1
|
Abdel-Dayem SIA, Otify AM, Iannotti FA, Saber FR, Moriello AS, Giovannuzzi S, Świątek Ł, Bonardi A, Gratteri P, Skalicka-Woźniak K, Supuran CT. Damsin and neoambrosin: Two sesquiterpene lactones with affinity and different activity for PPAR and TRPA1 receptors. Bioorg Chem 2025; 154:108032. [PMID: 39672074 DOI: 10.1016/j.bioorg.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Ambrosia maritima L. (family Asteraceae) is an annual herb widely distributed throughout the Mediterranean region and Africa. The herb is employed in folk medicine for the treatment of many ailments. Herein, we report a comprehensive investigation of the diverse biological potential of two sesquiterpene lactones, damsin and neoambrosin, isolated from Ambrosia maritima. 1D and 2D NMR and HR-ESI-MS/MS were employed to characterize the chemical structures of both compounds. In order to identify biological targets of both compounds we investigated their potential affinity for peroxisome proliferator-activated receptors (PPARs) and transient receptor potential (TRP) channels, which are pleiotropic classes of receptors implicated in essential functions of the body. This was investigated using a luciferase assay and a calcium fluorometric assay. A carbonic anhydrase inhibition assay was also performed using stopped flow CO2 hydrase spectrophotometric assay. Our analysis revealed that unlike damsin, neoambrosin showed a selective partial agonist effect on PPARγ receptors and TRPA1 channels. Its binding mode was investigated through in silico analysis. Both compounds showed no affinity for the tested carbonic anhydrases. Overall, our study details the chemical properties of neoambrosin and damsin and highlights neoambrosin as novel, cost-effective partial agonist of PPARɣ and TRPA1 receptors despite additional in vivo studies are needed to elucidate its biological and pharmacological properties.
Collapse
Affiliation(s)
- Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
2
|
Fadaly WAA, Mohamed FEA, Nemr MTM, Sayed AM, Khalil RG, Zidan TH. Novel benzenesulfonamide derivatives as potential selective carbonic anhydrase IX, XII inhibitors with anti-proliferative activity: Design, synthesis and in silico studies. Bioorg Chem 2024; 153:107881. [PMID: 39396453 DOI: 10.1016/j.bioorg.2024.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
As inhibitors of carbonic anhydrases (CAs) IX and XII, a novel series of 1,2,3-triazole benzenesulfonamide derivatives 17a-l containing pyrazolyl-thiazole moiety was designed, synthesized, and tested for anti-proliferative activity. Compounds 17e-h demonstrated more effective inhibitory activity than acetazolamide (IC50 63 nM CA IX and IC50 92 nM CA XII), with IC50 range of 25-52 nM against CA IX and IC50 range of 31-80 nM against CA XII. To verify selectivity against CA IX and CA XII, carbonic anhydrase inhibitory activity of compounds 17e-h against the physiological CA I and CA II isoforms was carried out. The results showed that compounds 17e-h induced lower inhibitory activity against CA I and CA II with IC50 range of 0.428-0.638 μM (CA I) and 0.095-0.164 μM (CA II), in addition to higher selectivity indices (CA I/CA IX S.I. 8.9-19.92, CA I/CA XII S.I. 5.78-16.06) and (CA II/CA IX S.I. 2.83-4.35, CA II/CA XII S.I. 2.05-3.15) when compared to that of acetazolamide, IC50 of 0.199 μM (CA I), 0.133 μM (CA II) (CA I/CA IX S.I. 3.15, CA I/CA XII S.I. 2.16) and (CA II/CA IX S.I. 2.11, CA II/CA XII S.I. 1.44). Concerning anti-proliferative activity of compounds 17e-h, investigations were done on HEPG-2 cell line with IC50 ranges of 3.44-15.03 μM in comparison, 5-FU and doxorubicin showed IC50 values of 11.80 and 9.53 μM, respectively. Furthermore IC50 of MCF-7 and MDA-MB-231 were determined under both normoxic and hypoxic conditions with IC50 values ranging from 3.18-8.26 μM MCF-7 (normoxic), 1.39-6.05 μM MCF-7 (hypoxic), 7.13-26.3 μM MDA-MB-231 (normoxic), 0.76-16.3 μM MDA-MB-231 (hypoxic) using acetazolamide and SLC-0111 as selective CA inhibition references. Moreover, compounds 17e-h demonstrated greater safety against the normal cell line, MCF-10A, with IC50 of 23.06-99.50 μM in comparison to 5-FU and doxorubicin IC50 of 59.8 and 71.8 μM respectively. They also demonstrated (MCF-7 S.I. range of 3.77-31.28) in contrast to doxorubicin (S.I. 13.72) and (HepG-2 S.I. range of 3.60-6.95) in comparison to doxorubicin (S.I. 7.53). In relation to CA IX, XII inhibition, molecular docking of and ADME studies of sulfonamide derivatives 17a-l with CA IX (PDB: 5FL6) and CA XII (PDB: 1JD0) was carried out. Additionally, molecular dynamic simulation was carried out for compounds 17e and 17g which maintained good stability inside the active sites of both enzymes, with average RMSDs of 2.3 Å and 2.1 Å, respectively.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
3
|
Thabet HK, Abusaif MS, Imran M, Helal MH, Alaqel SI, Alshehri A, Mohd AA, Ammar YA, Ragab A. Discovery of novel 6-(piperidin-1-ylsulfonyl)-2H-chromenes targeting α-glucosidase, α-amylase, and PPAR-γ: Design, synthesis, virtual screening, and anti-diabetic activity for type 2 diabetes mellitus. Comput Biol Chem 2024; 111:108097. [PMID: 38772048 DOI: 10.1016/j.compbiolchem.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
A new series of 2H-chromene-based sulfonamide derivatives 3-12 has been synthesized and characterized using different spectroscopic techniques. The synthesized 2H-chromenes were synthesized by reacting activated methylene with 5-(piperidin-1-ylsulfonyl)salicylaldehyde through one-step condensation followed by intramolecular cyclization. Virtual screening of the designed molecules on α-glucosidase enzymes (PDB: 3W37 and 3A4A) exhibited good binding affinity suggesting that these derivatives may be potential α-glucosidase inhibitors. In-vitro α-glucosidase activity was conducted firstly at 100 µg/mL, and the results demonstrated good inhibitory potency with values ranging from 90.6% to 96.3% compared to IP = 95.8% for Acarbose. Furthermore, the IC50 values were determined, and the designed derivatives exhibited inhibitory potency less than 11 µg/mL. Surprisingly, two chromene derivatives 6 and 10 showed the highest potency with IC50 values of 0.975 ± 0.04 and 0.584 ± 0.02 µg/mL, respectively, compared to Acarbose (IC50 = 0.805 ± 0.03 µg/mL). Moreover, our work was extended to evaluate the in-vitro α-amylase and PPAR-γ activity as additional targets for diabetic activity. The results exhibited moderate activity on α-amylase and potency as PPAR-γ agonist making it a multiplet antidiabetic target. The most active 2H-chromenes 6 and 10 exhibited significant activity to PPAR-γ with IC50 values of 3.453 ± 0.14 and 4.653 ± 0.04 µg/mL compared to Pioglitazone (IC50 = 4.884±0.29 µg/mL) indicating that these derivatives improve insulin sensitivity by stimulating the production of small insulin-sensitive adipocytes. In-silico ADME profile analysis indicated compliance with Lipinski's and Veber's rules with excellent oral bioavailability properties. Finally, the docking simulation was conducted to explain the expected binding mode and binding affinity.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
4
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
5
|
Abo-Salem HM, El Souda SSM, Shafey HI, Zoheir KMA, Ahmed KM, Mahmoud K, Mahrous KF, Fawzy NM. Synthesis, bioactivity assessment, molecular docking and ADMET studies of new chromone congeners exhibiting potent anticancer activity. Sci Rep 2024; 14:9636. [PMID: 38671055 PMCID: PMC11053072 DOI: 10.1038/s41598-024-59606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
In consideration of the chromones' therapeutic potential and anticancer activity, a new series of chromanone derivatives have been synthesized through a straightforward reaction between 6-formyl-7-hydroxy-5-methoxy-2-methylchromone (2) and various organic active compounds. The cytotoxic activity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer), HCT-116 (colon cancer), HepG2 (liver cancer), and normal skin fibroblast cells (BJ1). The obtained data indicated that compounds 14b, 17, and 19 induce cytotoxic activity in the breast MCF7, while compounds 6a, 6b, 11 and 14c showed highly potent activity in the colon cancer cell lines. Overall, the results demonstrate that the potential cytotoxic effects of the studied compounds may be based on their ability to induce DNA fragmentation in cancer cell lines, down-regulate the expression level of CDK4 as well as the anti-apoptotic gene Bcl-2 and up-regulate the expression of the pro-apoptotic genes P53 and Bax. Furthermore, compounds 14b and 14c showed a dual mechanism of action by inducing apoptosis and cell cycle arrest. The docking studies showed that the binding affinity of the most active cytotoxic compounds within the active pocket of the CDK4 enzyme is stronger due to hydrophobic and H-bonding interactions. These results were found to be consistent with the experimental results.
Collapse
Affiliation(s)
- Heba M Abo-Salem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Sahar S M El Souda
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba I Shafey
- Cell Biology Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Khairy M A Zoheir
- Cell Biology Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Khadiga M Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Kh Mahmoud
- Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nagwa M Fawzy
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
6
|
Ali IH, Hassan RM, El Kerdawy AM, Abo-Elfadl MT, Abdallah HMI, Sciandra F, Ghannam IAY. Novel thiazolidin-4-one benzenesulfonamide hybrids as PPARγ agonists: Design, synthesis and in vivo anti-diabetic evaluation. Eur J Med Chem 2024; 269:116279. [PMID: 38460271 DOI: 10.1016/j.ejmech.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
In the current study, two series of novel thiazolidin-4-one benzenesulfonamide arylidene hybrids 9a-l and 10a-f were designed, synthesized and tested in vitro for their PPARɣ agonistic activity. The phenethyl thiazolidin-4-one sulphonamide 9l showed the highest PPARɣ activation % by 41.7%. Whereas, the 3-methoxy- and 4-methyl-4-benzyloxy thiazolidin-4-one sulphonamides 9i, and 9k revealed moderate PPARɣ activation % of 31.7, and 32.8%, respectively, in addition, the 3-methoxy-3-benzyloxy thiazolidin-4-one sulphonamide 10d showed PPARɣ activation % of 33.7% compared to pioglitazone. Compounds 9b, 9i, 9k, 9l, and 10d revealed higher selectivity to PPARɣ over the PPARδ, and PPARα isoforms. An immunohistochemical study was performed in HepG-2 cells to confirm the PPARɣ protein expression for the most active compounds. Compounds 9i, 9k, and 10d showed higher PPARɣ expression than that of pioglitazone. Pharmacological studies were also performed to determine the anti-diabetic activity in rats at a dose of 36 mg/kg, and it was revealed that compounds 9i and 10d improved insulin secretion as well as anti-diabetic effects. The 3-methoxy-4-benzyloxy thiazolidin-4-one sulphonamide 9i showed a better anti-diabetic activity than pioglitazone. Moreover, it showed a rise in blood insulin by 4-folds and C-peptide levels by 48.8%, as well as improved insulin sensitivity. Moreover, compound 9i improved diabetic complications as evidenced by decreasing liver serum enzymes, restoration of total protein and kidney functions. Besides, it combated oxidative stress status and exerted anti-hyperlipidemic effect. Compound 9i showed a superior activity by normalizing some parameters and amelioration of pancreatic, hepatic, and renal histopathological alterations caused by STZ-induction of diabetes. Molecular docking studies, molecular dynamic simulations, and protein ligand interaction analysis were also performed for the newly synthesized compounds to investigate their predicted binding pattern and energies in PPARɣ binding site.
Collapse
Affiliation(s)
- Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt; Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Heba M I Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR) Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy
| | - Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
7
|
Abdelhakeem MM, Morcoss MM, Hanna DA, Lamie PF. Design, synthesis and in silico insights of novel 1,2,3-triazole benzenesulfonamide derivatives as potential carbonic anhydrase IX and XII inhibitors with promising anticancer activity. Bioorg Chem 2024; 144:107154. [PMID: 38309003 DOI: 10.1016/j.bioorg.2024.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Novel 1,2,3-triazole benzenesulfonamide derivatives were designed as inhibitors for the tumor- related hCA IX and XII isoforms. Most of the synthesized compounds showed good inhibitory activity against hCA IX and hCA XII isoforms. Compounds 4d, 5h and 6b, exhibited remarkable activity as hCA IX inhibitors, with Ki values in the range of 0.03 to 0.06 µM, more potent than AAZ. Additionally, compounds 5b and 6d, efficiently inhibited hCA XII isoform, with Ki value of 0.02 µM, respectively, similar to AAZ. Further investigation for those potent derivatives against MCF-7, Hep-3B and WI-38 cell lines was achieved. Compounds 4d and 6d exerted dual cytotoxic activity against MCF-7 and Hep-3B cell lines, with IC50 values of 3.35 & 2.12 µM against MCF-7 cell line and 1.72 & 1.56 µM against Hep-3B cell line, with high SI values ranged from 8.92 to 17.38 on both of the cell lines. Besides, they showed a high safety profile against normal human cell line, WI-38. Moreover, compound 5h had better cytotoxic effect on MCF-7 than the reference, DOX, with IC50 value of 4.02 µM. While, compounds 5b and 6b showed higher activity against Hep-3B if compared to the reference drug, 5-FU. From ADME study, compounds 4d, 5b, 6b and 6d obeyed Lipinski's rule of five, and they might be orally active derivatives, while, compound 5h exerted less oral bioavailability than the reference standard acetazolamide. Molecular docking and MDS studies predicted the binding mode and the stability of the target compounds inside hCA IX and hCA XII active sites, especially for compounds 5b and 6b.
Collapse
Affiliation(s)
- Marwa M Abdelhakeem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Martha M Morcoss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Dina A Hanna
- Department of Pharmacology and Toxicology, Nahda University, Beni-Suef 62513, Egypt
| | - Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
8
|
Kowalik M, Masternak J, Olszewski M, Maciejewska N, Kazimierczuk K, Sitkowski J, Dąbrowska AM, Chylewska A, Makowski M. Anticancer Study on Ir III and Rh III Half-Sandwich Complexes with the Bipyridylsulfonamide Ligand. Inorg Chem 2024; 63:1296-1316. [PMID: 38174357 DOI: 10.1021/acs.inorgchem.3c03801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organometallic half-sandwich complexes [(η5-Cp)IrCl(L)]PF6 (1) and [(η5-Cp)RhCl(L)]PF6 (2) were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino-N-(2,2'-bipyridin-5-yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of L, 1, and 2 were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques. Additionally, the interactions between sulfaligand, Ir(III), and Rh(III) complexes with carbonic anhydrase (CA), human serum albumin (HSA), and CT-DNA were investigated. The iridium(III) complex (1) did not show any antiproliferative properties against four different cancer cell lines, i.e., nonsmall cell lung cancer A549, colon cancer HCT-116, breast cancer MCF7, lymphoblastic leukemia Nalm-6, and a nonmalignant human embryonic kidney cell line HEK293, due to high binding affinity to GSH. The sulfonamide ligand (L) and rhodium(III) complex (2) were further studied. L showed competitive inhibition toward CA, while complexes 1 and 2, uncompetitive. All compounds interacted with HSA, causing a conformational change in the protein's α-helical structure, suggesting the induction of a more open conformation in HSA, reducing its biological activity. Both L and 2 were found to induce cell death through a caspase-dependent pathway. These findings position L and 2 as potential starting compounds for pharmaceutical, therapeutic, or medicinal research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academic of Science, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
| | | | - Agnieszka Chylewska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
9
|
Osman EO, Emam SH, Sonousi A, Kandil MM, Abdou AM, Hassan RA. Design, synthesis, anticancer, and antibacterial evaluation of some quinazolinone-based derivatives as DHFR inhibitors. Drug Dev Res 2023; 84:888-906. [PMID: 37052308 DOI: 10.1002/ddr.22060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
Two series of quinazolinone derivatives were designed and synthesized as dihydrofolate reductase (DHFR) inhibitors. All compounds were evaluated for their antibacterial and antitumor activities. Antibacterial activity was evaluated against three strains of Gram-positive and Gram-negative bacteria. Compound 3d exhibited the highest inhibitory activity against Staphylococcus aureus DHFR (SaDHFR) with IC50 of 0.769 ± 0.04 μM compared to 0.255 ± 0.014 μM for trimethoprim. Compound 3e was also more potent than trimethoprim against Escherichia coli DHFR (EcDHFR) with IC50 of 0.158 ± 0.01 μM and 0.226 ± 0.014 μM, respectively. Compound 3e exhibited a promising antiproliferative effect against most of the tested cancer cells. It also showed potent activity against leukemia (CCRF-CEM, and RPMI-8226); lung NCI-H522, and CNS U251 with GI% of 65.2, 63.22, 73.28, and 97.22, respectively. The cytotoxic activity of compound 3e was almost half the activity of doxorubicin against CCRF-CEM cell line with IC50 of 1.569 ± 0.06 μM and 0.822 ± 0.03 µM, respectively. In addition, compound 3e inhibited human DHFR with IC50 value of 0.527 ± 0.028 µM in comparison to methotrexate (IC50 = 0.118 ± 0.006 µM). Compound 3e caused an arrest of the cell cycle mainly at the S phase and caused a rise in the overall apoptotic percentage from 2.03% to 48.51%. (23.89-fold). Treatment of CCRF-CEM cells with compound 3e produced a significant increase in the active caspase-3 level by 6.25-fold compared to untreated cells. Molecular modeling studies were performed to evaluate the binding pattern of the most active compounds in the bacterial and human DHFR.
Collapse
Affiliation(s)
- Eman O Osman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amr Sonousi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Mai M Kandil
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Oudah KH, Mahmoud WR, Awadallah FM, Taher AT, Abbas SES, Allam HA, Vullo D, Supuran CT. Design and synthesis of some new benzoylthioureido benzenesulfonamide derivatives and their analogues as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2023; 38:12-23. [PMID: 36305274 PMCID: PMC9621292 DOI: 10.1080/14756366.2022.2132485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present investigation reports the design and synthesis of three series of benzoylthioureido derivatives bearing either benzenesulfonamide 7a–f, benzoic acid 8a–f or ethylbenzoate 9a–f moieties. The synthesised compounds were screened for their carbonic anhydrase inhibitory activity (CAI) against four isoforms hCA I, II, IX, and XII. Compounds 7a, 7b, 7c, and 7f exhibited a potent inhibitory activity towards hCAI (Kis = 58.20, 56.30, 33.00, and 43.00 nM), respectively compared to acetazolamide (AAZ) and SLC-0111 (Kis = 250.00 and 5080.00 nM). Compounds 7a, 7b, 7c, 7e, and 7f elicited selectivity over h CA II (Kis = 2.50, 2.10, 56.60,39.60 and 39.00 nM) respectively, relative to AAZ and SLC-0111(Kis = 12.10 and 960.00 nM). Also, compounds 7c, 7f, and 9e displayed selectivity against the tumour-associated isoform hCA IX (Kis = 31.20, 30.00 and 29.00 nM) respectively, compared to AAZ and SLC-0111 (Kis = 25.70 and 45.00 nM). Additionally, compounds 8a and 8f revealed a moderate to superior selectivity towards hCAXII (Kis = 17.00 and 11.00 nM) relative to AAZ and SLC-0111(Kis = 5.70 and 45.00 nM). Molecular docking and ADME prediction studies were performed on the most active compounds to shed light on their interaction with the hot spots of the active site of CA isoforms, in addition to prediction of their pharmacokinetic and physicochemical properties.
Collapse
Affiliation(s)
- Khulood H. Oudah
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Nasiriyah, Iraq
| | - Walaa R. Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fadi M. Awadallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Azza T. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University(O6U), Giza, Egypt
| | - Safinaz E.-S Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Daniela Vullo
- Department NEUROFARBA – Pharmaceutical and Nutraceutical section, University of Firenze, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department NEUROFARBA – Pharmaceutical and Nutraceutical section, University of Firenze, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Purification, Structural Elucidation, and Anticancerous Properties of a Novel Flavonoid from Flowers of Leucas indica. Processes (Basel) 2022. [DOI: 10.3390/pr10112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previously, we showed that the crude methanol extracts of Leucas indica flowers exhibited antioxidant properties and in the current study, crude methanol flower extracts of L. indica showed anticancerous properties as evidenced cytotoxicity (MTT assay test) against the selected cancerous cell lines HeLa, HCT116, HL-60, and MCF-7. Therefore, further analysis was performed to isolate and purify the bioactive compound using activity-guided repeated fractionation of the methanol extract by silica gel column chromatography. After collection of different fractions, all the fractions were subjected to TLC analysis and the fractions which yielded the same compounds on TLC were further analyzed for physicochemical and spectroscopic analyses, e.g., UV, IR, 1H NMR, 13C NMR, COSY, HSQC, and mass spectroscopy. The bioactive compound isolated was elucidated as 6-hydroxy-3-(4-hydroxyphenyl)-7-(3,4,5-trihydroxy-6-)(hydroxymethyl)tetrahydro-2H-pyran-2yl)-4H-chromen-4-one. Based on the antioxidant and anticancerous properties, L. indica might be a promising source of useful natural products and the newly bioactive compound might offer opportunities to develop new anticancerous drugs.
Collapse
|
12
|
Abdelgawad MA, Bukhari SNA, Musa A, Elmowafy M, Elkomy MH, Nayl AA, El-Ghorab AH, Alsohaimi IH, Abdel-Bakky MS, Althobaiti IO, Altaleb HA, Omar HA, Abdelazeem AH, Zaki MA, Shaker ME, Elshemy HAH. New Sulfamethoxazole Derivatives as Selective Carbonic Anhydrase IX and XII Inhibitors: Design, Synthesis, Cytotoxic Activity and Molecular Modeling. Pharmaceuticals (Basel) 2022; 15:ph15091134. [PMID: 36145355 PMCID: PMC9501356 DOI: 10.3390/ph15091134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this study new sulphamethoxazole derivatives (S1-S4, S6-S12, and S14-S22) were designed and synthesized and their structures were fully characterized and validated using NMR, mass, and IR spectroscopy, as well as elemental analyses. All new derivatives (S1-S22) were assayed against human carbonic anhydrase (hCAs IX and XII) for their inhibitory activities. hCAs IX and XII were chosen due to the fact that CAIX expression is recognized as a hypoxia marker with a poor prognosis in breast cancer. When compared to Dorzolamide HCl as a standard reference, derivatives S2, S3, S8, S9, and S15 had the most effective inhibition with low IC50 values. The active compounds were further evaluated against hCAs I and II inhibitory activity and compounds S8, S9 and S15 showed the least inhibitory effect compared to the reference standard, acetazolamide, indicating that their effect in normal cells is the lowest. Cell viability tests for the selected compounds were carried out on MCF7 (normoxia and hypoxia) and on the normal breast cell line (MCF10a) with Staurosporine as a standard. The results showed that compound S15 had a highly potent cytotoxic effect. Furthermore, cell cycle analysis results showed that compound S15 triggered cell cycle arrest and apoptosis in G1/S of MCF7 cancer cells. Finally, molecular docking was performed to point out the possible explanation for the vital structural features and key-interactions exerted by our ligands with hCAs IX and XII that might share additional designs and highlight possible leads for a hopeful anticancer agent. Consequently, sulphamethoxazole Derivative S15 could be the potential lead for emerging selective cytotoxic compounds directing h CAs IX and XII.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72431, Saudi Arabia
- Correspondence: ; Tel.: +96-65-9543-5214
| | - Syed N. A. Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72431, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - AbdElAziz. A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ibrahim O. Althobaiti
- Department of Chemistry, College of Science and Arts, Jouf University, Sakaka 72341, Saudi Arabia
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 41477, Saudi Arabia
| | - Hany A. Omar
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Ahmed H. Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Pharmacy Department, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Mohamed A. Zaki
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Heba A. H. Elshemy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
13
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
14
|
Said MF, George RF, Petreni A, Supuran CT, Mohamed NM. Synthesis, molecular modelling and QSAR study of new N-phenylacetamide-2-oxoindole benzensulfonamide conjugates as carbonic anhydrase inhibitors with antiproliferative activity. J Enzyme Inhib Med Chem 2022; 37:701-717. [PMID: 35168458 PMCID: PMC8863381 DOI: 10.1080/14756366.2022.2036137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In continuation of our previous studies to optimise potent carbonic anhydrase inhibitors, two new series of isatin N-phenylacetamide based sulphonamides were synthesised and screened for their human (h) carbonic anhydrase (EC 4.2.1.1) inhibitory activities against four isoforms hCA I, hCA II, hCA IX and hCA XII. The indole-2,3-dione derivative 2h showed the most effective inhibition profile against hCAI and hCA II (KI = 45.10, 5.87 nM) compared to acetazolamide (AAZ) as standard inhibitor. Moreover, 2h showed appreciable inhibition activity against the tumour-associated hCA XII, similar to AAZ showing KI of 7.91 and 5.70 nM, respectively. The analogs 3c and 3d showed good cytotoxicity effects, and 3c revealed promising selectivity towards lung cell line A549. Molecular docking was carried out for 2h and 3c to predict their binding conformations and affinities towards the hCA I, II, IX and XII isoforms.
Collapse
Affiliation(s)
- Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo, Egypt
| |
Collapse
|
15
|
Patil VM, Masand N, Verma S, Masand V. Chromones: Privileged scaffold in anticancer drug discovery. Chem Biol Drug Des 2021; 98:943-953. [PMID: 34519163 DOI: 10.1111/cbdd.13951] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
In the design and discovery of anticancer drugs, various natural heterocyclic scaffolds have attracted considerable interest as privileged structures. For rational drug design, some of the natural scaffolds such as chromones have exhibited wide acceptability due to their drug-like properties. Among the approved anticancer drugs, the scaffolds with high selectivity for a small group of closely related targets are of importance. In the development of selective anticancer agents, the natural, as well as synthetic, can generate highly selective compounds toward cancer targets. The present manuscript includes more particularly the development of cancer inhibitors incorporating the chromone scaffold, with a strong emphasis on their molecular interactions in the anticancer mechanism. It also includes the structure-activity relationship studies and related examples of lead optimization.
Collapse
Affiliation(s)
- Vaishali M Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| | - Saroj Verma
- Department of Pharmaceutical Chemistry, SGT University, Gurugram, Haryana, India
| | - Vijay Masand
- Department of Chemistry, Vidya Bharati College, Amravati, Maharashtra, India
| |
Collapse
|
16
|
Baglini E, Ravichandran R, Berrino E, Salerno S, Barresi E, Marini AM, Viviano M, Castellano S, Da Settimo F, Supuran CT, Cosconati S, Taliani S. Tetrahydroquinazole-based secondary sulphonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IV, and IX, and computational studies. J Enzyme Inhib Med Chem 2021; 36:1874-1883. [PMID: 34340614 PMCID: PMC8344263 DOI: 10.1080/14756366.2021.1956913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A library of variously decorated N-phenyl secondary sulphonamides featuring the bicyclic tetrahydroquinazole scaffold was synthesised and biologically evaluated for their inhibitory activity against human carbonic anhydrase (hCA) I, II, IV, and IX. Of note, several compounds were identified showing submicromolar potency and excellent selectivity for the tumour-related hCA IX isoform. Structure-activity relationship data attained for various substitutions were rationalised by molecular modelling studies in terms of both inhibitory activity and selectivity.
Collapse
Affiliation(s)
- Emma Baglini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Emanuela Berrino
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | | | | | | | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, Italy
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Caserta, Italy
| | | |
Collapse
|
17
|
Angeli A, Kartsev V, Petrou A, Pinteala M, Brovarets V, Slyvchuk S, Pilyo S, Geronikaki A, Supuran CT. Chromene-Containing Aromatic Sulfonamides with Carbonic Anhydrase Inhibitory Properties. Int J Mol Sci 2021; 22:ijms22105082. [PMID: 34064890 PMCID: PMC8150913 DOI: 10.3390/ijms22105082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I, hCA II and the transmembrane hCA IX and XII. Several of the investigated derivatives showed interesting inhibition activity towards the tumor associate isoforms hCA IX and hCA XII. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.
Collapse
Affiliation(s)
- Andrea Angeli
- Neuro Farba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, No. 41A, 700487 Iasi, Romania;
- Correspondence: (A.A.); (A.G.)
| | - Victor Kartsev
- InterBioScreen, Chernogolovka 142432, Moscow Region, Russia;
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, No. 41A, 700487 Iasi, Romania;
| | - Volodymyr Brovarets
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1, Murmanska St, 02094 Kyiv, Ukraine; (V.B.); (S.S.); (S.P.)
| | - Sergii Slyvchuk
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1, Murmanska St, 02094 Kyiv, Ukraine; (V.B.); (S.S.); (S.P.)
| | - Stepan Pilyo
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1, Murmanska St, 02094 Kyiv, Ukraine; (V.B.); (S.S.); (S.P.)
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (A.A.); (A.G.)
| | - Claudiu T. Supuran
- Neuro Farba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
18
|
Buabeng ER, Henary M. Developments of small molecules as inhibitors for carbonic anhydrase isoforms. Bioorg Med Chem 2021; 39:116140. [PMID: 33905966 DOI: 10.1016/j.bmc.2021.116140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Carbonic anhydrases are ubiquitous, and their role in the hydration of carbon dioxide is essential for the survival of many tissues and organs. However, their association with many pathological diseases, especially in glaucoma, Alzheimer's, obesity, epilepsy, and tumorigenesis, has prompted the design and synthesis of novel carbonic anhydrase inhibitors (CAIs). Herein we describe (1) approaches used in the design of CAIs and (2) synthesis of small molecules as CAIs within the last five years. Despite the active research in this area, there are still more avenues to explore, especially selective inhibition of CA I, CA IX, and XII. These isoforms would continue to open up a diversity of carbonic anhydrase inhibitors containing 1,2,3-triazoles, imidazolone, pyrrolidone, thiadiazole, isatin, and glycoconjugates as part of their molecular frameworks.
Collapse
Affiliation(s)
- Emmanuel Ramsey Buabeng
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
19
|
Structural investigation of isatin-based benzenesulfonamides as carbonic anhydrase isoform IX inhibitors endowed with anticancer activity using molecular modeling approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Menteşe E, Güner A, Polatlı E, Emirik M, Bektaş H, Kahveci B. Synthesis and anticancer activities of some new coumarin derivatives including the triazole ring and their in silico molecular docking studies. Arch Pharm (Weinheim) 2020; 354:e2000284. [PMID: 33146895 DOI: 10.1002/ardp.202000284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023]
Abstract
The synthesis, docking study, and investigation of the anticancer activities of some coumarin derivatives containing the triazole ring are reported in this study. The newly synthesized compounds were screened for their in vitro anticancer activity against the cell lines CRL5807 (human bronchioalveolar carcinoma), CRL5826 (human squamous cell carcinoma), MDA-MB231 (human breast cancer cells), HTB177 (human lung cancer), PC-3 (human prostate adenocarcinoma), PANC-1 (human pancreatic cancer cells), used as cancer cells, and CCD34Lu (normal human lung fibroblasts), used as a healthy cell line. Cytotoxicity effects of the samples were determined by the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay. In silico studies were also performed to explore the binding interactions of the molecules.
Collapse
Affiliation(s)
- Emre Menteşe
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adem Güner
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Elifsu Polatlı
- Department of Bioengineering, Faculty of Engineering, Ege University, İzmir, Turkey
| | - Mustafa Emirik
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hakan Bektaş
- Department of Chemistry, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Bahittin Kahveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
21
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
22
|
Mohsin NUA, Irfan M, Hassan SU, Saleem U. Current Strategies in Development of New Chromone Derivatives with Diversified Pharmacological Activities: A Review. Pharm Chem J 2020; 54:241-257. [PMID: 32836513 PMCID: PMC7294000 DOI: 10.1007/s11094-020-02187-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Chromone derivatives possess a spectrum of biological activities. Chromone has been recognized as a privileged structure for new drug invention and development. Substitution pattern of chromone scaffold determines different type of biological activities. The type, number and position of substituents connected to the chromone core play a vital role in determining pharmacological activities. In the present review, we have discussed new chromone derivatives as anticancer, anti-diabetic, antimicrobial, anti-inflammatory, antioxidant and as anti-Alzheimer agents. This review deals with the chromone derivatives prepared by combining chromone molecule with various natural and synthetic pharmacophores and pharmacological activities presented by them. The main aim is to highlight the diversified pharmacological activities exhibited by chromone hybrid molecules during the last eight to ten years.
Collapse
Affiliation(s)
- Noor Ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Irfan
- 2Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Shams Ul Hassan
- 2Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Usman Saleem
- 2Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000 Pakistan
| |
Collapse
|
23
|
George RF, Bua S, Supuran CT, Awadallah FM. Synthesis of some N-aroyl-2-oxindole benzenesulfonamide conjugates with carbonic anhydrase inhibitory activity. Bioorg Chem 2020; 96:103635. [PMID: 32028060 DOI: 10.1016/j.bioorg.2020.103635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 01/07/2023]
Abstract
Implication of carbonic anhydrases (CAs) in many physiological functions made them attractive therapeutic targets. Herein, we report the synthesis of three series of benzenesulfonamide-based compounds (5a-e, 9a-e and 10a-e) as potential ligands to four of the human CA isoforms (hCA I, hCA II, hCA IX and hCA XII). All synthesized compounds were evaluated for their CA inhibitory activity. Most of the compounds preferentially inhibited the tumor-associated isoforms IX and XII. Series 9a-e and 10a-e showed the highest activity. Of particular interest was compound 10a which demonstrated the highest activity among all compounds with Ki of 68.3 and 21.5 nM against hCA IX and hCA XII, respectively, in addition to its highest selectivity index. To get deep insight on the interaction of compound 10a with CA, docking experiment was run to study the binding interaction with key amino acids and zinc ion in the catalytic site of the four isoforms studied.
Collapse
Affiliation(s)
- Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Silvia Bua
- University of Florence, Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- University of Florence, Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Fadi M Awadallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
24
|
Eldehna WM, Abdelrahman MA, Nocentini A, Bua S, Al-Rashood ST, Hassan GS, Bonardi A, Almehizia AA, Alkahtani HM, Alharbi A, Gratteri P, Supuran CT. Synthesis, biological evaluation and in silico studies with 4-benzylidene-2-phenyl-5(4H)-imidazolone-based benzenesulfonamides as novel selective carbonic anhydrase IX inhibitors endowed with anticancer activity. Bioorg Chem 2019; 90:103102. [PMID: 31299596 DOI: 10.1016/j.bioorg.2019.103102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
Abstract
In the presented work, we report the synthesis of a series of 4-benzylidene-2-phenyl-5(4H)-imidazolone-based benzenesulfonamides 7a-fvia the Erlenmeyer-Plöchl reaction. All the prepared imidazolones 7a-f were evaluated as inhibitors of human (h) carbonic anhydrases (CA, EC 4.2.1.1) cytosolic isoforms hCA I and II, as well as transmembrane tumor-associated isoforms hCA IX and XII. All the tested hCA isoforms were inhibited by the prepared imidazolones 7a-f in variable degrees with the following KIs ranges: 673.2-8169 nM for hCA I, 61.2-592.1 nM for hCA II, 23-155.4 nM for hCA XI, and 21.8-179.6 nM for hCA XII. In particular, imidazolones 7a, 7e, and 7f exhibited good selectivity towards the tumor-associated isoforms (CAs IX and XII) over the off-target cytosolic (CAs I and II) with selectivity index (SI) in the range of 6.2-19.4 and 3.3-8, respectively. Moreover, imidazolones 7a-f were screened for their anticancer activity in one dose (10-5 M) assay against a panel of 60 cancer cell lines according to US-NCI protocol. Furthermore, 7a, 7e and 7f were evaluated for their anti-proliferative activity against colorectal cancer HCT-116 and breast cancer MCF-7 cell lines. Furthermore, 7e and 7f were screened for cell cycle disturbance and apoptosis induction in HCT-116 cells. Finally, a molecular docking study was carried out to rationalize the obtained results.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Mohamed A Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
25
|
Parvaneh Shafieyoon, Mehdipour E, Michalski J. Synthesis, Characterization, and Biological Investigation of Alanine-Based Sulfonamide Derivative: FT-IR, 1H NMR Spectra: MEP, HOMO–LUMO Analysis, and Molecular Docking. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419070215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Synthesis of Chromen-4-One-Oxadiazole Substituted Analogs as Potent β-Glucuronidase Inhibitors. Molecules 2019; 24:molecules24081528. [PMID: 31003424 PMCID: PMC6514607 DOI: 10.3390/molecules24081528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 02/02/2019] [Indexed: 01/07/2023] Open
Abstract
Chromen-4-one substituted oxadiazole analogs 1-19 have been synthesized, characterized and evaluated for β-glucuronidase inhibition. All analogs exhibited a variable degree of β-glucuronidase inhibitory activity with IC50 values ranging in between 0.8 ± 0.1-42.3 ± 0.8 μM when compared with the standard d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.
Collapse
|
27
|
Gaspar A, Mohabbati M, Cagide F, Razzaghi-Asl N, Miri R, Firuzi O, Borges F. Searching for new cytotoxic agents based on chromen-4-one and chromane-2,4-dione scaffolds. Res Pharm Sci 2019; 14:74-83. [PMID: 30936935 PMCID: PMC6407335 DOI: 10.4103/1735-5362.251855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a major cause of death worldwide and novel anticancer agents for its better management are much needed. Benzopyrone-based compounds, such as chromones, possess several distinctive chemical and biological properties, of which the cytotoxicity against cancer cells seems to be prominent. In this study, two series of compounds based on chromen-4-one (3-10) and chromane-2,4-dione (11-18) scaffolds were synthesized in moderate/high yields and evaluated for cytotoxicity against HL-60, MOLT-4, and MCF-7 cancer cells using MTT assay. In general, the compounds exhibited moderate cytotoxic effects against the cancer cell lines, among which, a superior potency could be observed against MOLT-4 cells. Chroman-2,4-dione (11-18) derivatives had overall higher potencies compared to their chromen-4-one (3-10) counterparts. Compound 13 displayed the lowest IC50 values against HL-60 (IC50, 42.0 ± 2.7 μM) and MOLT-4 cell lines (IC50, 24.4 ± 2.6 μM), while derivative 11 showed the highest activity against MCF-7 cells (IC50, 68.4 ± 3.9 μM). In conclusion, this study provides important information on the cytotoxic effects of chromone derivatives. Benzochroman-2,4-dione has been identified as a promising scaffold, which its potency can be modulated by tailored synthesis with the aim of finding novel and dissimilar anticancer compounds.
Collapse
Affiliation(s)
- Alexandra Gaspar
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Fernando Cagide
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Nima Razzaghi-Asl
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran.,Drugs and Advanced Sciences Research Center, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
28
|
Synthesis, spectral characterization, docking studies and biological activity of urea, thiourea, sulfonamide and carbamate derivatives of imatinib intermediate. Mol Divers 2018; 23:723-738. [DOI: 10.1007/s11030-018-9906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
29
|
Awadallah FM, Bua S, Mahmoud WR, Nada HH, Nocentini A, Supuran CT. Inhibition studies on a panel of human carbonic anhydrases with N1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails. J Enzyme Inhib Med Chem 2018; 33:629-638. [PMID: 29536779 PMCID: PMC6009853 DOI: 10.1080/14756366.2018.1446432] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
Being the primary sulfonamide among the most efficient zinc binding group (ZBG) to design inhibitors for the metallo-enzymes carbonic anhydrases (CA, EC 4.2.1.1), herein, we propose an investigation on four physiologically important human (h) CAs (hCA I, II, IV, and IX) with N1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails. The effect of the functionalisation of the sulfonamide group with five different substitution patterns, namely acetyl, pyridine, thiazole, pyrimidine, and carbamimidoyl, was evaluated in relation to the inhibition profile of the corresponding primary sulfonamide analogues. With most of these latter being nanomolar inhibitors of all four considered isoforms, a totally counterproductive effect on the inhibition potency can be ascribed to N1-functionalisations of the ZBG primary sulfonamide structure with pyridine, thiazole, and pyrimidine moieties. On the other hand, incorporation of less hindered groups, such as sulfonylacetamides and sulfonylguanidines, maintained a certain degree of activity dependent on the tailing moiety, with KIs spanning in the low micromolar range.
Collapse
Affiliation(s)
- Fadi M. Awadallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Silvia Bua
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Firenze, Italy
| | - Walaa R. Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hossam H. Nada
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Alessio Nocentini
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Firenze, Italy
| | - Claudiu T. Supuran
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Firenze, Italy
| |
Collapse
|
30
|
Zhou ZZ, Zhu HJ, Lin LP, Zhang X, Ge HM, Jiao RH, Tan RX. Dalmanol biosyntheses require coupling of two separate polyketide gene clusters. Chem Sci 2018; 10:73-82. [PMID: 30746075 PMCID: PMC6335865 DOI: 10.1039/c8sc03697g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
Polyketide–polyketide hybrids are unique natural products with promising bioactivity, but the hybridization processes remain poorly understood.
Polyketide–polyketide hybrids are unique natural products with promising bioactivity, but the hybridization processes remain poorly understood. Herein, we present that the biosynthetic pathways of two immunosuppressants, dalmanol A and acetodalmanol A, result from an unspecific monooxygenase triggered hybridization of two distinct polyketide (naphthalene and chromane) biosynthetic gene clusters. The orchestration of the functional dimorphism of the polyketide synthase (ChrA) ketoreductase (KR) domain (shortened as ChrA KR) with that of the KR partner (ChrB) in the bioassembly line increases the polyketide diversity and allows the fungal generation of plant chromanes (e.g., noreugenin) and phloroglucinols (e.g., 2,4,6-trihydroxyacetophenone). The simultaneous fungal biosynthesis of 1,3,6,8- and 2-acetyl-1,3,6,8-tetrahydroxynaphthalenes was addressed as well. Collectively, the work may symbolize a movement in understanding the multiple-gene-cluster involved natural product biosynthesis, and highlights the possible fungal generations of some chromane- and phloroglucinol-based phytochemicals.
Collapse
Affiliation(s)
- Zhen Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Hong Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Li Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China.,State Key Laboratory Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China . .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| |
Collapse
|
31
|
Li J, Tian R, Ge C, Chen Y, liu X, Wang Y, Yang Y, Luo W, Dai F, Wang S, Chen S, Xie S, Wang C. Discovery of the Polyamine Conjugate with Benzo[cd]indol-2(1H)-one as a Lysosome-Targeted Antimetastatic Agent. J Med Chem 2018; 61:6814-6829. [DOI: 10.1021/acs.jmedchem.8b00694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur J Med Chem 2018; 155:13-23. [DOI: 10.1016/j.ejmech.2018.05.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/03/2018] [Accepted: 05/20/2018] [Indexed: 02/02/2023]
|
33
|
Nazarshodeh E, Sheikhpour R, Gharaghani S, Sarram MA. A novel proteochemometrics model for predicting the inhibition of nine carbonic anhydrase isoforms based on supervised Laplacian score and k-nearest neighbour regression. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:419-437. [PMID: 29882433 DOI: 10.1080/1062936x.2018.1447995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Carbonic anhydrases (CAs) are essential enzymes in biological processes. Prediction of the activity of compounds towards CA isoforms could be evaluated by computational techniques to discover a novel therapeutic inhibitor. Studies such as quantitative structure-activity relationships (QSARs), molecular docking and pharmacophore modelling have been carried out to design potent inhibitors. Unfortunately, QSAR does not consider the information of target space in the model. We successfully developed an in silico proteochemometrics model that simultaneously uses target and ligand descriptors to predict the activities of CA inhibitors. Herein, a strong predictive model was built for the prediction of protein-ligand binding affinity between nine human CA isoforms and 549 ligands. We applied descriptors obtained from the PROFEAT webserver for the proteins. Ligands were encoded by descriptors from PaDEL-Descriptor software. Supervised Laplacian score (SLS) and particle swarm optimization were used for feature selection. Models were derived using k-nearest neighbour (KNN) regression and a kernel smoother model. The predictive ability of the models was evaluated by an external validation test. Statistical results (Q2ext = 0.7806, r2test = 0.7811 and RMSEtest = 0.5549) showed that the model generated using SLS and KNN regression outperformed the other models. Consequently, the selectivity of compounds towards these enzymes will be predicted prior to synthesis.
Collapse
Affiliation(s)
- E Nazarshodeh
- a Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics , University of Tehran , Tehran , Iran
| | - R Sheikhpour
- b Department of Computer Engineering , Yazd University , Yazd , Iran
| | - S Gharaghani
- a Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics , University of Tehran , Tehran , Iran
| | - M A Sarram
- b Department of Computer Engineering , Yazd University , Yazd , Iran
| |
Collapse
|
34
|
Çetin A, Bildirici İ. A study on synthesis and antimicrobial activity of 4-acyl-pyrazoles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2016.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Kobkeatthawin T, Chantrapromma S, Chidan Kumar CS, Fun HK. Highly Efficient and Simple Route to Synthesize N-(4-Acetylphenyl)-4-chlorobenzenesulfonamide and Its Crystal Structure. CRYSTALLOGR REP+ 2018. [DOI: 10.1134/s1063774517070136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Fu DJ, Hou YH, Zhang SY, Zhang YB. Efficient click reaction towards novel sulfonamide hybrids by molecular hybridization strategy as antiproliferative agents. J CHEM SCI 2018. [DOI: 10.1007/s12039-017-1415-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Roaiah HM, Ghannam IAY, Ali IH, El Kerdawy AM, Ali MM, Abbas SES, El-Nakkady SS. Design, synthesis, and molecular docking of novel indole scaffold-based VEGFR-2 inhibitors as targeted anticancer agents. Arch Pharm (Weinheim) 2018; 351. [DOI: 10.1002/ardp.201700299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Hanaa M. Roaiah
- National Research Centre, Pharmaceutical and Drug Industries Research Division; Chemistry of Natural and Microbial Products Department; Cairo Egypt
| | - Iman A. Y. Ghannam
- National Research Centre, Pharmaceutical and Drug Industries Research Division; Chemistry of Natural and Microbial Products Department; Cairo Egypt
| | - Islam H. Ali
- National Research Centre, Pharmaceutical and Drug Industries Research Division; Chemistry of Natural and Microbial Products Department; Cairo Egypt
| | - Ahmed M. El Kerdawy
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Cairo University; Cairo Egypt
- Molecular Modeling Unit, Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Mamdouh M. Ali
- National Research Centre, Genetic Engineering and Biotechnology Division; Department of Biochemistry; Cairo Egypt
| | - Safinaz E-S. Abbas
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Cairo University; Cairo Egypt
| | - Sally S. El-Nakkady
- National Research Centre, Pharmaceutical and Drug Industries Research Division; Chemistry of Natural and Microbial Products Department; Cairo Egypt
| |
Collapse
|
38
|
Novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(1,3,5-triazin-2-ylamino)guanidine derivatives: Inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII, anticancer activity, and molecular modeling studies. Eur J Med Chem 2018; 143:1931-1941. [DOI: 10.1016/j.ejmech.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 11/18/2022]
|
39
|
Reis J, Gaspar A, Milhazes N, Borges F. Chromone as a Privileged Scaffold in Drug Discovery: Recent Advances. J Med Chem 2017; 60:7941-7957. [PMID: 28537720 DOI: 10.1021/acs.jmedchem.6b01720] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of privileged structures in drug discovery has proven to be an effective strategy, allowing the generation of innovative hits/leads and successful optimization processes. Chromone is recognized as a privileged structure and a useful template for the design of novel compounds with potential pharmacological interest, particularly in the field of neurodegenerative, inflammatory, and infectious diseases as well as diabetes and cancer. This perspective provides the reader with an update of an earlier article entitled "Chromone: A Valid Scaffold in Medicinal Chemistry" ( Chem. Rev. 2014 , 114 , 4960 - 4992 ) and is mainly focused on chromones of biological interest, including those isolated from natural sources. Moreover, as drug repurposing is becoming an attractive drug discovery approach, recent repurposing studies of chromone-based drugs are also reported.
Collapse
Affiliation(s)
- Joana Reis
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Alexandra Gaspar
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Nuno Milhazes
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| |
Collapse
|
40
|
Albuquerque HMT, Santos CMM, Lima CFRAC, Santos LMNBF, Cavaleiro JAS, Silva AMS. 2-[(1E
,3E
)-4-Arylbuta-1,3-dien-1-yl]-4H
-chromen-4-ones as Dienes in Diels-Alder Reactions - Experimental and Computational Studies. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hélio M. T. Albuquerque
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Clementina M. M. Santos
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
- School of Agriculture; Polytechnic Institute of Bragança; Campus de Santa Apolónia 5300-253 Bragança Portugal
| | - Carlos F. R. A. C. Lima
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
- CIQ-UP; Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Luís M. N. B. F. Santos
- CIQ-UP; Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - José A. S. Cavaleiro
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
41
|
Kalinin S, Supuran CT, Krasavin M. Multicomponent chemistry in the synthesis of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2016; 31:185-199. [PMID: 27784162 DOI: 10.1080/14756366.2016.1220944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Carbonic anhydrase inhibitors (CAIs) are of growing interest since various isoforms of the enzyme are identified as promising drug targets for treatment of disease. The principal drawback of the clinically used CAIs is the lack of isoform selectivity, which may lead to observable side effects. Studies aiming at the design of isoform-selective CAIs entail generation and biological testing of arrays of compounds, which is a resource- and time-consuming process. Employment of multicomponent reactions is an efficient synthetic strategy in terms of gaining convenient and speedy access to a range of scaffolds with a high degree of molecular diversity. However, this powerful tool appears to be underutilized for the discovery of novel CAIs. A number of studies employing multicomponent reactions in CAI synthesis have been reported in literature. Some of these reports provide inspiring examples of successful use of multicomponent chemistry to construct novel potent and often isoform-selective inhibitors. On critical reading of several publications, however, it becomes apparent that for some chemical series designed as CAIs, the desired inhibitory properties are only assumed and never tested for. In these cases, the biological profile is reported based on the results of phenotypical cellular assays, with no correlation with the intended on-target activity. Present review aims at critically assessing the current literature on the multicomponent chemistry in the CAI design.
Collapse
Affiliation(s)
- Stanislav Kalinin
- a Institute of Chemistry, St. Petersburg State University , St. Petersburg , Russia and
| | - Claudiu T Supuran
- b Department of Neurofarba , University of Florence , Florence , Italy
| | - Mikhail Krasavin
- a Institute of Chemistry, St. Petersburg State University , St. Petersburg , Russia and
| |
Collapse
|
42
|
S. Bashandy M, M. Abd El-Gilil S. Synthesis, Molecular Docking and Anti-Human Breast Cancer Activities of Novel Thiazolylacetonitriles and Thiazolylacrylonitriles and Their Derivatives Containing Benzenesulfonylpyrrolidine Moiety. HETEROCYCLES 2016; 92:431. [DOI: 10.3987/com-15-13384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
S. Bashandy M, A. Al-Harbi S. Synthesis, Antimicrobial and Antihuman Liver Cancer Activities of Novel Sulfonamides Incorporating Benzofuran, Pyrazole, Pyrimidine, 1,4-Diazepine and Pyridine Moieties Prepared from (E)-4-(3-(Dimethylamino)acryloyl)-N-ethyl-N-methylbenzenesulfonamide. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|