1
|
Karunakaran K, Salam AAA, Mudgal PP. Exploiting the chikungunya virus capsid protein: a focused target for antiviral therapeutic development. Arch Virol 2025; 170:141. [PMID: 40423856 DOI: 10.1007/s00705-025-06325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/04/2025] [Indexed: 05/28/2025]
Abstract
Chikungunya disease is spread by the bite of infected Aedes mosquitoes. It is considered a neglected tropical disease that has the potential to cause sporadic epidemics in naive populations. Despite the substantial investment in research, there are no approved antiviral treatments for chikungunya. Several screening approaches have been used to identify potential antiviral molecules that target the whole virus, viral proteins, and viral-host interactions, often in conjunction with computational studies. The genome of chikungunya virus (CHIKV) encodes four nonstructural and five structural proteins. The capsid protein (CP) is a small structural protein with enzymatic activity. Owing to its critical role in different stages of the viral life cycle, the CP can be targeted at multiple stages, thereby impeding viral multiplication. There is evidence suggesting that the CP may be a promising target for drug development, and this has led to the discovery of various inhibitors through diverse in vitro and in silico analyses. Both cell-based and cell-free assays have been widely used to identify and evaluate CHIKV CP inhibitors. Computer-based studies targeting CHIKV proteins, including CP, have identified several lead compounds, which are being further evaluated in various in vitro systems. No review has been published on the CHIKV CP, and papers have focused on drug development and the targeting of viral proteins and associated factors. In this review, we summarize the research that has been conducted on the CHIKV CP, including structural studies, antiviral research, and prospects for the use of the CP as an antiviral target.
Collapse
Affiliation(s)
- Kavitha Karunakaran
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | | | - Piya Paul Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Dansana J, Purohit P, Panda M, Meher BR. Recent advances in phytocompounds as potential Chikungunya virus non-structural protein 2 protease antagonists: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156359. [PMID: 39756312 DOI: 10.1016/j.phymed.2024.156359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND The mosquito-borne pathogenic alphavirus known as Chikungunya virus (CHIKV) is becoming a greater hazard to public health, which causes thousands of cases annually in both rural and urban areas of many different nations throughout the world. Finding and creating new leads for the CHIKV virus is crucial because there are currently no effective medications or vaccinations against it. The non-structural protein 2 (nsP2) protease has emerged as a promising target for therapeutic intervention due to its crucial role in viral replication. PURPOSE This systematic review aims to evaluate recent advances in natural products as inhibitors of the CHIKV nsP2 protease, summarizing current research, identifying promising compounds, and highlighting gaps in the existing knowledge. STUDY DESIGN A comprehensive literature search was conducted between January 2006, and June 2024 using databases including PubMed, Scopus, Science Direct, and Google Scholar. Search terms included CHIKV, nsP2 protease, antivirals, natural products, phytochemicals, and inhibitors. Studies were selected based on predefined inclusion and exclusion criteria, focusing on original research articles examining natural products as inhibitors of CHIKV nsP2 protease. METHODS Relevant studies were screened, and data were extracted regarding the source of natural compounds, methods of extraction, chemical structures, mechanisms of action, potency, and efficacy in inhibiting nsP2 protease or CHIKV replication. RESULTS The review included 40 studies, revealing a variety of natural products and their derivatives with inhibitory effects on CHIKV nsP2 protease. Several compounds demonstrated promising inhibitory activity with EC50 values in the micromolar range. Mechanistic studies revealed diverse modes of action, including inhibition of protease activity or interference with viral replication processes. CONCLUSION Natural products have gained attention for their diverse chemical structures and bioactivities, offering a rich source of compounds with antiviral potential. We summarize the current knowledge on natural products derived from various sources including flavonoids, alkaloids, terpenoids, polyphenols, and some derivative compounds that have demonstrated inhibitory effects against CHIKV through different mechanisms of action. Overall, this systematic review underscores the importance of exploring natural products as promising candidates for the development of effective therapeutics against Chikungunya fever, particularly through targeting the nsP2 protease.
Collapse
Affiliation(s)
- Jarmani Dansana
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Madhusmita Panda
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India.
| |
Collapse
|
3
|
Abduljalil JM, Elfiky AA. Machine-Learning Approach to Identify Potential Dengue Virus Protease Inhibitors: A Computational Perspective. J Phys Chem B 2024; 128:11229-11242. [PMID: 39484814 DOI: 10.1021/acs.jpcb.4c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The global prevalence of dengue virus (DENV), a widespread flavivirus, has led to varied epidemiological impacts, economic burdens, and health consequences. The alarming increase in infections is exacerbated by the absence of approved antiviral agents against the DENV. Within flaviviruses, the NS3/NS2B serine protease plays a pivotal role in processing the viral polyprotein into distinct components, making it an attractive target for antiviral drug development. In this study, machine-learning (ML) techniques were employed to build predictive models for the screening of a library containing 32,000 protease inhibitors. Utilizing GNINA for structure-based virtual screening, the top potential candidates underwent a subsequent evaluation of their absorption, distribution, metabolism, excretion, and toxicity properties. Selected compounds were subjected to molecular dynamics simulations and binding free energy calculations via MM/GBSA. The results suggest that comp530 possesses binding potential to DENV protease as a noncovalent inhibitor with multiple positions for chemical substitutions, presenting opportunities for optimizing their selectivity and specificity. However, other compounds predicted via ML models may still provide a promising start for covalent inhibitors.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Singh N, Yadav SS. Anti-dengue therapeutic potential of Tinospora cordifolia and its bioactives. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118242. [PMID: 38679398 DOI: 10.1016/j.jep.2024.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengue is one of the most prevalent mosquito-borne viral infections. Moreover, due to the absence of appropriate curative and preventive measures against it, the mortality rate is increasing alarmingly. However, remarkable docking and clinical advances have been achieved with plant-based natural and conventional therapeutics. Tinospora cordifolia is one of the highly explored panaceas at the local level for its effective anti-dengue formulations. AIM OF THE STUDY The present article aims for critical assessment of the data available on the anti-dengue therapeutic use of T. cordifolia. Efforts have also been made on the clinical and in-silico anti-dengue efficacy of this plant. The phytochemistry and the antiviral machinery of the plant are also emphasized. MATERIALS AND METHODS The present article is the outcome of the literature survey on the anti-dengue effect of T. cordifolia. A literature survey was conducted from 2011 to 2024 using different databases with appropriate keywords. RESULTS The present study confirms the anti-dengue potential of T. cordifolia. The plant can suppress the initiation of 'cytokine storm', vascular leakage and inhibition of various structural and NS proteins to exert its anti-dengue potential. Berberine and magnoflorine phytocompounds were highly explored for their anti-dengue potential. CONCLUSIONS The present study concluded that T. cordifolia serves as an effective therapeutic agent for treating dengue. Further in-silico and clinical studies are needed so that stable, safe and efficacious anti-dengue drug can be developed. Besides, a precise antiviral mechanism of T. cordifolia against DENV infection is still needed.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
5
|
Mufti IU, Sufyan M, Shahid I, Alzahrani AR, Shahzad N, M Alanazi IM, Ibrahim IAA, Rehman S. Computer-aided identification of dengue virus NS2B/NS3 protease inhibitors: an integrated molecular modelling approach for screening of phytochemicals. J Biomol Struct Dyn 2023; 42:11052-11063. [PMID: 37747078 DOI: 10.1080/07391102.2023.2259496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Globally, dengue (DENV) fever has appeared as the most widespread vector-borne disease, affecting more than 100 million individuals annually. No approved anti-DENV therapy or preventive vaccine is available yet. DENV NS3 protein is associated with protease activity and is essential for viral replication process within the host cell. NS2B is linked with NS3 protein as a cofactor. Hence, NS3/NS2B is a potential druggable target for developing inhibitors against dengue virus. In the present study, a dataset of Beta vulgaris L.-based natural compounds was developed. Virtual ligand screening of 30 phytochemicals was carried out to find novel inhibitors against the NS2B/NS3 protein. Spatial affinity, drug-likeness, and binding behaviors of selected phytochemicals were analyzed. Post-simulation analysis, including Principal Component Analysis (PCA), MMGBSA, and Co-relation analysis, was also performed to provide deep insight for elucidating protein-ligand complexes. This computer-aided screening scrutinized four potent phytochemicals, including betavulgaroside II, vitexin xyloside, epicatechin, and isovitexin2-O-xyloside inhibitors exhibiting optimal binding with viral NS3/NS2B protein. Our study brings novel scaffolds against DENV NS2B/NS3 of serotype-2 to act as lead molecules for further biological optimization. In future, this study will prompt the exploration and development of adjuvant anti-DENV therapy based on natural compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Isra Umbreen Mufti
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Ibrahim Mufadhi M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
6
|
Mottin M, de Paula Sousa BK, de Moraes Roso Mesquita NC, de Oliveira KIZ, Noske GD, Sartori GR, de Oliveira Albuquerque A, Urbina F, Puhl AC, Moreira-Filho JT, Souza GE, Guido RV, Muratov E, Neves BJ, da Silva JHM, Clark AE, Siqueira-Neto JL, Perryman AL, Oliva G, Ekins S, Andrade CH. Discovery of New Zika Protease and Polymerase Inhibitors through the Open Science Collaboration Project OpenZika. J Chem Inf Model 2022; 62:6825-6843. [PMID: 36239304 PMCID: PMC9923514 DOI: 10.1021/acs.jcim.2c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC50 range from 0.61 to 17 μM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range (Kd range from 9 to 35 μM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC50 of 0.8 and 7.4 μM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (Kd of 35 μM). Both also protected cells from death induced by ZIKV infection in in vitro cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.
Collapse
Affiliation(s)
- Melina Mottin
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Bruna Katiele de Paula Sousa
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | | | | | - Gabriela Dias Noske
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | | | | | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - José Teófilo Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Guilherme E. Souza
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Rafael V.C. Guido
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Eugene Muratov
- University of North Carolina - University of North Carolina at Chapel Hill, 27599, USA
- Universidade Federal de Paraíba, Joao Pessoa, PB, 58051-900, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | | | - Alex E. Clark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University–New Jersey Medical School, Newark, NJ 07103, United States
- Repare Therapeutics, 7210 Rue Frederick-Banting, Suite 100, Montreal, QC, H4S 2A1, Canada
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| |
Collapse
|
7
|
Dos Santos Nascimento IJ, da Silva Rodrigues ÉE, da Silva MF, de Araújo-Júnior JX, de Moura RO. Advances in Computational Methods to Discover New NS2B-NS3 Inhibitors Useful Against Dengue and Zika Viruses. Curr Top Med Chem 2022; 22:2435-2462. [PMID: 36415099 DOI: 10.2174/1568026623666221122121330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
The Flaviviridae virus family consists of the genera Hepacivirus, Pestivirus, and Flavivirus, with approximately 70 viral types that use arthropods as vectors. Among these diseases, dengue (DENV) and zika virus (ZIKV) serotypes stand out, responsible for thousands of deaths worldwide. Due to the significant increase in cases, the World Health Organization (WHO) declared DENV a potential threat for 2019 due to being transmitted by infected travelers. Furthermore, ZIKV also has a high rate of transmissibility, highlighted in the outbreak in 2015, generating consequences such as Guillain-Barré syndrome and microcephaly. According to clinical outcomes, those infected with DENV can be asymptomatic, and in other cases, it can be lethal. On the other hand, ZIKV has severe neurological symptoms in newborn babies and adults. More serious symptoms include microcephaly, brain calcifications, intrauterine growth restriction, and fetal death. Despite these worrying data, no drug or vaccine is approved to treat these diseases. In the drug discovery process, one of the targets explored against these diseases is the NS2B-NS3 complex, which presents the catalytic triad His51, Asp75, and Ser135, with the function of cleaving polyproteins, with specificity for basic amino acid residues, Lys- Arg, Arg-Arg, Arg-Lys or Gln-Arg. Since NS3 is highly conserved in all DENV serotypes and plays a vital role in viral replication, this complex is an excellent drug target. In recent years, computer-aided drug discovery (CADD) is increasingly essential in drug discovery campaigns, making the process faster and more cost-effective, mainly explained by discovering new drugs against DENV and ZIKV. Finally, the main advances in computational methods applied to discover new compounds against these diseases will be presented here. In fact, molecular dynamics simulations and virtual screening is the most explored approach, providing several hit and lead compounds that can be used in further optimizations. In addition, fragment-based drug design and quantum chemistry/molecular mechanics (QM/MM) provides new insights for developing anti-DENV/ZIKV drugs. We hope that this review offers further helpful information for researchers worldwide and stimulates the use of computational methods to find a promising drug for treating DENV and ZIKV.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil.,Department of Pharmacy, Cesmac University Center, Maceió, Brazil.,Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| | | | - Manuele Figueiredo da Silva
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| |
Collapse
|
8
|
Pharmacophore-Model-Based Drug Repurposing for the Identification of the Potential Inhibitors Targeting the Allosteric Site in Dengue Virus NS5 RNA-Dependent RNA Polymerase. Viruses 2022; 14:v14081827. [PMID: 36016449 PMCID: PMC9412353 DOI: 10.3390/v14081827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) is the causative agent of DENV infection. To tackle DENV infection, the development of therapeutic molecules as direct-acting antivirals (DAAs) has been demonstrated as a truly effective approach. Among various DENV drug targets, non-structural protein 5 (NS5)-a highly conserved protein among the family Flaviviridae-carries the RNA-dependent RNA polymerase (DENVRdRp) domain at the C-terminal, and its "N-pocket" allosteric site is widely considered for anti-DENV drug development. Therefore, in this study, we developed a pharmacophore model by utilising 41 known inhibitors of the DENVRdRp domain, and performed model screening against the FDA's approved drug database for drug repurposing against DENVRdRp. Herein, drugs complying with the pharmacophore hypothesis were further processed through standard-precision (SP) and extra-precision (XP) docking scores (DSs) and binding pose refinement based on MM/GBSA binding energy (BE) calculations. This resulted in the identification of four potential potent drugs: (i) desmopressin (DS: -10.52, BE: -69.77 kcal/mol), (ii) rutin (DS: -13.43, BE: -67.06 kcal/mol), (iii) lypressin (DS: -9.84, BE: -67.65 kcal/mol), and (iv) lanreotide (DS: -8.72, BE: -64.7 kcal/mol). The selected drugs exhibited relevant interactions with the allosteric N-pocket of DENVRdRp, including priming-loop and entry-point residues (i.e., R729, R737, K800, and E802). Furthermore, 100 ns explicit-solvent molecular dynamics simulations and end-point binding free energy assessments support the considerable stability and free energy of the selected drugs in the targeted allosteric pocket of DENVRdRp. Hence, these four drugs, repurposed as potent inhibitors of the allosteric site of DENVRdRp, are recommended for further validation using experimental assays.
Collapse
|
9
|
Mirza MU, Alanko I, Vanmeert M, Muzzarelli KM, Salo-Ahen OMH, Abdullah I, Kovari IA, Claes S, De Jonghe S, Schols D, Schinazi RF, Kovari LC, Trant JF, Ahmad S, Froeyen M. The discovery of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach. Eur J Pharm Sci 2022; 175:106220. [PMID: 35618201 DOI: 10.1016/j.ejps.2022.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
With expanding recent outbreaks and a lack of treatment options, the Zika virus (ZIKV) poses a severe health concern. The availability of ZIKV NS2B-NS3 co-crystallized structures paved the way for rational drug discovery. A computer-aided structure-based approach was used to screen a diverse library of compounds against ZIKV NS2B-NS3 protease. The top hits were selected based on various binding free energy calculations followed by per-residue decomposition analysis. The selected hits were then evaluated for their biological potential with ZIKV protease inhibition assay and antiviral activity. Among 26 selected compounds, 8 compounds showed promising activity against ZIKV protease with a percentage inhibition of greater than 25 and 3 compounds displayed ∼50% at 10 µM, which indicates an enrichment rate of approximately 36% (threshold IC50 < 10 µM) in the ZIKV-NS2B-NS3 protease inhibition assay. Of these, only one compound (23) produced whole-cell anti-ZIKV activity, and the binding mode of 23 was extensively analyzed through long-run molecular dynamics simulations. The current study provides a promising starting point for the further development of novel compounds against ZIKV.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium; Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Ida Alanko
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Michiel Vanmeert
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium
| | - Kendall M Muzzarelli
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Iskandar Abdullah
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Iulia A Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Sandra Claes
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta 30322, GA, USA
| | - Ladislau C Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Sarfraz Ahmad
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Matheus Froeyen
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium.
| |
Collapse
|
10
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
11
|
Eberle RJ, Olivier DS, Pacca CC, Avilla CMS, Nogueira ML, Amaral MS, Willbold D, Arni RK, Coronado MA. In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus proteases. PLoS One 2021; 16:e0246319. [PMID: 33661906 PMCID: PMC7932080 DOI: 10.1371/journal.pone.0246319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
The potential outcome of flavivirus and alphavirus co-infections is worrisome due to the development of severe diseases. Hundreds of millions of people worldwide live under the risk of infections caused by viruses like chikungunya virus (CHIKV, genus Alphavirus), dengue virus (DENV, genus Flavivirus), and zika virus (ZIKV, genus Flavivirus). So far, neither any drug exists against the infection by a single virus, nor against co-infection. The results described in our study demonstrate the inhibitory potential of two flavonoids derived from citrus plants: Hesperetin (HST) against NS2B/NS3pro of ZIKV and nsP2pro of CHIKV and, Hesperidin (HSD) against nsP2pro of CHIKV. The flavonoids are noncompetitive inhibitors and the determined IC50 values are in low µM range for HST against ZIKV NS2B/NS3pro (12.6 ± 1.3 µM) and against CHIKV nsP2pro (2.5 ± 0.4 µM). The IC50 for HSD against CHIKV nsP2pro was 7.1 ± 1.1 µM. The calculated ligand efficiencies for HST were > 0.3, which reflect its potential to be used as a lead compound. Docking and molecular dynamics simulations display the effect of HST and HSD on the protease 3D models of CHIKV and ZIKV. Conformational changes after ligand binding and their effect on the substrate-binding pocket of the proteases were investigated. Additionally, MTT assays demonstrated a very low cytotoxicity of both the molecules. Based on our results, we assume that HST comprise a chemical structure that serves as a starting point molecule to develop a potent inhibitor to combat CHIKV and ZIKV co-infections by inhibiting the virus proteases.
Collapse
Affiliation(s)
- Raphael J. Eberle
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | | | - Carolina C. Pacca
- Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
- FACERES Medical School, São José do Rio Preto, Brazil
| | - Clarita M. S. Avilla
- Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
| | - Mauricio L. Nogueira
- Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, Brazil
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forchungszentrum Jülich, Jülich, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
| | - Monika A. Coronado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
12
|
Passos GFS, Gomes MGM, de Aquino TM, de Araújo-Júnior JX, de Souza SJM, Cavalcante JPM, dos Santos EC, Bassi ÊJ, da Silva-Júnior EF. Computer-Aided Design, Synthesis, and Antiviral Evaluation of Novel Acrylamides as Potential Inhibitors of E3-E2-E1 Glycoproteins Complex from Chikungunya Virus. Pharmaceuticals (Basel) 2020; 13:E141. [PMID: 32629969 PMCID: PMC7407227 DOI: 10.3390/ph13070141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) causes an infectious disease characterized by inflammation and pain of the musculoskeletal tissues accompanied by swelling in the joints and cartilage damage. Currently, there are no licensed vaccines or chemotherapeutic agents to prevent or treat CHIKV infections. In this context, our research aimed to explore the potential in vitro anti-CHIKV activity of acrylamide derivatives. In silico methods were applied to 132 Michael's acceptors toward the six most important biological targets from CHIKV. Subsequently, the ten most promising acrylamides were selected and synthesized. From the cytotoxicity MTT assay, we verified that LQM330, 334, and 336 demonstrate high cell viability at 40 µM. Moreover, these derivatives exhibited anti-CHIKV activities, highlighting the compound LQM334 which exhibited an inhibition value of 81%. Thus, docking simulations were performed to suggest a potential CHIKV-target for LQM334. It was observed that the LQM334 has a high affinity towards the E3-E2-E1 glycoproteins complex. Moreover, LQM334 reduced the percentage of CHIKV-positive cells from 74.07 to 0.88%, 48h post-treatment on intracellular flow cytometry staining. In conclusion, all virtual simulations corroborated with experimental results, and LQM334 could be used as a promising anti-CHIKV scaffold for designing new drugs in the future.
Collapse
Affiliation(s)
- Gabriel Felipe Silva Passos
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Matheus Gabriel Moura Gomes
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Thiago Mendonça de Aquino
- Center of Analysis and Research in Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió 57072-970, Brazil;
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Stephannie Janaina Maia de Souza
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - João Pedro Monteiro Cavalcante
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Elane Conceição dos Santos
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
- Center of Analysis and Research in Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió 57072-970, Brazil;
| |
Collapse
|
13
|
de Oliveira AS, Gazolla PAR, Oliveira AFCDS, Pereira WL, de S. Viol LC, Maia AFDS, Santos EG, da Silva ÍEP, Mendes TADO, da Silva AM, Dias RS, da Silva CC, Polêto MD, Teixeira RR, de Paula SO. Discovery of novel West Nile Virus protease inhibitor based on isobenzonafuranone and triazolic derivatives of eugenol and indan-1,3-dione scaffolds. PLoS One 2019; 14:e0223017. [PMID: 31557229 PMCID: PMC6762200 DOI: 10.1371/journal.pone.0223017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The West Nile Virus (WNV) NS2B-NS3 protease is an attractive target for the development of therapeutics against this arboviral pathogen. In the present investigation, the screening of a small library of fifty-eight synthetic compounds against the NS2-NB3 protease of WNV is described. The following groups of compounds were evaluated: 3-(2-aryl-2-oxoethyl)isobenzofuran-1(3H)-ones; eugenol derivatives bearing 1,2,3-triazolic functionalities; and indan-1,3-diones with 1,2,3-triazolic functionalities. The most promising of these was a eugenol derivative, namely 4-(3-(4-allyl-2-methoxyphenoxy)-propyl)-1-(2-bromobenzyl)-1H-1,2,3-triazole (35), which inhibited the protease with IC50 of 6.86 μmol L-1. Enzyme kinetic assays showed that this derivative of eugenol presents competitive inhibition behaviour. Molecular docking calculations predicted a recognition pattern involving the residues His51 and Ser135, which are members of the catalytic triad of the WNV NS2B-NS3 protease.
Collapse
Affiliation(s)
- André S. de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Poliana A. R. Gazolla
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Ana Flávia C. da S. Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Wagner L. Pereira
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Lívia C. de S. Viol
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Angélica F. da S. Maia
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Edjon G. Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Ítalo E. P. da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Adalberto M. da Silva
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Araquari, SC, Brazil
| | - Roberto S. Dias
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Cynthia C. da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo D. Polêto
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Róbson R. Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- * E-mail: (SOP); (RRT)
| | - Sergio O. de Paula
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- * E-mail: (SOP); (RRT)
| |
Collapse
|
14
|
Tokarenko A, Lišková B, Smoleń S, Táborská N, Tichý M, Gurská S, Perlíková P, Frydrych I, Tloušt'ová E, Znojek P, Mertlíková-Kaiserová H, Poštová Slavětínská L, Pohl R, Klepetářová B, Khalid NUA, Wenren Y, Laposa RR, Džubák P, Hajdúch M, Hocek M. Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. J Med Chem 2018; 61:9347-9359. [PMID: 30281308 DOI: 10.1021/acs.jmedchem.8b01258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three series of isomeric pyrrolo- and furo-fused 7-deazapurine ribonucleosides were synthesized and screened for cytostatic and antiviral activity. The synthesis was based on heterocyclizations of hetaryl-azidopyrimidines to form the tricyclic heterocyclic bases, followed by glycosylation and final derivatizations through cross-coupling reactions or nucleophilic substitutions. The pyrrolo[2',3':4,5]pyrrolo[2,3- d]pyrimidine and furo[2',3':4,5]pyrrolo[2,3- d]pyrimidine ribonucleosides were found to be potent cytostatics, whereas the isomeric pyrrolo[3',2',4,5]pyrrolo[2,3- d]pyrimidine nucleosides were inactive. The most active were the methyl, methoxy, and methylsulfanyl derivatives exerting submicromolar cytostatic effects and good selectivity toward cancer cells. We have shown that the nucleosides are activated by intracellular phosphorylation and the nucleotides get incorporated to both RNA and DNA, where they cause DNA damage. They represent a new type of promising candidates for preclinical development toward antitumor agents.
Collapse
Affiliation(s)
- Anna Tokarenko
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| | - Barbora Lišková
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Sabina Smoleń
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Natálie Táborská
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Soňa Gurská
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Ivo Frydrych
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Eva Tloušt'ová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Pawel Znojek
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Noor-Ul-Ain Khalid
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Yiqian Wenren
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Rebecca R Laposa
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Petr Džubák
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Marián Hajdúch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
15
|
Lu D, Liu J, Zhang Y, Liu F, Zeng L, Peng R, Yang L, Ying H, Tang W, Chen W, Zuo J, Tong X, Liu T, Hu Y. Discovery and optimization of phthalazinone derivatives as a new class of potent dengue virus inhibitors. Eur J Med Chem 2018; 145:328-337. [PMID: 29335200 DOI: 10.1016/j.ejmech.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
Using a dengue replicon cell line-based screening, we identified 3-(dimethylamino)propyl(3-((4-(4-fluorophenyl)-1-oxophthalazin-2(1H)-yl)methyl)phenyl)carbamate (10a) as a potent DENV-2 inhibitor, with an IC50 value of 0.64 μM. A series of novel phthalazinone derivatives based on hit 10a were synthesized and evaluated for their in vitro anti-DENV activity and cytotoxicity. The subsequent SAR study and optimization led to the discovery of the most promising compound 14l, which displayed potent anti-DENV-2 activity, with low IC50 value against DENV-2 RNA replication of 0.13 μM and high selectivity (SI = 89.2) with acceptable pharmacokinetics profiles.
Collapse
Affiliation(s)
- Dong Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jianan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yunzhe Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feifei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Limin Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Runze Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Li Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Huazhou Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wuhong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jianping Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiankun Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Tao Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Youhong Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| |
Collapse
|
16
|
Huang YW, Lee CT, Wang TC, Kao YC, Yang CH, Lin YM, Huang KS. The Development of Peptide-based Antimicrobial Agents against Dengue Virus. Curr Protein Pept Sci 2018; 19:998-1010. [PMID: 29852867 PMCID: PMC6446661 DOI: 10.2174/1389203719666180531122724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022]
Abstract
Dengue fever has become an imminent threat to international public health because of global warming and climate change. The World Health Organization proclaimed that more than 50% of the world's population is at risk of dengue virus (DENV) infection. Therefore, developing a clinically approved vaccine and effective therapeutic remedy for treating dengue fever is imperative. Peptide drug development has become a novel pharmaceutical research field. This article reviews various peptidesbased antimicrobial agents targeting three pathways involved in the DENV lifecycle. Specifically, they are peptide vaccines from immunomodulation, peptide drugs that inhibit virus entry, and peptide drugs that interfere with viral replication. Many antiviral peptide studies against DENV have been conducted in animal model trials, and progression to clinical trials for these promising peptide drugs is anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keng-Shiang Huang
- Address correspondence to this author at the School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan;, Tel: +886-988-399-979; E-mail:
| |
Collapse
|
17
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
18
|
Konč J, Tichý M, Pohl R, Hodek J, Džubák P, Hajdúch M, Hocek M. Sugar modified pyrimido[4,5- b]indole nucleosides: synthesis and antiviral activity. MEDCHEMCOMM 2017; 8:1856-1862. [PMID: 30108897 PMCID: PMC6084004 DOI: 10.1039/c7md00319f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
Abstract
Three types of sugar modified pyrimido[4,5-b]indole nucleosides (2'-deoxy-2'-fluororibo-, 2'-deoxy-2'-fluoroarabino- and arabinonucleosides) were synthesized by glycosylation of 4,6-dichloropyrimido[4,5-b]indole followed by modification of sugar moiety and introduction of substituents into position 4 by cross-coupling reactions or nucleophilic substitutions. Some 2'-fluororibo- and 2'-fluoroarabinonucleosides displayed interesting anti-HCV activities (IC50 = 1.6-20 μM) and the latter compounds also some anti-dengue activities (IC50 = 10.8-40 μM).
Collapse
Affiliation(s)
- Juraj Konč
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Petr Džubák
- Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Faculty of Medicine and Dentistry , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Faculty of Medicine and Dentistry , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic . .,Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
19
|
da Silva-Júnior EF, Leoncini GO, Rodrigues ÉES, Aquino TM, Araújo-Júnior JX. The medicinal chemistry of Chikungunya virus. Bioorg Med Chem 2017; 25:4219-4244. [PMID: 28689975 PMCID: PMC7126832 DOI: 10.1016/j.bmc.2017.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
Abstract
Arthropod-borne viruses (arboviruses) are an important threat to human and animal health globally. Among these, zoonotic diseases account for billions of cases of human illness and millions of deaths every year, representing an increasing public health problem. Chikungunya virus belongs to the genus Alphavirus of the family Togariridae, and is transmitted mainly by the bite of female mosquitoes of the Aedes aegypti and/or A. albopictus species. The focus of this review will be on the medicinal chemistry of Chikungunya virus, including synthetic and natural products, as well as rationally designed compounds.
Collapse
Affiliation(s)
- Edeildo F da Silva-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| | - Giovanni O Leoncini
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Érica E S Rodrigues
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Thiago M Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - João X Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| |
Collapse
|
20
|
Oliveira AFCDS, Teixeira RR, Oliveira ASD, Souza APMD, Silva MLD, Paula SOD. Potential Antivirals: Natural Products Targeting Replication Enzymes of Dengue and Chikungunya Viruses. Molecules 2017; 22:E505. [PMID: 28327521 PMCID: PMC6155337 DOI: 10.3390/molecules22030505] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) and chikungunya virus (CHIKV) are reemergent arboviruses that are transmitted by mosquitoes of the Aedes genus. During the last several decades, these viruses have been responsible for millions of cases of infection and thousands of deaths worldwide. Therefore, several investigations were conducted over the past few years to find antiviral compounds for the treatment of DENV and CHIKV infections. One attractive strategy is the screening of compounds that target enzymes involved in the replication of both DENV and CHIKV. In this review, we describe advances in the evaluation of natural products targeting the enzymes involved in the replication of these viruses.
Collapse
Affiliation(s)
- Ana Flávia Costa da Silveira Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas, 39900-000 Almenara, MG, Brazil.
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - André Silva de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas, 39900-000 Almenara, MG, Brazil.
| | - Ana Paula Martins de Souza
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - Milene Lopes da Silva
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - Sérgio Oliveira de Paula
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
21
|
Tichý M, Smoleń S, Tloušt'ová E, Pohl R, Oždian T, Hejtmánková K, Lišková B, Gurská S, Džubák P, Hajdúch M, Hocek M. Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. J Med Chem 2017; 60:2411-2424. [PMID: 28221790 DOI: 10.1021/acs.jmedchem.6b01766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two isomeric series of new thieno-fused 7-deazapurine ribonucleosides (derived from 4-substituted thieno[2',3':4,5]pyrrolo[2,3-d]pyrimidines and thieno[3',2':4,5]pyrrolo[2,3-d]pyrimidines) were synthesized by a sequence involving Negishi coupling of 4,6-dichloropyrimidine with iodothiophenes, nucleophilic azidation, and cyclization of tetrazolopyrimidines, followed by glycosylation and cross-couplings or nucleophilic substitutions at position 4. Most nucleosides (from both isomeric series) exerted low micromolar or submicromolar in vitro cytostatic activities against a broad panel of cancer and leukemia cell lines and some antiviral activity against HCV. The most active were the 6-methoxy, 6-methylsulfanyl, and 6-methyl derivatives, which were highly active to cancer cells and less toxic or nontoxic to fibroblasts.
Collapse
Affiliation(s)
- Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Sabina Smoleń
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Eva Tloušt'ová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Tomáš Oždian
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Klára Hejtmánková
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
22
|
Benmansour F, Trist I, Coutard B, Decroly E, Querat G, Brancale A, Barral K. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design. Eur J Med Chem 2017; 125:865-880. [DOI: 10.1016/j.ejmech.2016.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
23
|
Abstract
Alphaviruses, such as Chikungunya virus, O’Nyong–Nyong virus, Ross River virus, have been widely known to cause fever, rash, and rheumatic diseases. In addition, several other alphaviruses, for instance Eastern equine encephalitis virus, Venezuelan equine encephalitis virus, and Western equine encephalitis virus, potentially cause fatal encephalitis in humans. These diseases are considered as neglected tropical diseases for which there are no current antiviral therapies or vaccines available. The replication process in alphaviruses depends on four nonstructural proteins, NSP1–NSP4, which are produced as a single polyprotein. Therefore, the Alphavirus-mediated diseases in humans remain challenging among the virologists worldwide. Thus researchers are trying to find out proficient approaches, including the discovery of novel chemotherapeutic agents for the possible management and treatment of infected patients. Attempts were also made to identify an active compound against alphaviruses from natural sources. The genomes of various alphaviruses have already been revealed, and the function of proteins may be predicted by homology modeling, with the known proteins of closely related viruses. With the help of this information of protein modeling and subsequent virtual screening approach, the research teams will be able to identify few potential leads. The drug discovery against various alphaviruses is still in its early stages. Moreover, consolidating the available information and making it available for the scientific community are urgent requirements to expedite the research of potential drug discovery. The current chapter describes the techniques available to prevent Alphavirus infection and to treat Alphavirus-associated malignancies. In addition, we also discuss the recent outcomes in the fields of synthetic and natural medicinal chemistry research that were solely aimed to fight against Alphavirus infection. Thus the present chapter may also help and expedite the drug discovery and development of inhibitors against nonstructural proteins of various alphaviruses.
Collapse
|
24
|
Aminopurine and aminoquinazoline scaffolds for development of potential dengue virus inhibitors. Eur J Med Chem 2017; 126:101-109. [DOI: 10.1016/j.ejmech.2016.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022]
|
25
|
Lee H, Ren J, Nocadello S, Rice AJ, Ojeda I, Light S, Minasov G, Vargas J, Nagarathnam D, Anderson WF, Johnson ME. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res 2016; 139:49-58. [PMID: 28034741 DOI: 10.1016/j.antiviral.2016.12.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023]
Abstract
Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain-Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ∼5-10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a "pre-open conformation", a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.
Collapse
Affiliation(s)
- Hyun Lee
- Novalex Therapeutics, Inc., 2242 W Harrison Suite 201, Chicago, IL 60612, USA
| | - Jinhong Ren
- Center for Biomolecular Science, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA
| | - Salvatore Nocadello
- Center for Structural Genomics of Infectious Diseases (CSGID), Dept. of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Amy J Rice
- Center for Biomolecular Science, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA
| | - Isabel Ojeda
- Center for Biomolecular Science, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA
| | - Samuel Light
- Center for Structural Genomics of Infectious Diseases (CSGID), Dept. of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases (CSGID), Dept. of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Jason Vargas
- Center for Biomolecular Science, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA
| | | | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases (CSGID), Dept. of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Michael E Johnson
- Novalex Therapeutics, Inc., 2242 W Harrison Suite 201, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Identification of fused bicyclic derivatives of pyrrolidine and imidazolidinone as dengue virus-2 NS2B-NS3 protease inhibitors. Eur J Med Chem 2016; 125:751-759. [PMID: 27721158 DOI: 10.1016/j.ejmech.2016.09.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022]
Abstract
A series of fused ring derivatives of pyrrolidine and imidazolidinone were designed, synthesized, characterized and assayed against the DENV-2 NS2B-NS3 protease and wild-type DENV-2 virus. The linear dipeptide compound 1 and the non-peptidic fused ring compound 2 show comparable activities against DENV-2 NS2B-NS3 protease and wild-type DENV-2 virus in a viral replication assay. The preliminary SAR reveals that a substituent and its stereochemistry at C-3 position, substitution (X) at N-2 arene and a linker (Y) between C-3 position and its attached arene are important for the fused-ring scaffold of pyrrolidino [1,2-c]imidazolidinone to block the active site of NS2B-NS3 protease. This promising structural core will facilitate the discovery of non-peptidic, potent NS2B-NS3 protease inhibitors to stop dengue virus infections.
Collapse
|
27
|
Saudi M, Zmurko J, Kaptein S, Rozenski J, Gadakh B, Chaltin P, Marchand A, Neyts J, Van Aerschot A. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus. Eur J Med Chem 2016; 121:158-168. [PMID: 27240271 PMCID: PMC4999056 DOI: 10.1016/j.ejmech.2016.05.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/24/2022]
Abstract
High-throughput screening of a subset of the CD3 chemical library (Centre for Drug Design and Discovery; KU Leuven) provided us with a lead compound 1, displaying low micromolar potency against dengue virus and yellow fever virus. Within a project aimed at discovering new inhibitors of flaviviruses, substitution of its central imidazole ring led to synthesis of variably substituted pyrazine dicarboxylamides and phthalic diamides, which were evaluated in cell-based assays for cytotoxicity and antiviral activity against the dengue virus (DENV) and yellow fever virus (YFV). Fourteen compounds inhibited DENV replication (EC50 ranging between 0.5 and 3.4 μM), with compounds 6b and 6d being the most potent inhibitors (EC50 0.5 μM) with selectivity indices (SI) > 235. Compound 7a likewise exhibited anti-DENV activity with an EC50 of 0.5 μM and an SI of >235. In addition, good antiviral activity of seven compounds in the series was also noted against the YFV with EC50 values ranging between 0.4 and 3.3 μM, with compound 6n being the most potent for this series with an EC50 0.4 μM and a selectivity index of >34. Finally, reversal of one of the central amide bonds as in series 13 proved deleterious to the inhibitory activity.
Collapse
Affiliation(s)
- Milind Saudi
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Joanna Zmurko
- KU Leuven, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Suzanne Kaptein
- KU Leuven, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Jef Rozenski
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Bharat Gadakh
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001 Leuven, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven Research and Development, Waaistraat 6, 3000 Leuven, Belgium
| | | | - Johan Neyts
- KU Leuven, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Arthur Van Aerschot
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Gable JE, Lee GM, Acker TM, Hulce KR, Gonzalez ER, Schweigler P, Melkko S, Farady CJ, Craik CS. Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease. ChemMedChem 2016; 11:862-9. [PMID: 26822284 DOI: 10.1002/cmdc.201500526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 11/11/2022]
Abstract
Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces.
Collapse
Affiliation(s)
- Jonathan E Gable
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158-2280, USA.,Biophysics Graduate Group, University of California, San Francisco, CA, 94158-2280, USA
| | - Gregory M Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158-2280, USA
| | - Timothy M Acker
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158-2280, USA
| | - Kaitlin R Hulce
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158-2280, USA.,Chemistry and Chemical Biology Graduate Group, University of California, San Francisco, CA, 94158-2280, USA
| | - Eric R Gonzalez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158-2280, USA
| | - Patrick Schweigler
- Novartis Institutes for BioMedical Research, Forum 1, Novartis Campus, 4002, Basel, Switzerland
| | - Samu Melkko
- Novartis Institutes for BioMedical Research, Forum 1, Novartis Campus, 4002, Basel, Switzerland
| | - Christopher J Farady
- Novartis Institutes for BioMedical Research, Forum 1, Novartis Campus, 4002, Basel, Switzerland
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158-2280, USA.
| |
Collapse
|
29
|
Ramharack P, Soliman MES. Zika virus drug targets: a missing link in drug design and discovery – a route map to fill the gap. RSC Adv 2016. [DOI: 10.1039/c6ra12142j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review depicts anin silicoroute map for ZIKV drug discovery, thus revealing novel potential inhibitors of viral replication.
Collapse
Affiliation(s)
- Pritika Ramharack
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. S. Soliman
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
30
|
Bhakat S, Soliman MES. Chikungunya virus (CHIKV) inhibitors from natural sources: a medicinal chemistry perspective. J Nat Med 2015; 69:451-62. [PMID: 25921858 PMCID: PMC4703636 DOI: 10.1007/s11418-015-0910-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/03/2015] [Indexed: 11/29/2022]
Abstract
Abstract Chikungunya virus (CHIKV) is one of the re-emerging “neglected” tropical diseases whose recent outbreak affected not only Africa and South-East Asia but also several parts of America and Europe. To date, despite its serious nature, no antivirals or vaccines were developed in order to counter this resurgent infectious disease. The recent advancement in crystallography and availability of crystal structures of certain domains of CHIKV initiates the development of anti-CHIKV agents using structure-based drug design or synthetic medicinal chemistry approach. Despite the fact that almost 50 % of the new chemical entities against several biological targets were either obtained from natural products or natural product analogues, a very humble effort was directed towards identification of novel CHIKV inhibitors from natural products. In this review, besides a brief overview on CHIKV as well as the nature as a source of medicines, we highlight the current progress and future steps towards the discovery of CHIKV inhibitors from natural products. This report could pave the road towards the design of novel semi-synthetic derivatives with enhanced anti-viral activities. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Soumendranath Bhakat
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa,
| | | |
Collapse
|
31
|
|
32
|
Bhakat S, Delang L, Kaptein S, Neyts J, Leyssen P, Jayaprakash V. Reaching beyond HIV/HCV: nelfinavir as a potential starting point for broad-spectrum protease inhibitors against dengue and chikungunya virus. RSC Adv 2015. [DOI: 10.1039/c5ra14469h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Re-purposing HIV/HCV inhibitors against DENV and CHIKV using computer aided drug design.
Collapse
Affiliation(s)
| | - Leen Delang
- KU Leuven – University of Leuven
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
| | - Suzanne Kaptein
- KU Leuven – University of Leuven
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
| | - Johan Neyts
- KU Leuven – University of Leuven
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
| | - Pieter Leyssen
- KU Leuven – University of Leuven
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
| | | |
Collapse
|