1
|
Golmohammadi F, Osmani C, Rominger F, Balalaie S. Synthesis of Functionalized Indolizines through 1,3-Dipolar Cycloaddition of Zwitterionic Ketenimines and Pyridinium Salts. J Org Chem 2025; 90:5973-5985. [PMID: 40252036 DOI: 10.1021/acs.joc.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
A straightforward and efficient strategy for the synthesis of fully functionalized indolizines has been developed through a transition metal- and oxidant-free [3 + 2] cycloaddition reaction of zwitterionic ketenimines and pyridinium salts. This versatile method proceeds under mild conditions, affording functionalized indolizines in moderate to good yields. This efficient approach involves an intermolecular [3 + 2] cycloaddition, followed by enamine/imine tautomerization and aromatization. Notably, this method demonstrates broad functional group compatibility and allows for facile scalability, making it a valuable tool for the synthesis of indolizine-based frameworks in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Farhad Golmohammadi
- Peptide Chemistry Research Institute, K. N. Toosi University Of Technology, P.O. Box 15875-4416 Tehran 19697, Iran
| | - Chiman Osmani
- Peptide Chemistry Research Institute, K. N. Toosi University Of Technology, P.O. Box 15875-4416 Tehran 19697, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, Heidelberg D-69120, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University Of Technology, P.O. Box 15875-4416 Tehran 19697, Iran
| |
Collapse
|
2
|
Chen K, Zhou R, Zhu G, Tang L, Huang L, He Q. Metal-Free Synthesis of Functionalized Indolizines via a Cascade Michael/S N2/Aromatization Reaction of 2-Alkylazaarene Derivatives with Bromonitroolefins. ACS OMEGA 2024; 9:49980-49985. [PMID: 39713660 PMCID: PMC11656401 DOI: 10.1021/acsomega.4c09295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
A transition metal-free domino Michael/SN2/aromatization annulation of 2-pyridylacetates with bromonitroolefins has been developed. A wide range of substrates containing various substituted groups was compatible with the present methodology and afforded functionalized indolizines with moderate to excellent yield (up to 99% yield). In addition, the potential practicality of the method stood out through scale-up reactions and further transformations to other valuable compounds. In our view, this study is an essential complement for the rapid construction of indolizine derivatives through a metal-free strategy.
Collapse
Affiliation(s)
- Kangbiao Chen
- The
Fourth Department of Medical Oncology, Central Hospital of Guangdong
Provincial Nongken, Zhanjiang Cancer Hospital, No.2 Mid Renmin Avenue, Zhanjiang 524002, P. R. China
| | - Rui Zhou
- School
of Pharmacy, Guizhou Provincial Engineering Technology Research Center
for Chemical Drug R&D, Guizhou Medical
University, Guiyang 550014, P. R. China
| | - Gaofeng Zhu
- School
of Pharmacy, Guizhou Provincial Engineering Technology Research Center
for Chemical Drug R&D, Guizhou Medical
University, Guiyang 550014, P. R. China
| | - Lei Tang
- School
of Pharmacy, Guizhou Provincial Engineering Technology Research Center
for Chemical Drug R&D, Guizhou Medical
University, Guiyang 550014, P. R. China
| | - Lu Huang
- The
Fourth Department of Medical Oncology, Central Hospital of Guangdong
Provincial Nongken, Zhanjiang Cancer Hospital, No.2 Mid Renmin Avenue, Zhanjiang 524002, P. R. China
| | - Qing He
- School
of Pharmacy, Guizhou Provincial Engineering Technology Research Center
for Chemical Drug R&D, Guizhou Medical
University, Guiyang 550014, P. R. China
| |
Collapse
|
3
|
da Silva TS, da Silva Souza M, Andricopulo AD, Coelho F. Discovery of indolizine lactones as anticancer agents and their optimization through late-stage functionalization. RSC Adv 2023; 13:20264-20270. [PMID: 37416908 PMCID: PMC10321224 DOI: 10.1039/d3ra03395c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Indolizines fused with a seven-member lactone ring were identified as a promising scaffold in the search for new anticancer agents. Through a modular synthetic sequence, a library of cis and trans indolizines lactones had their antiproliferative activity evaluated against hormone-refractory prostate DU-145 and triple-negative breast MDA-MB-231 cancer cell lines. A methoxylated analogue was identified as an initial hit against MDA-MB-231 and late-stage functionalization of the indolizine core led to analogues within potencies up to twenty times higher than the parent precursor.
Collapse
Affiliation(s)
- Thiago Sabino da Silva
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas Rua Monteiro Lobato, S/N, 13083-970, Campinas São Paulo Brazil
| | - Matheus da Silva Souza
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo - Avenida Joao Dagnone 1100-13563-120 - Sao Carlos SP Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo - Avenida Joao Dagnone 1100-13563-120 - Sao Carlos SP Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas Rua Monteiro Lobato, S/N, 13083-970, Campinas São Paulo Brazil
| |
Collapse
|
4
|
Amărandi RM, Al-Matarneh MC, Popovici L, Ciobanu CI, Neamțu A, Mangalagiu II, Danac R. Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach. Pharmaceuticals (Basel) 2023; 16:865. [PMID: 37375812 DOI: 10.3390/ph16060865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Five new series of pyrrolo-fused heterocycles were designed through a scaffold hybridization strategy as analogs of the well-known microtubule inhibitor phenstatin. Compounds were synthesized using the 1,3-dipolar cycloaddition of cycloimmonium N-ylides to ethyl propiolate as a key step. Selected compounds were then evaluated for anticancer activity and ability to inhibit tubulin polymerization in vitro. Notably, pyrrolo[1,2-a]quinoline 10a was active on most tested cell lines, performing better than control phenstatin in several cases, most notably on renal cancer cell line A498 (GI50 27 nM), while inhibiting tubulin polymerization in vitro. In addition, this compound was predicted to have a promising ADMET profile. The molecular details of the interaction between compound 10a and tubulin were investigated through in silico docking experiments, followed by molecular dynamics simulations and configurational entropy calculations. Of note, we found that some of the initially predicted interactions from docking experiments were not stable during molecular dynamics simulations, but that configurational entropy loss was similar in all three cases. Our results suggest that for compound 10a, docking experiments alone are not sufficient for the adequate description of interaction details in terms of target binding, which makes subsequent scaffold optimization more difficult and ultimately hinders drug design. Taken together, these results could help shape novel potent antiproliferative compounds with pyrrolo-fused heterocyclic cores, especially from an in silico methodological perspective.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- TRANSCEND Research Center, Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
| | - Maria-Cristina Al-Matarneh
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Lăcrămioara Popovici
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Catalina Ionica Ciobanu
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Andrei Neamțu
- TRANSCEND Research Center, Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
| | - Ionel I Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| |
Collapse
|
5
|
Liu H, Ren S, Ma C, Shi G, Li Y, Duan G, Ge Y. Copper‐Promoted Direct Decarboxylative C3‐Acylation of Electron‐Rich Indolizines Using α‐Keto Acids. ChemistrySelect 2022. [DOI: 10.1002/slct.202104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Liu
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Shaohong Ren
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Chuanjun Ma
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Guowei Shi
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Yongchao Li
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Guiyun Duan
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Yanqing Ge
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| |
Collapse
|
6
|
Amariucai-Mantu D, Antoci V, Sardaru MC, Al Matarneh CM, Mangalagiu I, Danac R. Fused pyrrolo-pyridines and pyrrolo-(iso)quinoline as anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This work emphasizes the synthesis strategies and antiproliferative related properties of fused pyrrolo-pyridine (including indolizine and azaindoles) and pyrrolo-(iso)quinoline derivatives recently reported in literature.
Collapse
Affiliation(s)
| | - Vasilichia Antoci
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| | | | | | - Ionel Mangalagiu
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| | - Ramona Danac
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| |
Collapse
|
7
|
Aksenov AV, Arutiunov NA, Kirilov NK, Aksenov DA, Grishin IY, Aksenov NA, Wang H, Du L, Betancourt T, Pelly SC, Kornienko A, Rubin M. [3 + 2]-Annulation of pyridinium ylides with 1-chloro-2-nitrostyrenes unveils a tubulin polymerization inhibitor. Org Biomol Chem 2021; 19:7234-7245. [PMID: 34387294 PMCID: PMC8439629 DOI: 10.1039/d1ob01141c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Indolizines and pyrazolo[1,5-a]pyridines were prepared via [3 + 2]-cycloaddition of pyridinium ylides to 1-chloro-2-nitrostyrenes. The synthesized molecules were evaluated for antiproliferative activities against a BE(2)-C neuroblastoma cell line with several compounds decreasing the viability of cancer cells. Indolizine 9db showed higher potency than that of all-trans-retinoic acid, an approved cancer drug. Mechanistically, it was found to inhibit tubulin polymerization and it is thus proposed that the discovered chemistry can be exploited for the development of novel microtubule-targeting anticancer agents.
Collapse
Affiliation(s)
- Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Indole derivatives (2010-2020) as versatile tubulin inhibitors: synthesis and structure-activity relationships. Future Med Chem 2021; 13:1795-1828. [PMID: 34468201 DOI: 10.4155/fmc-2020-0385] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tubulin inhibitors are conjugates that interfere with the dynamic equilibrium of the polymerization and depolymerization of microtubules. Among all the reported conjugates, indole moiety is one of the most significant classes for the development of new drug candidates for cancer therapy. Due to their presence in a wide range of natural as well as synthetic antitubulin agents, indole has become a versatile scaffold in research, and various synthetic and semisynthetic indole-based antitubulin agents have been identified and reported. The present article focuses on the reported indole-based tubulin inhibitors of synthetic origin from last the decade. Synthesis, structure-activity relationships and biological activities of synthetic indole derivatives along with brief updates on their antitubulin activity are presented.
Collapse
|
9
|
Venugopala KN, Chandrashekharappa S, Tratrat C, Deb PK, Nagdeve RD, Nayak SK, Morsy MA, Borah P, Mahomoodally FM, Mailavaram RP, Attimarad M, Aldhubiab BE, Sreeharsha N, Nair AB, Alwassil OI, Haroun M, Mohanlall V, Shinu P, Venugopala R, Kandeel M, Nandeshwarappa BP, Ibrahim YF. Crystallography, Molecular Modeling, and COX-2 Inhibition Studies on Indolizine Derivatives. Molecules 2021; 26:molecules26123550. [PMID: 34200764 PMCID: PMC8230391 DOI: 10.3390/molecules26123550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, β = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
- Correspondence: (K.N.V.); (S.C.); Tel.: +966-1358-98842 (K.N.V.); +91-94486-39413 (S.C.)
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R) Raebareli, Lucknow UP 226002, India
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, TIFR, GKVK, Bellary Road, Bangalore 560065, India
- Correspondence: (K.N.V.); (S.C.); Tel.: +966-1358-98842 (K.N.V.); +91-94486-39413 (S.C.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Rahul D. Nagdeve
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India; (R.D.N.); (S.K.N.)
| | - Susanta K. Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India; (R.D.N.); (S.K.N.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt;
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati 781026, Assam, India;
| | - Fawzi M. Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80835, Mauritius;
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram 534202, India;
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Osama I. Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Rashmi Venugopala
- Department of Public Health Medicine, Howard College Campus, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Belakatte P. Nandeshwarappa
- Department of Studies in Chemistry, Shivagangotri, Davangere University, Davangere, Karnataka 577007, India;
| | - Yasmine F. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt;
| |
Collapse
|
10
|
Sekgota KC, Isaacs M, Hoppe HC, Seldon R, Warner DF, Khanye SD, Kaye PT. Propylphosphonic acid anhydride–mediated amidation of Morita–Baylis–Hillman–derived indolizine-2-carboxylic acids. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/1747519820987156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Propylphosphonic acid anhydride has been successfully used as a coupling agent in the synthesis of a series of indolizine-2-carboxamido derivatives from indolizine-2-carboxylic acid and its 3-acetylated analogue. The acid substrates were obtained by saponification of the corresponding methyl esters produced, in turn, selectively and efficiently, by time-controlled cyclisation of a single Morita–Baylis–Hillman adduct. Various amino and hydrazino compounds with medicinal potential have been used to prepare indolizine-2-carboxamido and hydrazido derivatives.
Collapse
Affiliation(s)
| | - Michelle Isaacs
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Heinrich C Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda/Grahamstown, South Africa
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Ronnett Seldon
- Drug Discovery and Development Centre (H3-D), Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Setshaba D Khanye
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda/Grahamstown, South Africa
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Perry T Kaye
- Department of Chemistry, Rhodes University, Makhanda/Grahamstown, South Africa
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda/Grahamstown, South Africa
| |
Collapse
|
11
|
Su K, Guo X, Zhu L, Liu Y, Lu Y, Chen B. Indolizine synthesis via radical cyclization and demethylation of sulfoxonium ylides and 2-(pyridin-2-yl)acetate derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel radical cross-coupling/cyclization of 2-(pyridin-2-yl)acetate derivatives and sulfoxonium ylides is developed, which provides a straightforward access to structurally diverse methylthio-substituted indolizine.
Collapse
Affiliation(s)
- Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Liangwei Zhu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Yafeng Liu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Yixuan Lu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
12
|
Sardaru MC, Craciun AM, Al Matarneh CM, Sandu IA, Amarandi RM, Popovici L, Ciobanu CI, Peptanariu D, Pinteala M, Mangalagiu II, Danac R. Cytotoxic substituted indolizines as new colchicine site tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2020; 35:1581-1595. [PMID: 32752898 PMCID: PMC7470029 DOI: 10.1080/14756366.2020.1801671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 07/19/2020] [Indexed: 12/20/2022] Open
Abstract
A potential microtubule destabilising series of new indolizine derivatives was synthesised and tested for their anticancer activity against a panel of 60 human cancer cell lines. Compounds 11a, 11b, 15a, and 15j showed a broad spectrum of growth inhibitory activity against cancer cell lines representing leukaemia, melanoma and cancer of lung, colon, central nervous system, ovary, kidney, breast, and prostate. Among them, compound 11a was distinguishable by its excellent cytostatic activity, showing GI50 values in the range of 10-100 nM on 43 cell lines. The less potent compounds 15a and 15j in terms of GI50 values showed a high cytotoxic effect against tested colon cancer, CNS cancer, renal cancer and melanoma cell lines and only on few cell lines from other types of cancer. In vitro assaying revealed tubulin polymerisation inhibition by all active compounds. Molecular docking showed good complementarity of active compounds with the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Anda Mihaela Craciun
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Cristina-Maria Al Matarneh
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Isabela Andreea Sandu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Roxana Maria Amarandi
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- TRANSCEND Research Center, Regional Institute of Oncology, Iași, Romania
| | - Lacramioara Popovici
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| | | | - Dragos Peptanariu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Ionel I. Mangalagiu
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| | - Ramona Danac
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| |
Collapse
|
13
|
Zheng J, He X, Xu H, Liu H, Yang W. A formal [3 + 2] annulation reaction of propargyl sulfonium compounds and N-ylides: access to pyrrolo[2,1- a]quinolines, pyrrolo[2,1- a]phthalazines and indolizines. Org Biomol Chem 2020; 18:8867-8875. [PMID: 33094785 DOI: 10.1039/d0ob01739f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A sequential [3 + 2] annulation of prop-2-ynylsulfonium salt and N-ylides was developed, leading to the formation of a series of pyrrolo[2,1-a]quinolines, pyrrolo[2,1-a]phthalazines and indolizines. The protocol featured the simultaneous one-pot formation of three new C-C bonds in moderate yields under mild conditions. In this reaction, the prop-2-ynylsulfonium salts acted as the C2 synthons and sulfide served as the leaving group. The resultant products could serve as useful precursors for the synthesis of diverse chemical compounds.
Collapse
Affiliation(s)
- Jing Zheng
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 XuFu Road, Nangchang, 330031, China.
| | | | | | | | | |
Collapse
|
14
|
Zaib S, Khan I. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorg Chem 2020; 105:104425. [PMID: 33157344 DOI: 10.1016/j.bioorg.2020.104425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Fused diaza-heterocycles constitute the core structure of numerous bioactive natural products and effective therapeutic drugs. Among them, phthalazines have been recognized as remarkable structural leads in medicinal chemistry due to their wide application in pharmaceutical and agrochemical industries. Accessing such challenging pharmaceutical agents/drug candidates with high chemical complexity through synthetically efficient approaches remains an attractive goal in the contemporary medicinal chemistry and drug discovery arena. In this review, we focus on the recent developments in the synthetic routes towards the generation of phthalazine-based active pharmaceutical ingredients and their biological potential against various targets. The general reaction scope of these innovative and easily accessible strategies was emphasized focusing on the functional group tolerance, substrate and coupling partner compatibility/limitation, the choice of catalyst, and product diversification. These processes were also accompanied by the mechanistic insights where deemed appropriate to demonstrate meaningful information. Moreover, the rapid examination of the structure-activity relationship analyses around the phthalazine core enabled by the pharmacophore replacement/integration revealed the generation of robust, efficient, and more selective compounds with pronounced biological effects. A large variety of in silico methods and ADME profiling tools were also employed to provide a global appraisal of the pharmacokinetics profile of diaza-heterocycles. Thus, the discovery of new structural leads offers the promise of improving treatments for various tropical diseases such as tuberculosis, leishmaniasis, malaria, Chagas disease, among many others including various cancers, atherosclerosis, HIV, inflammatory, and cardiovascular diseases. We hope this review would serve as an informative collection of structurally diverse molecules enabling the generation of mature, high-quality, and innovative routes to support the drug discovery endeavors.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
15
|
Moise IM, Bîcu E, Farce A, Dubois J, Ghinet A. Indolizine-phenothiazine hybrids as the first dual inhibitors of tubulin polymerization and farnesyltransferase with synergistic antitumor activity. Bioorg Chem 2020; 103:104184. [DOI: 10.1016/j.bioorg.2020.104184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/03/2020] [Accepted: 08/07/2020] [Indexed: 01/21/2023]
|
16
|
Abstract
INTRODUCTION Indolizines are structural isomers with indoles. Although several indole-based commercial drugs are available in the market, none of the indolizine-based drugs are available up-to-date. Natural and synthetic indolizines have a wide-range of pharmaceutical importance such as antitumor, antimycobacterial, antagonist, and antiproliferative activities. This prompted us to search and collect all possible data about the pharmacological importance of indolizine to open an avenue to the researchers in exploring more medicinal applications of such biologically important compounds. AREAS COVERED The current review article covers the advancements in the biological and pharmacological activities of indolizine-based compounds during the last decade. The covered areas of this work involved anticancer, anti-HIV-1, anti-inflammatory, antimicrobial, anti-tubercular, larvicidal, anti-schizophrenia, CRTh2 antagonist's activities in addition to enzymatic inhibitory activity. EXPERT OPINION The discovery of indolizine drugs will be a major breakthrough as compared with their widely available drug-containing indole isosteres. Major work collected here was focused on anticancer, anti-tubercular, anti-inflammatory, and enzymatic inhibitory activities. The SAR study of the reported biologically active indolizines is summarized throughout the review whenever highlighted to the rationale the behavior of inhibitory action. Several indolizines with certain functions provided great enhancement in the therapeutic activities comparing with reference drugs.
Collapse
Affiliation(s)
- Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University , Giza, Egypt
| | - Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University , Giza, Egypt
| |
Collapse
|
17
|
Abstract
A series of yeast strains was tested in order to evaluate their catalytic potential in biocatalysis of one-pot indolizine’s synthesis. Yeast cultivation was performed in a submerged system at 28 °C for 72 h at 180 rpm. An assessment of the reagents’ toxicity on yeast viability and metabolic functionality concluded that the growth potential of three Yarrowia lipolytica strains were least affected by the reactants compared to the other yeast strains. Further, crude fermentation products (biomass and cell-free supernatant)—obtained by submerged cultivation of these yeasts—were used in multistep cascade reactions for the production of fluorescent indolizine compounds with important biologic activities. A whole–cell catalyzed multicomponent reaction of activated alkynes, α-bromo-carbonyl reagents and 4,4′-bipyridine, at room temperature in buffer solution led to the efficient synthesis of bis-indolizines 4a, 4b and 4c, in good-to-excellent yields (47%–77%). The metabolites of the selected Y. lipolytica strains can be considered effective biocatalysts in cycloaddition reactions and the high purity and bioconversion yields of the synthesized indolizines indicates a great potential of this type of “green” catalysts. Seeds of Triticum estivum L. were used to investigate the impact of the final products on the germination and seedling growth. The most sensitive physiological parameters suggest that indolizines, at the concentrations tested, have non-toxic effect on germination and seedling growth of wheat, fact also confirmed by confocal laser scanning microscopy images.
Collapse
|
18
|
Design, Synthesis, Molecular Modelling and Anticancer Activities of New Fused Phenanthrolines. Molecules 2020; 25:molecules25030527. [PMID: 31991806 PMCID: PMC7036904 DOI: 10.3390/molecules25030527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 11/16/2022] Open
Abstract
Three series of fused pyrrolophenanthroline derivatives were designed as analogues of phenstatin and synthesized in two steps starting with 1,7-phenanthroline, 4,7-phenanthroline and 1,10-phenanthroline, respectively. Two (Compounds 8a and 11c) of the four compounds tested against a panel of sixty human cancer cell lines of the National Cancer Institute (NCI) exhibited significant growth inhibition activity on several cell lines. Compound 11c showed a broad spectrum in terms of antiproliferative efficacy with GI50 values in the range of 0.296 to 250 μM. Molecular docking studies indicated that Compounds 8a and 11c are accommodated in the colchicine binding site of tubulin in two different ways.
Collapse
|
19
|
Dascălu A, Bîcu E, Shova S, Lipka E, Rigo B, Billamboz M, Ghinet A. Insights on the Chemical Behavior of Ethyl Cyanoformate: Dipolarophile, Cyano or Ethoxycarbonyl Source. ChemistrySelect 2019. [DOI: 10.1002/slct.201903114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anca‐Elena Dascălu
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Hautes Etudes d'Ingénieur (HEI)Yncréa Hauts-de-France, UCLilleLaboratoire de Pharmacochimie, 13 rue de Toul F-59046 Lille France
- ‘Al. I. Cuza' University of IasiFaculty of Chemistry, Bd. Carol I, nr. 11 700506 Iasi Romania
| | - Elena Bîcu
- ‘Al. I. Cuza' University of IasiFaculty of Chemistry, Bd. Carol I, nr. 11 700506 Iasi Romania
| | - Segiu Shova
- ‘Petru Poni' Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley 700487 Iasi Romania
| | - Emmanuelle Lipka
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Faculté des Sciences Pharmaceutiques et Biologiques de Lille F-59006 Lille Cedex France
| | - Benoît Rigo
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Hautes Etudes d'Ingénieur (HEI)Yncréa Hauts-de-France, UCLilleLaboratoire de Pharmacochimie, 13 rue de Toul F-59046 Lille France
| | - Muriel Billamboz
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Hautes Etudes d'Ingénieur (HEI)Yncréa Hauts-de-France, UCLilleLaboratoire de Pharmacochimie, 13 rue de Toul F-59046 Lille France
| | - Alina Ghinet
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Hautes Etudes d'Ingénieur (HEI)Yncréa Hauts-de-France, UCLilleLaboratoire de Pharmacochimie, 13 rue de Toul F-59046 Lille France
- ‘Al. I. Cuza' University of IasiFaculty of Chemistry, Bd. Carol I, nr. 11 700506 Iasi Romania
| |
Collapse
|
20
|
Popovici L, Amarandi RM, Mangalagiu II, Mangalagiu V, Danac R. Synthesis, molecular modelling and anticancer evaluation of new pyrrolo[1,2-b]pyridazine and pyrrolo[2,1-a]phthalazine derivatives. J Enzyme Inhib Med Chem 2019; 34:230-243. [PMID: 30734610 PMCID: PMC6327994 DOI: 10.1080/14756366.2018.1550085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/02/2022] Open
Abstract
Two new series of heterocyclic derivatives with potential anticancer activity, in which a pyrrolo[1,2-b]pyridazine or a pyrrolo[2,1-a]phthalazine moiety was introduced in place of the 3'-hydroxy-4'-methoxyphenyl ring of phenstatin have been synthesised and their structure-activity relationship (SAR) was studied. Fourteen of the new compounds were evaluated for their in vitro cytotoxic activity by National Cancer Institute (NCI) against 60 human tumour cell lines panel. The best five compounds in terms of in vitro growth inhibition were screened in the second stage five dose-response studies, three of them showing a very good antiproliferative activity with GI50<100 nM on several cell lines including colon, ovarian, renal, prostate, brain and breast cancer, melanoma and leukemia. Docking experiments on the biologically active compounds showed a good compatibility with the colchicine binding site of tubulin.
Collapse
Affiliation(s)
| | | | | | - Violeta Mangalagiu
- CERNESIM Research Centre, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| |
Collapse
|
21
|
Luo N, Li M, Wang T, Li Y, Wang C. Highly Efficient Synthesis of 1‐Nitroindolizine Derivatives via the DBU/Acetic Acid System. ChemistrySelect 2019. [DOI: 10.1002/slct.201902621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naili Luo
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Mingshuang Li
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Ting Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Yanxiang Li
- School of PharmacyTaizhou Polytechnic College Taizhou 225300 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|
22
|
Liu Y, Shao E, Zhang Z, Yang D, Li G, Cao H, Huang H. A Novel Indolizine Derivative Induces Apoptosis Through the Mitochondria p53 Pathway in HepG2 Cells. Front Pharmacol 2019; 10:762. [PMID: 31354481 PMCID: PMC6635656 DOI: 10.3389/fphar.2019.00762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Indolizine derivatives are a class of compounds with excellent biological activity. In this study, a series of indolizine derivatives, compound 1 (C1), compound 2 (C2), compound 3 (C3), and compound 4 (C4), were synthesized. 3-(4,5-dimethylthiazole)-2,5-diphenyltetraazolium bromide (MTT) assay was used to evaluate their cytotoxicity against HepG2 (p53-wild), A549, and HeLa cell lines. HepG2 cells apoptosis induced by C3 was determined using Hoechst staining and acridine orange/ethidium bromide staining. Cells’ apoptotic ratio was measured by Annexin V–FITC/PI double staining. Changes in mitochondrial membrane potential and intracellular reactive oxygen species (ROS) in HepG2 cells after C3 treatment were determined. Immunofluorescence staining and Western blot analysis were carried out to detect p53 levels and analyze the apoptosis-associated proteins, respectively. Moreover, the cytotoxic activity of C3 was examined in two other hepatocellular carcinoma (HCC) cell lines with different p53 status including Huh-7 cells (p53-mutant) and Hep3B cells (p53-null). The results indicated that C3 showed stronger inhibition towards HepG2 cells than other cell lines. Fluorescent staining and flow cytometry analysis confirmed that C3 induced apoptosis of HepG2 cells. C3 could also increase intracellular ROS and cause a decrease in the mitochondrial membrane potential. C3 promoted p53 activation and increased p53 accumulation in nuclei. The expression of p53 and Bax was increased with the down-regulation of Bcl-2, which promoted the release of cytochrome c and caspase-3 activation. Collectively, the study demonstrated that C3 caused HepG2 cell apoptosis via the mitochondria p53 pathway. These results inspired us to further develop indolizine derivatives as potential potent inhibitors against liver cancer.
Collapse
Affiliation(s)
- Yushuang Liu
- School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Enxian Shao
- School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhiyang Zhang
- School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Daji Yang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Guanting Li
- School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Hongliang Huang
- School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China.,Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
23
|
Metal-free synthesis of novel indolizines from chromones and pyridinium salts via 1,3-dipolar cycloaddition, ring-opening and aromatization. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Zhang Q, Wang B, Ma H, Ablajan K. Transition-metal-free catalyzed [3+2] cycloadditions/oxidative aromatization reactions for the synthesis of annulated indolizines. NEW J CHEM 2019. [DOI: 10.1039/c9nj03076j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A transition-metal-free catalyzed [3+2] cycloadditions/oxidative aromatization three-component reactions for direct construction of annulated indolizines was reported.
Collapse
Affiliation(s)
- Qianwei Zhang
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Bin Wang
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Huifang Ma
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Keyume Ablajan
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| |
Collapse
|
25
|
Yavari I, Naeimabadi M. Synthesis of 3-(quinolin-2-yl)indolizines through iodine-mediated sp3C–H functionalization of azaarenes. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1362436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
26
|
Wang W, Sun J, Hu H, Liu Y. Copper-catalyzed aerobic cyclizations of tetrahydroisoquinolines with bromoketones and alkenes for the synthesis of 5,6-dihydropyrrolo[2,1-a]isoquinolines. Org Biomol Chem 2018; 16:1651-1658. [DOI: 10.1039/c7ob03048g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5,6-Dihydropyrrolo[1,2-a]isoquinolines have been synthesized via copper-catalyzed three-component aerobic cyclization reaction.
Collapse
Affiliation(s)
- Wenhui Wang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials and School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Jinwei Sun
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- School of Environmental Science and Engineering
- Nanjing University of Information Science & Technology
- Nanjing 210044
| | - Huayou Hu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- Huaian 223300
- P. R. China
| | - Yun Liu
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials and School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
27
|
Yavari I, Sheykhahmadi J, Naeimabadi M, Halvagar MR. Iodine-mediated
$${ sp}^{3}$$
s
p
3
C–H functionalization of methyl ketones: a one-pot synthesis of functionalized indolizines via the 1,3-dipolar cycloaddition reaction between pyridinium ylides and ynones. Mol Divers 2017; 21:1-8. [DOI: 10.1007/s11030-016-9720-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022]
|
28
|
Affiliation(s)
- Khaled M. Elattar
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ibrahim Youssef
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed A. Fadda
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
29
|
Wang C, Jia H, Li Z, Zhang H, Zhao B. Palladium-catalyzed C-3 desulfitative arylation of indolizines with sodium arylsulfinates and arylsulfonyl hydrazides. RSC Adv 2016. [DOI: 10.1039/c5ra25504j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Derivatized indolizines were efficiently prepared by direct C-3 arylation of indolizines using sodium arylsulfinates and arylsulfonyl hydrazides in good yields.
Collapse
Affiliation(s)
- Chunjie Wang
- College of Chemistry and Chemical Engineering
- Zhoukou Normal University
- Zhoukou
- China
| | - Huali Jia
- College of Chemistry and Chemical Engineering
- Zhoukou Normal University
- Zhoukou
- China
| | - Zhiwei Li
- College of Chemistry and Chemical Engineering
- Zhoukou Normal University
- Zhoukou
- China
| | - Hui Zhang
- College of Chemistry and Chemical Engineering
- Zhoukou Normal University
- Zhoukou
- China
| | - Baoli Zhao
- Institute of Applied Chemistry and Department of Chemistry
- Shaoxing University
- Shaoxing
- China
| |
Collapse
|
30
|
Lucescu L, Ghinet A, Belei D, Rigo B, Dubois J, Bîcu E. Discovery of indolizines containing triazine moiety as new leads for the development of antitumoral agents targeting mitotic events. Bioorg Med Chem Lett 2015; 25:3975-9. [PMID: 26227778 DOI: 10.1016/j.bmcl.2015.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 11/19/2022]
Abstract
A new family of 3-aroylindolizines bearing a dimethoxytriazine unit in their position 1 was designed, synthesized and evaluated for their ability to inhibit tubulin polymerization and cellular growth in vitro. Compound 39 was the best candidate in the current study with a GI50 value of 870 nM on SNB-75 CNS cancer cells and of 920 nM on MDA-MB-231/ATCC breast cancer cells. The standard NCI Compare results indicated that indolizine 39 may target PLK1 (polo-like kinase 1).
Collapse
Affiliation(s)
- Liliana Lucescu
- Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania
| | - Alina Ghinet
- Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania; Inserm, LIRIC-U995, Université Lille 2, CHRU de Lille, Faculté de Médecine-Pôle Recherche, Place Verdun, F-59045 Lille Cedex, France; Hautes Etudes d'Ingénieur (HEI), UCLille, Laboratoire de pharmacochimie, 13 rue de Toul, BP 41290, F-59014 Lille Cedex, France
| | - Dalila Belei
- Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania
| | - Benoît Rigo
- Inserm, LIRIC-U995, Université Lille 2, CHRU de Lille, Faculté de Médecine-Pôle Recherche, Place Verdun, F-59045 Lille Cedex, France; Hautes Etudes d'Ingénieur (HEI), UCLille, Laboratoire de pharmacochimie, 13 rue de Toul, BP 41290, F-59014 Lille Cedex, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif, Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
| | - Elena Bîcu
- Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania.
| |
Collapse
|
31
|
Zhang W, Liu F, Zhao B. Desulfitative palladium-catalyzed direct C-3 arylation of indolizines with arylsulfonyl chlorides. Appl Organomet Chem 2015. [DOI: 10.1002/aoc.3326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Zhang
- Department of Chemistry and Chemical Engineering; Xinxiang University; Xinxiang Henan Province 453003 China
| | - Fang Liu
- Life Science Research Center; Hebei North University; Zhangjiakou Hebei Province 075000 China
| | - Baoli Zhao
- Institute of Applied Chemistry and Department of Chemistry; Shaoxing University; Shaoxing Zhejiang Province 312000 China
| |
Collapse
|
32
|
New indolizines with phenanthroline skeleton: Synthesis, structure, antimycobacterial and anticancer evaluation. Bioorg Med Chem 2015; 23:2318-27. [PMID: 25882524 DOI: 10.1016/j.bmc.2015.03.077] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/20/2015] [Accepted: 03/28/2015] [Indexed: 11/22/2022]
Abstract
We report herein a feasible study concerning the design, synthesis, structure and in vitro antimycobacterial and anticancer activity of two new classes (containing four and five fused rings) of indolizine with phenanthroline skeleton. The preparation is straight and efficient, involving a Huisgen [3+2] dipolar cycloaddition of cycloimmonium ylides to alkynes or alkenes dipolarophiles. The cycloaddition reactions are highly stereo- or regioselective, according with the dipolarophiles nature. The structure of the new compounds was assigned unambiguously, X-ray analysis including. The primary antimycobacterial screening reveals that one of the thirteen tested compounds had a good activity against Mycobacterium tuberculosis H37Rv under aerobic conditions. The antiproliferative evaluation against a NCI 60 human tumor cell line panel, revealed that two indolizine with phenanthroline skeleton exhibit a selective and significant antitumor growth inhibitory activity against Breast Cancer (MCF7 and T-47D) and a slightly moderate activity against some forms of Leukemia, Non-Small Cell Lung Cancer, Renal Cancer and Breast Cancer (MDA-MB-468). The X-ray diffraction study of the indolizines with phenanthroline skeleton prove a flat coplanar structure which, corroborated with their anticancer activity, allow us to suggest that an interaction with DNA (via an intercalation mechanism) would be reasonable.
Collapse
|
33
|
Park S, Kim I. Electron-withdrawing group effect in aryl group of allyl bromides for the successful synthesis of indolizines via a novel [3+3] annulation approach. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|