibit toxicity against Galleria mellonella larvae, as well as the hemolytic effect on human erythrocytes. Trophozoites of T. vaginalis were treated with 3, and did not present significant reactive oxygen species (ROS) accumulation, but induced a significantly higher ROS accumulation in human neutrophils after co-incubation. T. vaginalis pyruvate:ferredoxin oxidoreductase (PFOR) and β-tubulin gene expression was not affected by 3.
Collapse
Affiliation(s)
- Márcia Rodrigues Trein
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Lígia Rodrigues E Oliveira
- Laboratory of Antibiotics and Chemotherapeutics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Graziela Vargas Rigo
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Mayara Aparecida Rocha Garcia
- Laboratory of Antibiotics and Chemotherapeutics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Brenda Petro-Silveira
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Danielle da Silva Trentin
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia, Universidade do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Luis Octávio Regasini
- Laboratory of Antibiotics and Chemotherapeutics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
12
|
Singh A, Fong G, Liu J, Wu YH, Chang K, Park W, Kim J, Tam C, Cheng LW, Land KM, Kumar V. Synthesis and Preliminary Antimicrobial Analysis of Isatin-Ferrocene and Isatin-Ferrocenyl Chalcone Conjugates. ACS OMEGA 2018; 3:5808-5813. [PMID: 30023926 PMCID: PMC6045481 DOI: 10.1021/acsomega.8b00553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/17/2018] [Indexed: 05/30/2023]
Abstract
In this study, we outline the synthesis of isatin-ferrocenyl chalcone and 1H-1,2,3-triazole-tethered isatin-ferrocene conjugates along with their antimicrobial evaluation against the human mucosal pathogen Trichomonas vaginalis. The introduction of a triazole ring among the synthesized conjugates improved the activity profiles with most of the compounds in the library, exhibiting 100% growth inhibition in a preliminary susceptibility screen at 100 μM. IC50 determination of the most potent compounds in the set revealed an inhibitory range between 2 and 13 μM. Normal flora microbiome are unaffected by these compounds, suggesting that these may be new chemical scaffolds for the discovery of new drugs against trichomonad infections.
Collapse
Affiliation(s)
- Amandeep Singh
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Grant Fong
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Jenny Liu
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Yun-Hsuan Wu
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Kevin Chang
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - William Park
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Jihwan Kim
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Christina Tam
- Foodborne
Toxin Detection and Prevention Research Unit, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States
| | - Luisa W. Cheng
- Foodborne
Toxin Detection and Prevention Research Unit, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States
| | - Kirkwood M. Land
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Vipan Kumar
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
13
|
Chlorinated metronidazole as a promising alternative for treating trichomoniasis. Parasitol Res 2018; 117:1333-1340. [PMID: 29502297 DOI: 10.1007/s00436-018-5813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Trichomoniasis is the most common non-viral, sexually transmitted infection affecting humans worldwide. The main treatment for trichomoniasis is metronidazole (MTZ). However, adverse effects and reports of resistance have stimulated the development of therapeutic alternatives. The ease of manipulation of the side chains of MTZ coupled with its safety makes this molecule attractive for the development of new drugs. In this context, we evaluated the activity of the chlorinated MTZ derivative, MTZ-Cl, on sensitive and resistant strains of Trichomonas vaginalis. MTZ-Cl presented a remarkable activity against both sensitive and resistant strains. In vitro and in vivo toxicity assays indicated that the new molecule is safe for future clinical trials. Furthermore, we noticed different rates of free radical production between the sensitive and resistant strains. MTZ-Cl induced a higher release of nitric oxide (NO, ~ 9000 a.u.) by both sensitive and resistant strains. However, the sensitive strain produced a greater amount of H2O2 (~ 1,800,000 a.u.) and superoxide radicals (~ 350,000 a.u.) in the presence of MTZ. In the resistant strain, production of these radicals was more prominent when MTZ-Cl was used. Collectively, these results suggest that NO is an important molecule in the trichomonacidal activity against resistant and sensitive strains, suggesting an alternative pathway for MTZ-Cl activation. We highlight the high trichomonacidal potential of MTZ-Cl, improving the effectiveness of treatment and reducing side effects. In addition, MTZ-Cl is derived from a well-established drug on the world market that presents low toxicity to human cells, suggesting its safety to proceed with future clinical trials.
Collapse
|
14
|
Bala V, Chhonker YS. Recent developments in anti-Trichomonas research: An update review. Eur J Med Chem 2017; 143:232-243. [PMID: 29175675 DOI: 10.1016/j.ejmech.2017.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Trichomonas vaginalis is a major non-viral sexually-transmitted infection resulted into serious obstetrical and gynecological troubles. The increasing resistance to nitroimidazole therapy and recurrence makes it crucial to develop new drugs against trichomoniasis. Over the past few years, a large number of research articles highlighting the synthetic and natural product research to combat Trichomonas vaginalis have been published. Electronic databases were searched to collect all data from the year 2006 through June 2017 for anti-Trichomonas activity potential of synthetic and natural products. This review article put together the synthetic and natural product research to find out an effective metronidazole alternative to cure trichomoniasis.
Collapse
Affiliation(s)
- Veenu Bala
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, 313001, India.
| | - Yashpal S Chhonker
- College of Pharmacy, Department of Pharmacy Practice, University of Nebraska Medical Centre, Omaha, USA.
| |
Collapse
|
15
|
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 2017; 117:7762-7810. [PMID: 28488435 PMCID: PMC6131713 DOI: 10.1021/acs.chemrev.7b00020] [Citation(s) in RCA: 856] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive,
Gainesville, Florida 32610, United States
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
16
|
Korosh T, Bujans E, Morada M, Karaalioglu C, Vanden Eynde JJ, Mayence A, Huang TL, Yarlett N. Potential of bisbenzimidazole-analogs toward metronidazole-resistant Trichomonas vaginalis
isolates. Chem Biol Drug Des 2017; 90:489-495. [DOI: 10.1111/cbdd.12972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Travis Korosh
- Department of Chemistry and Physical Sciences; Pace University; New York NY USA
- Haskins Laboratories; Pace University; New York NY USA
| | - Emmanuel Bujans
- Department of Chemistry and Physical Sciences; Pace University; New York NY USA
- Haskins Laboratories; Pace University; New York NY USA
| | - Mary Morada
- Haskins Laboratories; Pace University; New York NY USA
| | - Canan Karaalioglu
- Department of Chemistry and Physical Sciences; Pace University; New York NY USA
| | - Jean Jacques Vanden Eynde
- Division of Basic Pharmaceutical Sciences; College of Pharmacy; Xavier University of Louisiana; New Orleans LA USA
| | - Annie Mayence
- Division of Basic Pharmaceutical Sciences; College of Pharmacy; Xavier University of Louisiana; New Orleans LA USA
| | - Tien L. Huang
- Division of Basic Pharmaceutical Sciences; College of Pharmacy; Xavier University of Louisiana; New Orleans LA USA
| | - Nigel Yarlett
- Department of Chemistry and Physical Sciences; Pace University; New York NY USA
- Haskins Laboratories; Pace University; New York NY USA
| |
Collapse
|
17
|
Synthesis, characterization and antiamoebic activity of chalcones bearing N-substituted ethanamine tail. Eur J Med Chem 2015; 98:179-89. [PMID: 26021707 DOI: 10.1016/j.ejmech.2015.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 01/20/2023]
Abstract
A series of chalcones (4-21) possessing N-substituted ethanamine were synthesized by the aldol condensation reaction of 1-(4-(2-substituted ethoxy)phenyl)ethanones with different aldehydes preceded by the reaction of 2-chloro N-substituted ethanamine hydrochloride and 4-hydroxy acetophenone. The structure of all the synthesized compounds was elucidated by various spectral and X-ray diffraction studies. The compounds were screened against HM1: IMSS strain of Entamoeba histolytica and cytotoxicity was performed on A549 (non-small cell lung cancer cell line) cells by MTT assay. Out of eighteen compounds twelve showed better activity then the standard drug metronidazole. The compound 9, 14 and 19 showed good cell viability, hence were least toxic.
Collapse
|
18
|
Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L. Potential pharmacological uses of chalcones: a patent review (from June 2011 – 2014). Expert Opin Ther Pat 2015; 25:351-66. [DOI: 10.1517/13543776.2014.995627] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 2014; 85:758-77. [PMID: 25137491 DOI: 10.1016/j.ejmech.2014.08.033] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
Chalcones represent key structural motif in the plethora of biologically active molecules including synthetic and natural products. Synthetic manipulations of chalcones or their isolation from natural sources are being investigated worldwide for the development of more potent and efficient drugs for the treatment of several dreadful diseases such as cancer, diabetes, HIV, tuberculosis, malaria etc. Over the past few years, a large volume of research papers and review articles highlighting the significance of chalcone derivatives has been compiled in the literature. The present review article focuses on the recent developments (2010-2014) on various pharmacological and medicinal aspects of chalcones and their analogues.
Collapse
Affiliation(s)
- Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
20
|
Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:524161. [PMID: 25157362 PMCID: PMC4135142 DOI: 10.1155/2014/524161] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/09/2023]
Abstract
In a search of new compounds active against cancer, synthesis of a series of C-5 curcumin analogues was carried out. The new compounds demonstrated good cytotoxicity against chronic myeloid leukemia (KBM5) and colon cancer (HCT116) cell lines. Further, these compounds were found to have better potential to inhibit TNF-α-induced NF-κB activation in comparison to curcumin, which show their potential to act as anti-inflammatory agents. Some compounds were found to show higher cytotoxicity against cancer cell lines in comparison to curcumin used as standard.
Collapse
|