1
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
An Y, Zou H, Zhou Q, Deng T, Tian J, Qiu Y, Xue W. Design, Synthesis, and Biological Activity Studies of Myricetin Derivatives Containing a Diisopropanolamine Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25034-25044. [PMID: 39498550 DOI: 10.1021/acs.jafc.4c08663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
A series of myricetin derivatives containing diisopropanolamine were designed and synthesized. The in vitro inhibitory effects of the target compounds on 9 fungal pathogens and 3 bacterial pathogens were also evaluated. A12 had the best inhibitory effect against Xanthomonas oryzae pv. oryzae (Xoo), with an EC50 value of 4.9 μg/mL, which was better than zinc-thiazole (ZT: EC50 = 7.3 μg/mL) and thiodiazole-copper (TC: EC50 = 65.5 μg/mL); A25 had the best inhibitory effect against Phomopsis sp. (Ps), with an EC50 value of 17.2 μg/mL, which was better than azoxystrobin (Az: EC50 = 22.3 μg/mL). In vivo inhibition tests were performed on kiwifruit for A25 and rice leaves for A12. At 200 μg/mL, the curative activity of A12 against rice leaf blight was 40.7%, which was better than that of ZT (37.2%) and TC (32.9%), and the protective activity of A12 was 44.8%, which was better than that of ZT (39.5%) and TC (34.6%). The curative activity of A25 against kiwi soft rot disease was 70.1%, which was better than that of Az (62.8%). Preliminary elucidation of the possible mechanisms of action was carried out by experiments on fluorescence microscopy, scanning electron microscopy, formation of biofilms, density functional theory calculations, and so on.
Collapse
Affiliation(s)
- Youshan An
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Hongqian Zou
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Tianyu Deng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Jiao Tian
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yujiao Qiu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
3
|
Wang Q, Xing L, Zhang Y, Gong C, Zhou Y, Zhang N, He B, Xue W. Antiviral activity evaluation and action mechanism of myricetin derivatives containing thioether quinoline moiety. Mol Divers 2024; 28:1039-1055. [PMID: 36933104 DOI: 10.1007/s11030-023-10631-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
A variety of myricetin derivatives containing thioether quinoline moiety were designed and synthesized. Their structures of title compounds were determined by 1H NMR, 13C NMR, 19F NMR, and HRMS. Single-crystal X-ray diffraction experiments were carried out with B4. Antiviral activity indicated that some of the target compounds exhibited remarkable anti-tobacco mosaic virus (TMV) activity. In particular, compound B6 possessed significant activity. The half maximal effective concentration (EC50) value of the curative activity of compound B6 was 169.0 μg/mL, which was superior to the control agent ningnanmycin (227.2 μg/mL). Meanwhile, the EC50 value of the protective activity of compound B6 was 86.5 μg/mL, which was better than ningnanmycin (179.2 μg/mL). Microscale thermophoresis (MST) indicated that compound B6 had a strong binding capability to the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) value of 0.013 μmol/L, which was superior to that of myricitrin (61.447 μmol/L) and ningnanmycin (3.215 μmol/L). And the molecular docking studies were consistent with the experimental results. Therefore, these novel myricetin derivatives containing thioether quinoline moiety could become potential alternative templates for novel antiviral agents.
Collapse
Affiliation(s)
- Qifan Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
4
|
Zhang W, Sun J, Zhang P, Yue R, Zhang Y, Niu F, Zhu H, Ma C, Deng S. Design, Synthesis and Antitumor Activity of Quercetin Derivatives Containing a Quinoline Moiety. Molecules 2024; 29:240. [PMID: 38202823 PMCID: PMC10780609 DOI: 10.3390/molecules29010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Quercetin is a flavonoid with significant biological and pharmacological activity. In this paper, quercetin was modified at the 3-OH position. Rutin was used as a raw material. We used methyl protection, Williamson etherification reactions, and then substitution reactions to prepare 15 novel quercetin derivatives containing a quinoline moiety. All these complexes were characterized by 1H NMR, 13C NMR, IR and HRMS. Of these, compound 3e (IC50 = 6.722 μmol·L-1) had a better inhibitory effect on human liver cancer (HepG-2) than DDP (Cisplatin) (IC50 = 26.981 μmol·L-1). The mechanism of the action experiment showed that compound 3e could induce cell apoptosis.
Collapse
Affiliation(s)
- Wenting Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.)
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221008, China
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.)
| | - Peng Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221008, China
| | - Ruixue Yue
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.)
| | - Yi Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.)
| | - Fuxiang Niu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.)
| | - Hong Zhu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.)
| | - Chen Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.)
| | - Shaoying Deng
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.)
| |
Collapse
|
5
|
Luo QJ, Zhou WC, Liu XY, Li YJ, Xie QL, Wang B, Liu C, Wang WM, Wang W, Zhou XD. Chemical Constituents and α-Glucosidase Inhibitory, Antioxidant and Hepatoprotective Activities of Ampelopsis grossedentata. Molecules 2023; 28:7956. [PMID: 38138447 PMCID: PMC10745659 DOI: 10.3390/molecules28247956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ampelopsis grossedentata is a valuable medicinal and edible plant, which is often used as a traditional tea by the Tujia people in China. A. grossedentata has numerous biological activities and is now widely used in the pharmaceutical and food industries. In this study, two new flavonoids (1-2) and seventeen known compounds (3-19) were isolated and identified from the dried stems and leaves of A. grossedentata. These isolated compounds were characterized by various spectroscopic data including mass spectrometry and nuclear magnetic resonance spectroscopy. All isolates were assessed for their α-glucosidase inhibitory, antioxidant, and hepatoprotective activities, and their structure-activity relationships were further discussed. The results indicated that compound 1 exhibited effective inhibitory activity against α-glucosidase, with an IC50 value of 0.21 μM. In addition, compounds 1-2 demonstrated not only potent antioxidant activities but also superior hepatoprotective properties. The findings of this study could serve as a reference for the development of A. grossedentata-derived products or drugs aimed at realizing their antidiabetic, antioxidant, and hepatoprotective functions.
Collapse
Affiliation(s)
- Qu-Jing Luo
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Wen-Chao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Xin-Yi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Ya-Jie Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Qing-Ling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Bin Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Chao Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
- Zhangjiajie Meicha Technology Research Center, Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427099, China
| | - Wen-Mao Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
- Zhangjiajie Meicha Technology Research Center, Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427099, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| |
Collapse
|
6
|
Zhang M, Feng S, Chen S, Zhou Y, Gong C, Xue W. Synthesis, antibacterial and antifungal activity of myricetin derivatives containing piperidine and amide fragments. PEST MANAGEMENT SCIENCE 2023; 79:4795-4808. [PMID: 37477984 DOI: 10.1002/ps.7675] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Continuous use of synthetic bactericides and fungicides is causing pathogens to develop resistance, resulting in increased use of pesticides and affecting food security. The green pesticides derived from natural products could reduce or avoid 'pesticide hazards' caused by synthetic pesticides as a result of their unique mechanism of action. Therefore, it is of great significance to create green pesticides with novel structures. RESULTS Herein, 30 novel myricetin derivatives containing piperidine and amide fragments were designed and synthesized using active group splicing. Among them, compound Z30 had excellent inhibitory effect against Xanthomonas oryzae pv. Oryzae (Xoo) with the half effective concentration (EC50 ) of 2.7 μg mL-1 . Compound Z26 not only exhibited better antibacterial activity against Xaxonopodis pv. Citri (Xac) with EC50 of 3.9 μg mL-1 , but also displayed higher antifungal activity against Rhizoctonia solani (Rs) with EC50 of 8.3 μg mL-1 . In vivo experiments proved that Z30 against bacterial blight of rice and Z26 against rice blast exhibits significant protective and curative effect. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that Z26 and Z30 could change the integrity of cell wall and membrane of pathogen Xoo, Xac and Rs, resulting in cytoplasmic leakage and eventually death. Enzymatic assay, molecular docking and molecular dynamics simulations (MDs) indicated that Z26 could be used as a potential succinate dehydrogenase inhibitor (SDHI). CONCLUSION Z26 and Z30 significantly reduced the pathogenicity of the pathogens, which provided a new idea and direction for the development of green pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaohe Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, P.R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, P.R. China
| | - Shuang Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, P.R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, P.R. China
| | - Shuai Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| |
Collapse
|
7
|
Telomerase: A prominent oncological target for development of chemotherapeutic agents. Eur J Med Chem 2023; 249:115121. [PMID: 36669398 DOI: 10.1016/j.ejmech.2023.115121] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Telomerase is a ribonucleoprotein (RNP) responsible for the maintenance of chromosomal integrity by stabilizing telomere length. Telomerase is a widely expressed hallmark responsible for replicative immortality in 80-90% of malignant tumors. Cancer cells produce telomerase which prevents telomere shortening by adding telomeres sequences beyond Hayflick's limit; which enables them to divide uncontrollably. The activity of telomerase is relatively low in somatic cells and absent in normal cells, but the re-activation of this RNP in normal cells suppresses p53 activity which leads to the avoidance of senescence causing malignancy. Here, we have focused explicitly on various anti-telomerase therapies and telomerase-inhibiting molecules for the treatment of cancer. We have covered molecules that are reported in developmental, preclinical, and clinical trial stages as potent telomerase inhibitors. Apart from chemotherapy, we have also included details of immunotherapy, gene therapy, G-quadruplex stabilizers, and HSP-90 inhibitors. The purpose of this work is to discuss the challenges behind the development of novel telomerase inhibitors and to identify various perspectives for designing anti-telomerase compounds.
Collapse
|
8
|
Liu F, Cao X, Xing L, He B, Zhang N, Zeng W, Xin H, Xue W. Design, Synthesis, Biological Activity Evaluation and Action Mechanism of Myricetin Derivatives Containing Thiazolebisamide. Chem Biodivers 2023; 20:e202201103. [PMID: 36683342 DOI: 10.1002/cbdv.202201103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
The plant diseases caused by a variety of pathogens such as viruses, bacteria and fungi pose a great threat to global food production and food safety. Therefore, the search for green, efficient and pollution-free pesticides has become an important task. In this article, 23 myricetin derivatives containing thiazolebisamides active groups have been designed and synthesized. Their activities were evaluated by performing in vitro antibacterial and in vivo antiviral assays, microscale thermophoresis (MST) and molecular docking assays. The results of in vivo antiviral assays showed that compounds A4 and A23 exhibited good antiviral activity with EC50 values of 79.0 and 54.1 μg/mL for therapeutic activity and 103.3 and 91.2 μg/mL for protective activity, respectively. The dissociation constants (Kd) values of compounds A4 and A23 against TMV-CP were 0.021 and 0.018 μM, respectively, determined by microscale thermophoresis (MST), which were much smaller than those of the commercial drug ningnanmycin (NNM), which were 2.84 μM. The interaction of compounds A4, A23 with TMV-CP was further verified at the molecular level. In addition, in vitro antifungal assays of this series of compounds showed that they exhibited some inhibitory activity against a variety of fungi, especially against the phytophthora capsici. Among them, A13 and A20 showed similar inhibitory activity to the control drug azoxystrobin at 100 μg/mL against the phytophthora capsici.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Li Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Bangcan He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Nian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Hui Xin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
9
|
Cao X, He B, Liu F, Zhang Y, Xing L, Zhang N, Zhou Y, Gong C, Xue W. Design, synthesis and bioactivity of myricetin derivatives for control of fungal disease and tobacco mosaic virus disease. RSC Adv 2023; 13:6459-6465. [PMID: 36845581 PMCID: PMC9947517 DOI: 10.1039/d2ra08176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
A series of myricetin derivatives containing isoxazole were designed and synthesized. All the synthesized compounds were characterized by NMR and HRMS. In terms of antifungal activity, Y3 had a good inhibitory effect on Sclerotinia sclerotiorum (Ss), and the median effective concentration (EC50) value was 13.24 μg mL-1, which was better than azoxystrobin (23.04 μg mL-1) and kresoxim-methyl (46.35 μg mL-1). Release of cellular contents and cell membrane permeability experiments further revealed that Y3 causes the destruction of the cell membrane of the hyphae, which in turn plays an inhibitory role. The anti-tobacco mosaic virus (TMV) activity in vivo showed that Y18 had the best curative and protective activities, with EC50 values of 286.6 and 210.1 μg mL-1 respectively, the effect was better than ningnanmycin. Microscale thermophoresis (MST) data showed that Y18 had a strong binding affinity with tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (K d) value of 0.855 μM, which was better than ningnanmycin (2.244 μM). Further molecular docking revealed that Y18 interacts with multiple key amino acid residues of TMV-CP, which may hinder the self-assembly of TMV particles. Overall, after the introduction of isoxazole on the structure of myricetin, its anti-Ss and anti-TMV activities have been significantly improved, which can be further studied.
Collapse
Affiliation(s)
- Xiao Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Fang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| |
Collapse
|
10
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Cao X, Liu F, He B, Xing L, Zhang Y, Zhang N, Xue W. Design, synthesis, bioactivity and mechanism of action of novel myricetin derivatives containing amide and hydrazide. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
12
|
Peng F, Liu T, Zhu Y, Liu F, Cao X, Wang Q, Liu L, Xue W. Novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives: synthesis and biological activity. PEST MANAGEMENT SCIENCE 2023; 79:274-283. [PMID: 36148624 DOI: 10.1002/ps.7197] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/07/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND With the long-term use of traditional bactericides and antiviral agents, drug resistance has become increasingly prominent, resulting in impaired crop growth and yields. Based on this, the introduction of small molecular active groups into natural products has become the direction of research for green pesticides. RESULTS In this study, novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives were explored. Among them, D4 exhibited good inhibitory effects on plant bacteria. It is worth mentioning that D4 (15 μg ml-1 ) exhibited an excellent median effective concentration (EC50 ) value against Xanthomonas oryzae pv. oryzae (Xoo), which was better than bismerthiazol (73 μg ml-1 ) and thiodiazole copper (100 μg ml-1 ). The EC50 for D4 was much lower than the two positive controls (bismerthiazol, thiodiazole copper), making D4 more potent in this assay of bacterial growth inhibition. In addition, mechanism research using scanning electron microscopy revealed that D4 could cause deformation or rupture of the cell membranes of Xoo and Pseudomonas syringae pv. actinidiae. Moreover, D4 exhibited the best EC50 for in vivo curative (132 μg ml-1 ) and protective (101 μg ml-1 ) activities against tobacco mosaic virus, which were more effective than ningnanmycin. Microscale thermophoresis data suggested that D4 [dissociation constant (Kd ) = 0.038 ± 0.011 μmol L-1 ] exhibited a stronger binding capacity than the control agent ningnanmycin (Kd = 4.707 ± 2.176 μmol L-1 ). CONCLUSION The biological activity data and mode of action demonstrated that D4 had the best antibacterial and antiviral effects. Compound D4 discovered in the current work may be a very promising agricultural drug. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Yunying Zhu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, People's Republic of China
| | - Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Qifan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
13
|
Shi S, Zheng X, Suzuki R, Li Z, Shiota T, Wang J, Hirai-Yuki A, Liu Q, Muramatsu M, Song SJ. Novel flavonoid hybrids as potent antiviral agents against hepatitis A: Design, synthesis and biological evaluation. Eur J Med Chem 2022; 238:114452. [PMID: 35597006 DOI: 10.1016/j.ejmech.2022.114452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Two series of flavonoid hybrids, totaling 42 compounds, were designed, synthesized and evaluated to develop antiviral compounds effective against hepatitis A virus (HAV). A recombinant viral screening system revealed that most of the synthesized derivatives exhibited significant anti-HAV activity, and compounds B2, B3, B5 and B27 were identified as potential inhibitors of HAV. Post-treatment of cells with B2, B3, B5 and B27 after HAV infection strongly suppressed HAV infection, whereas pretreatment or simultaneous treatment were ineffective. Furthermore, these four compounds significantly inhibited HAV (HM175/18f strain) production in a dose-dependent manner. Analyses using HAV subgenomic replicon systems indicated that these compounds specifically inhibit HAV RNA replication. More importantly, the most potent compounds B2 and B27 also showed clear inhibitory effects on two other HAV strains, KRM031 and TKM005, which also isolated from clinical patients. Our study is the first to report these newly designed flavonoid hybrids as lead compounds for the development of novel anti-HAV drugs.
Collapse
Affiliation(s)
- Shaochun Shi
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xin Zheng
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Ziyue Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Tomoyuki Shiota
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, 650-0047, Kobe, Japan
| | - Jiayin Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Asuka Hirai-Yuki
- Management Department of Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan; Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, 650-0047, Kobe, Japan.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
14
|
Liu T, Peng F, Zhu Y, Cao X, Wang Q, Liu F, Liu L, Xue W. Design, synthesis, biological activity evaluation and mechanism of action of myricetin derivatives containing thioether quinazolinone. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Culletta G, Allegra M, Almerico AM, Restivo I, Tutone M. In Silico Design, Synthesis, and Biological Evaluation of Anticancer Arylsulfonamide Endowed with Anti-Telomerase Activity. Pharmaceuticals (Basel) 2022; 15:ph15010082. [PMID: 35056139 PMCID: PMC8778141 DOI: 10.3390/ph15010082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Telomerase, a reverse transcriptase enzyme involved in DNA synthesis, has a tangible role in tumor progression. Several studies have evidenced telomerase as a promising target for developing cancer therapeutics. The main reason is due to the overexpression of telomerase in cancer cells (85–90%) compared with normal cells where it is almost unexpressed. In this paper, we used a structure-based approach to design potential inhibitors of the telomerase active site. The MYSHAPE (Molecular dYnamics SHared PharmacophorE) approach and docking were used to screen an in-house library of 126 arylsulfonamide derivatives. Promising compounds were synthesized using classical and green methods. Compound 2C revealed an interesting IC50 (33 ± 4 µM) against the K-562 cell line compared with the known telomerase inhibitor BIBR1532 IC50 (208 ± 11 µM) with an SI ~10 compared to the BALB/3-T3 cell line. A 100 ns MD simulation of 2C in the telomerase active site evidenced Phe494 as the key residue as well as in BIBR1532. Each moiety of compound 2C was involved in key interactions with some residues of the active site: Arg557, Ile550, and Gly553. Compound 2C, as an arylsulfonamide derivative, is an interesting hit compound that deserves further investigation in terms of optimization of its structure to obtain more active telomerase inhibitors
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, 98166 Messina, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Ignazio Restivo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
- Correspondence:
| |
Collapse
|
16
|
Liu T, Peng F, Cao X, Liu F, Wang Q, Liu L, Xue W. Design, Synthesis, Antibacterial Activity, Antiviral Activity, and Mechanism of Myricetin Derivatives Containing a Quinazolinone Moiety. ACS OMEGA 2021; 6:30826-30833. [PMID: 34805711 PMCID: PMC8600648 DOI: 10.1021/acsomega.1c05256] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 05/08/2023]
Abstract
Plant bacteria such as Xanthomonas axonopodis pv. citri (Xac), Pseudomonas syringae pv. actinidiae (Psa), Xanthomonas oryzae pv. oryzae (Xoo), and tobacco mosaic virus (TMV) have created huge obstacles to the global trade of food and economic crops. However, traditional chemical agents used to control these plant diseases have gradually become disadvantageous due to long-term irregular use. Therefore, finding new and efficient antibacterial and antiviral agents is becoming imperative. In this study, a series of myricetin derivatives containing a quinazolinone moiety were designed and synthesized, and the antibacterial and antiviral activities of these compounds were evaluated. The bioassay results showed that some target compounds exhibited good antibacterial activities in vitro and antiviral activities in vivo. Among them, the median effective concentration (EC50) value of compound L18 against Xac was 16.9 μg/mL, which was better than those of the control drugs bismerthiazol (BT) (62.2 μg/mL) and thiodiazole copper (TC) (97.5 μg/mL). Scanning electron microscopy (SEM) results confirmed that compound L18 inhibited the growth of Xac by affecting the morphology of cells. Microscale thermophoresis (MST) test results indicated that the dissociation constant (K d) value of compound L11 against TMV-CP was 0.012 μM, which was better than that of the control agent ningnanmycin (2.726 μM). This study reveals that myricetin derivatives containing a quinazolinone moiety are potential antibacterial and antiviral agents.
Collapse
Affiliation(s)
| | | | - Xiao Cao
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Fang Liu
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qifan Wang
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Liwei Liu
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
17
|
Peng F, Liu T, Wang Q, Liu F, Cao X, Yang J, Liu L, Xie C, Xue W. Antibacterial and Antiviral Activities of 1,3,4-Oxadiazole Thioether 4 H-Chromen-4-one Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11085-11094. [PMID: 34516137 DOI: 10.1021/acs.jafc.1c03755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives were conceived. The title compounds demonstrated striking inhibitory effects against Xac, Psa, and Xoo. EC50 data exhibited that A8 (19.7 μg/mL) had better antibacterial activity against Xoo than myricetin, BT, and TC. Simultaneously, the mechanism of action of A8 had been verified by SEM. The results of anti-tobacco mosaic virus indicated that A9 had the best in vivo antiviral effect compared with ningnanmycin. From the data of MST, it could be seen that A9 (0.003 ± 0.001 μmol/L) exhibited a strong binding capacity, which was far superior to ningnanmycin (2.726 ± 1.301 μmol/L). This study shows that the 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives may become agricultural drugs with great potential.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Qifan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Jinsong Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
18
|
Micale N, Molonia MS, Citarella A, Cimino F, Saija A, Cristani M, Speciale A. Natural Product-Based Hybrids as Potential Candidates for the Treatment of Cancer: Focus on Curcumin and Resveratrol. Molecules 2021; 26:4665. [PMID: 34361819 PMCID: PMC8348089 DOI: 10.3390/molecules26154665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.M.); (M.S.M.); (A.C.); (F.C.); (M.C.); (A.S.)
| | | | | |
Collapse
|
19
|
Su S, Chen M, Tang X, Peng F, Liu T, Zhou Q, Zhan W, He M, Xie C, Xue W. Design, Synthesis and Antibacterial Activity of Novel Pyrimidine-Containing 4H-Chromen-4-One Derivatives*. Chem Biodivers 2021; 18:e2100186. [PMID: 34159725 DOI: 10.1002/cbdv.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 11/05/2022]
Abstract
A series of pyrimidine-containing 4H-chromen-4-one derivatives were designed and synthesized by combining bioactive substructures. Preliminary biological activity results showed that most of the compounds displayed significant inhibitory activities in vitro against Xanthomonas axonopodis pv. Citri (X. axonopodis), Xanthomonas oryzae pv. oryzae (X. oryzae) and Ralstonia solanacearum (R. solanacearum). In particular, compound 2-[(3-{[5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-3-yl]oxy}propyl)sulfanyl]-4-(4-methylphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4c) demonstrated a good inhibitory effect against X. axonopodis and X. oryzae, with the half-maximal effective concentration (EC50 ) values of 15.5 and 14.9 μg/mL, respectively, and compound 2-[(3-{[5,7-Dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-3-yl]oxy}propyl)sulfanyl]-4-(3-fluorophenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4h) showed the best antibacterial activity against R. solanacearum with an EC50 value of 14.7 μg/mL. These results were better than commercial reagents bismerthiazol (BT, 51.7, 70.1 and 52.7 μg/mL, respectively) and thiodiazole copper (TC, 77.9, 95.8 and 72.1 μg/mL, respectively). In vivo antibacterial activity results indicated that compound 4c displayed better curative (42.4 %) and protective (49.2 %) activities for rice bacterial leaf blight than BT (35.2, 39.1 %) and TC (30.8, 27.3 %). The mechanism of compound 4c against X. oryzae was analyzed through scanning electron microscopy (SEM). These results indicated that pyrimidine-containing 4H-chromen-4-one derivatives have important value in the research of new agrochemicals.
Collapse
Affiliation(s)
- Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| |
Collapse
|
20
|
Zhang RH, Guo HY, Deng H, Li J, Quan ZS. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem 2021; 36:1165-1197. [PMID: 34080510 PMCID: PMC8183565 DOI: 10.1080/14756366.2021.1931861] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.
Collapse
Affiliation(s)
- Run-Hui Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hao Deng
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jinzi Li
- Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
21
|
Design, synthesis, and antibacterial activity of novel myricetin derivatives containing sulfonate. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02739-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractA series of myricetin derivatives containing sulfonate groups were designed and synthesized. Preliminary antibacterial activity showed that most of the target compounds exhibited significant biological activities against Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (Rs), and Xanthomonas oryzae pv. Oryzae (Xoo). In particular, the EC50 value of compound 3e was 13.76 μg/cm3 against Xac, which was better than commercial reagents bismerthiazol (50.32 µg/cm3) and thiodiazole copper. (83.27 µg/cm3), and the EC50 value of compound 3j was 11.92 μg/cm3 against Xoo in vitro, The result was better than that of bismerthiazol (72.08 µg/cm3) and thiodiazole copper (99.26 µg/cm3). Compound 3j displayed the better in vivo activity against rice bacterial leaf blight than bismerthiazol and thiodiazole copper. Meanwhile, the antibacterial mechanism of compounds 3e and 3j was studied by scanning electron microscope (SEM). These results suggested that myricetin derivatives containing sulfonate can be considered as a new antibacterial reagents.
Graphic abstract
Collapse
|
22
|
Su S, Chen M, Li Q, Wang Y, Chen S, Sun N, Xie C, Huai Z, Huang Y, Xue W. Novel penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether fragments: Design, synthesis and bioactivity. Bioorg Med Chem 2021; 32:115999. [PMID: 33444848 DOI: 10.1016/j.bmc.2021.115999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
A series of novel penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether moieties were designed and synthesized. Their anticancer activities were evaluated by MTT assay, the results showed that most compounds exhibited extremely inhibitory effects against hepatoma SMMC-7721 cells. In particular, compounds Q2 and Q8 displayed the more potent inhibitory activity with IC50 values of 0.64 and 0.63 μM, which were better than that of gemcitabine (1.40 μM). Further mechanism studies indicated that compounds Q2, Q8, Q13 and Q19 could control the migration of SMMC-7721 cells effectively, and inhibit the proliferation of cancer cells by inhibiting the DNA replication. Western-blot results showed that compounds Q2 and Q8 induced irreversible apoptosis of SMMC-7721 cells by regulating the expression level of apoptose-related proteins. Those studies demonstrated that the penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether fragments merited further research as potential anticancer agents.
Collapse
Affiliation(s)
- Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yihui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ziyou Huai
- School of Life Science, Bengbu Medical College, Anhui, Bengbu 233030, China
| | - Yinjiu Huang
- School of Life Science, Bengbu Medical College, Anhui, Bengbu 233030, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
23
|
Antibacterial and antiviral activities and action mechanism of flavonoid derivatives with a benzimidazole moiety. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2020.101194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Han X, Yu YL, Ma D, Zhang ZY, Liu XH. Synthesis, telomerase inhibitory and anticancer activity of new 2-phenyl-4H-chromone derivatives containing 1,3,4-oxadiazole moiety. J Enzyme Inhib Med Chem 2020; 36:344-360. [PMID: 33356666 PMCID: PMC7782168 DOI: 10.1080/14756366.2020.1864630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Based on previous studies, 66 2-phenyl-4H-chromone derivatives containing amide and 1,3,4-oxadiazole moieties were prepared as potential telomerase inhibitors. The results showed most of the title compounds exhibited significantly inhibitory activity on telomerase. Among them, some compounds demonstrated the most potent telomerase inhibitory activity (IC50 < 1 µM), which was significantly superior to the staurosporine (IC50 = 6.41 µM). In addition, clear structure–activity relationships were summarised, indicating that the substitution of the methoxy group and the position, type and number of the substituents on the phenyl ring had significant effects on telomerase activity. Among them, compound A33 showed considerable inhibition against telomerase. Flow cytometric analysis showed that compound A33 could arrest MGC-803 cell cycle at G2/M phase and induce apoptosis in a concentration-dependent way. Meanwhile, Western blotting revealed that this compound could reduce the expression of dyskerin, which is a fragment of telomerase.
Collapse
Affiliation(s)
- Xu Han
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, P. R. China
| | - Yun Long Yu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, P. R. China
| | - Duo Ma
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, P. R. China
| | - Zhao Yan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
25
|
Chen M, Tang X, Liu T, Peng F, Zhou Q, Luo H, He M, Xue W. Antimicrobial evaluation of myricetin derivatives containing benzimidazole skeleton against plant pathogens. Fitoterapia 2020; 149:104804. [PMID: 33309970 DOI: 10.1016/j.fitote.2020.104804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
A series of novel myricetin derivatives containing benzimidazole skeleton were constructed. The structure of compound 4g was further corroborated via X-ray single crystal diffractometer. The antimicrobial bioassays showed that all compounds exhibited potent inhibitory activities against Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (Rs) and Xanthomonas oryzae pv. Oryzae (Xoo) in vitro. Significantly, compound 4q showed the best inhibitory activities against Xoo, with the EC50 value of 8.2 μg/mL, which was better than thiodiazole copper (83.1 μg/mL) and bismerthiazol (60.1 μg/mL). In vivo experimental studies showed that compound 4q can treat rice bacterial leaf blight at 200 μg/mL, and the corresponding curative and protection efficiencies were 45.2 and 48.6%, respectively. Meanwhile, the antimicrobial mechanism of the compounds 4l and 4q were investigated through scanning electron microscopy (SEM). Studies showed that compounds 4l or 4q can cause deformation or rupture of Rs or Xoo cell membrane. These results indicated that novel benzimidazole-containing myricetin derivatives can be used as a potential antibacterial reagent.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hui Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
26
|
Gamma radiation induced changes in antioxidant and radioprotective activities of flavonoids differing mainly with respect to –OH substitution pattern in B and C rings. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Synthesis and antibacterial activity of novel myricetin derivatives containing sulfonylpiperazine. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01363-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractMyricetin derivatives containing sulfonylpiperazine were synthesized and their structures were confirmed by NMR and HRMS. The antibacterial activity results indicated that some compounds showed good antibacterial activity against Xanthomonas oryzaepv. oryzae (Xoo), Xanthomonas axonopodispv. citri (Xac) and Ralstonia solanacearum (Rs). Among them, compounds 4m and 4p revealed excellent antibacterial activities against Rs with a concentration for 50% of maximal effect (EC50) value of 4 and 4 μg/mL, which were better than the control drugs bismerthiazol (13 μg/mL) and thiodiazole-copper (185 μg/mL). As observed using scanning electron microscope (SEM), these compounds act by causing folding and deformation of the bacterial surface, resulting in incomplete bacterial structure, so as to achieve the goal of bacteriostasis. The myricetin derivatives synthesized are expected to guide the research direction of new antibacterial agents.
Collapse
|
28
|
Bajaj S, Kumar MS, Peters GJ, Mayur YC. Targeting telomerase for its advent in cancer therapeutics. Med Res Rev 2020; 40:1871-1919. [PMID: 32391613 DOI: 10.1002/med.21674] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Telomerase has emerged as an important primary target in anticancer therapy. It is a distinctive reverse transcriptase enzyme, which extends the length of telomere at the 3' chromosomal end, and uses telomerase reverse transcriptase (TERT) and telomerase RNA template-containing domains. Telomerase has a vital role and is a contributing factor in human health, mainly affecting cell aging and cell proliferation. Due to its unique feature, it ensures unrestricted cell proliferation in malignancy and plays a major role in cancer disease. The development of telomerase inhibitors with increased specificity and better pharmacokinetics is being considered to design and develop newer potent anticancer agents. Use of natural and synthetic compounds for the inhibition of telomerase activity can lead to an opening of new vistas in cancer treatment. This review details about the telomerase biochemistry, use of natural and synthetic compounds; vaccines and oncolytic virus in therapy that suppress the telomerase activity. We have discussed structure-activity relationships of various natural and synthetic telomerase inhibitors to help medicinal chemists and chemical biology researchers with a ready reference and updated status of their clinical trials. Suppression of human TERT (hTERT) activity through inhibition of hTERT promoter is an important approach for telomerase inhibition.
Collapse
Affiliation(s)
| | | | - G J Peters
- Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Y C Mayur
- SPPSPTM, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
29
|
Discovery of 1,4-pentadien-3-one derivatives containing quinoxaline scaffolds as potential apoptosis inducers. Future Med Chem 2020; 12:1505-1519. [PMID: 32772720 DOI: 10.4155/fmc-2019-0371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To synthesize novel antiproliferative agents. Results & methodology: A variety of 1,4-pentadien-3-one derivatives bearing quinoxaline scaffolds was designed and synthesized and their antiproliferative activities were evaluated. Notably, compounds N3 and N4 exhibited markedly greater antiproliferative activities against SMMC-7721 cells in vitro compared with the well-known antitumor drug gemcitabine. The mechanistic investigation showed that compounds N3 and N4 induced SMMC-7721 cell apoptosis by regulating the expression levels of apoptosis-related proteins. In addition, the molecular docking model further revealed that compound N3 could be a potential peroxisome proliferator-activated receptor inhibitor. Conclusion: These compounds might serve as bioactive fragments and lead compounds for developing more potent apoptosis inducers.
Collapse
|
30
|
Jiang S, Su S, Chen M, Peng F, Zhou Q, Liu T, Liu L, Xue W. Antibacterial Activities of Novel Dithiocarbamate-Containing 4 H-Chromen-4-one Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5641-5647. [PMID: 32330023 DOI: 10.1021/acs.jafc.0c01652] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To aid the development of novel antibacterial agents that possess a innovative mechanism of action, we built a series of novel dithiocarbamate-containing 4H-chromen-4-one derivatives. We evaluated the activities of the derivatives against three plant pathogens Xanthomonas oryzae pv oryzae (X. oryzae pv o.), Ralstonia solanacearum (R. solanacearum), and Xanthomonas axonopodis pv citri (X. axonopodis pv c.). The results of the antibacterial bioassay showed that most of the target compounds displayed good inhibitory effects against X. oryzae pv o. and X. axonopodis pv c. Remarkably, compound E6 showed the best in vitro antibacterial activity against X. axonopodis pv c., with an EC50 value of 0.11 μg/mL, which was better than those of thiodiazole copper (59.97 μg/mL) and bismerthiazol (48.93 μg/mL). Compound E14 exhibited the best in vitro antibacterial activity against X. oryzae pv o., with an EC50 value of 1.58 μg/mL, which was better than those of thiodiazole copper (83.04 μg/mL) and bismerthiazol (56.05 μg/mL). Scanning electron microscopy analysis demonstrated that compounds E6 and E14 caused the rupture or deformation of the cell membranes for X. axonopodis pv c. and X. oryzae pv o., respectively. In vivo antibacterial activity test and the defensive enzymes activity test results indicated that the compound E14 could reduce X. oryzae pv o. more effectively than thiodiazole-copper or bismerthiazol.
Collapse
Affiliation(s)
- Shichun Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, and Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, and Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, and Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, and Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, and Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, and Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, and Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, and Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| |
Collapse
|
31
|
Baginski M, Serbakowska K. In silico design of telomerase inhibitors. Drug Discov Today 2020; 25:1213-1222. [PMID: 32387261 DOI: 10.1016/j.drudis.2020.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022]
Abstract
Telomerase is a reverse transcriptase enzyme involved in DNA synthesis at the end of linear chromosomes. Unlike in most other cells, telomerase is reactivated most cancerous cells and, therefore, has become a promising new anticancer target. Despite extensive research, direct telomerase inhibitors have yet not been introduced to the clinics because of the complexity of this enzyme. Structures of this protein from simple organisms and human homology models are currently available and have been used in structure-based drug design efforts to find potential inhibitors. Different is silico strategies have been applied and different chemical groups have been explored. Here, we provide an overview of recent discoveries.
Collapse
Affiliation(s)
- Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Katarzyna Serbakowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| |
Collapse
|
32
|
Wu Y, Zhong D, Li Y, Wu H, Xu X, Yang J, Gu Z. Tumor-Oriented Telomerase-Terminated Nanoplatform as Versatile Strategy for Multidrug Resistance Reversal in Cancer Treatment. Adv Healthc Mater 2020; 9:e1901739. [PMID: 32125789 DOI: 10.1002/adhm.201901739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/05/2023]
Abstract
Multidrug resistance is one of the major problems in chemotherapy, and exploiting impactful targets to reverse drug resistance of most tumors remains a difficult problem. In this study, the tumor-oriented nanoparticle, BIBR1532-loaded peptide dendrimeric prodrug nanoassembly (B-PDPN), is used to assist telomerase inhibition for multidrug resistance reversal. B-PDPN possesses the characteristics of an acid-activated histidine to promote cellular uptake, a redox-sensitive poly(ethylene glycol) (PEG) layer to actualize endosomal escape and telomerase inhibitor release, and an acid sensitive chemical bond to facilitate chemotherapeutic drug release. Telomerase termination weakens the protective effect of hTERT protein on mitochondria and enhances reactive oxygen species (ROS) production, which increases DNA damage and apoptosis. The tumor-oriented nanoparticle B-PDPN achieves a broad-spectrum telomerase inhibition to combat multidrug resistance. In vivo experiments support the evidence that B-PDPN accumulates in the tumor site and reduces the expression of hTERT in tumor tissues to inhibit drug resistant tumor growth. This work introduces an innovative strategy of utilizing features of tumor-activated nanoplatform to assist telomerase termination. The nanoplatform enhances intracellular drug concentration and nucleus delivery of doxorubicin (DOX), and promotes DNA damage to combat multidrug resistance.
Collapse
Affiliation(s)
- Yahui Wu
- Huaxi MR Research Center (HMRRC)Department of RadiologyFunctional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital, and National Engineering Research Center for BiomaterialsSichuan University Chengdu 610041 P. R. China
- College of Life SciencesSichuan University Chengdu 610064 P. R. China
| | - Dan Zhong
- Huaxi MR Research Center (HMRRC)Department of RadiologyFunctional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital, and National Engineering Research Center for BiomaterialsSichuan University Chengdu 610041 P. R. China
| | - Yachao Li
- Huaxi MR Research Center (HMRRC)Department of RadiologyFunctional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital, and National Engineering Research Center for BiomaterialsSichuan University Chengdu 610041 P. R. China
| | - Huayu Wu
- Huaxi MR Research Center (HMRRC)Department of RadiologyFunctional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital, and National Engineering Research Center for BiomaterialsSichuan University Chengdu 610041 P. R. China
| | - Xianghui Xu
- College of Materials Science and EngineeringNanjing Tech University Nanjing 211816 P. R. China
| | - Jun Yang
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life ScienceNankai University Tianjin 300071 P. R. China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC)Department of RadiologyFunctional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital, and National Engineering Research Center for BiomaterialsSichuan University Chengdu 610041 P. R. China
- College of Materials Science and EngineeringNanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
33
|
Jiang S, Tang X, Chen M, He J, Su S, Liu L, He M, Xue W. Design, synthesis and antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. Citri and Ralstonia solanacearum of novel myricetin derivatives containing sulfonamide moiety. PEST MANAGEMENT SCIENCE 2020; 76:853-860. [PMID: 31419003 DOI: 10.1002/ps.5587] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Myricetin and sulfonamide derivatives exhibited a wide variety of biological activity. In order to develop highly bioactive molecules, novel myricetin derivatives containing sulfonamide moiety were synthesized and antibacterial activities were investigated. RESULTS The results of bioassays indicated that compound A12, having an EC50 value of 4.7 μg mL-1 , exhibited the best in vitro antibacterial activities against Xanthomonas oryzae pv. oryzae (X. oryzae pv. o.); EC50 values for this compound were even better than those of thiodiazole-copper (TC, 71.4 μg mL-1 ) and bismerthiazol (BT, 54.7 μg mL-1 ). Compound A2, having an EC50 value of 1.1 μg mL-1 , exhibited the best in vitro antibacterial activities against Xanthomonas axonopodis pv. citri (X. axonopodis pv. c); values were notably better than those of TC (60.0 μg mL-1 ) and BT (48.9 μg mL-1 ). Scanning electron microscopy analysis indicated that compounds A2 and A12 caused the cell membranes of X. axonopodis pv. c and X. oryzae pv. o. to break or deform, respectively. When the concentration of compound A12 was 100 μg mL-1 , the effective curative activity against bacterial leaf blight of rice was 44.2% in vivo and the effective protection activity was 58.2% in vivo, results that were both better than values for TC (18.9 and 21.4%, respectively) and BT (12.5 and 12.5%, respectively). CONCLUSION Novel myricetin derivatives containing a sulfonamide moiety were synthesized and bioassay results showed that compounds A2 and A12 exhibited the best antibacterial activities. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shichun Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Xu Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
34
|
Tang X, Zhang C, Chen M, Xue Y, Liu T, Xue W. Synthesis and antiviral activity of novel myricetin derivatives containing ferulic acid amide scaffolds. NEW J CHEM 2020. [DOI: 10.1039/c9nj05867b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of myricetin derivatives bearing ferulic acid amide scaffolds were designed and synthesized.
Collapse
Affiliation(s)
- Xu Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Cheng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Yining Xue
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| |
Collapse
|
35
|
Vucicevic J, Nikolic K, Mitchell JB. Rational Drug Design of Antineoplastic Agents Using 3D-QSAR, Cheminformatic, and Virtual Screening Approaches. Curr Med Chem 2019; 26:3874-3889. [DOI: 10.2174/0929867324666170712115411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 01/07/2023]
Abstract
Background:Computer-Aided Drug Design has strongly accelerated the development of novel antineoplastic agents by helping in the hit identification, optimization, and evaluation.Results:Computational approaches such as cheminformatic search, virtual screening, pharmacophore modeling, molecular docking and dynamics have been developed and applied to explain the activity of bioactive molecules, design novel agents, increase the success rate of drug research, and decrease the total costs of drug discovery. Similarity, searches and virtual screening are used to identify molecules with an increased probability to interact with drug targets of interest, while the other computational approaches are applied for the design and evaluation of molecules with enhanced activity and improved safety profile.Conclusion:In this review are described the main in silico techniques used in rational drug design of antineoplastic agents and presented optimal combinations of computational methods for design of more efficient antineoplastic drugs.
Collapse
Affiliation(s)
- Jelica Vucicevic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - John B.O. Mitchell
- EaStCHEM School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
36
|
Fan ZF, Ho ST, Wen R, Fu Y, Zhang L, Wang J, Hu C, Shaw PC, Liu Y, Cheng MS. Design, Synthesis and Molecular Docking Analysis of Flavonoid Derivatives as Potential Telomerase Inhibitors. Molecules 2019; 24:molecules24173180. [PMID: 31480619 PMCID: PMC6749477 DOI: 10.3390/molecules24173180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/29/2022] Open
Abstract
Based on the structural scaffolds of natural products, two series of flavonoid derivatives, for a total of twelve compounds, were designed and synthesized as potential human telomerase inhibitors. Using a modified TRAP-PCR assay, compound 5c exhibited the most potent inhibitory activity against human telomerase with an IC50 value of less than 50 μM. In vitro, the results demonstrated that compound 5c had potent anticancer activity against five classes of tumor cell lines. The molecular docking and molecular dynamics analyses binding to the human telomerase holoenzyme were performed to elucidate the binding mode of active compound 5c. This finding helps the rational design of more potent telomerase inhibitors based on the structural scaffolds of natural products.
Collapse
Affiliation(s)
- Zhan-Fang Fan
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sai-Tim Ho
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Rui Wen
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ya Fu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Yang Liu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
37
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
38
|
Raising the bar in anticancer therapy: recent advances in, and perspectives on, telomerase inhibitors. Drug Discov Today 2019; 24:1370-1388. [PMID: 31136800 DOI: 10.1016/j.drudis.2019.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Telomerase is a ribonucleic reverse transcriptase enzyme that uses an integral RNA component as a template to add tandem telomeric DNA repeats, TTAGGG, at the 3' end of the chromosomes. 85-90% of human tumors and their derived cell lines predominantly express high levels of telomerase, therefore contributing to cancer cell development. However, in normal cells, telomerase activity is almost always absent except in germ cells and stem cells. This differential expression has been exploited to develop highly specific and potent cancer therapeutics. In this review, we outline recent advances in the development of telomerase inhibitors as anticancer agents.
Collapse
|
39
|
Doğan F, Özateş NP, Bağca BG, Abbaszadeh Z, Söğütlü F, Gasımlı R, Gündüz C, Biray Avcı Ç. Investigation of the effect of telomerase inhibitor BIBR1532 on breast cancer and breast cancer stem cells. J Cell Biochem 2019; 120:1282-1293. [PMID: 30368861 DOI: 10.1002/jcb.27089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
It is emphasized that cancer stem cells (CSCs) forming the subpopulation of tumour cells are responsible for tumour growth, metastasis, and cancer drug resistance. Inadequate response to conventional therapy in breast cancer leads researchers to find new treatment methods and literature surveys that support CSC studies. A selective anticancer agent BIBR1532 inhibits the telomerase enzyme. Many of the chemotherapeutic drugs used in clinical trials have harmful effects, but the advantage of telomerase-based inhibitors is that they are less toxic to healthy tissues. The phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (Akt)/mammalian target of rapamycin (mTOR) pathway is common in breast cancer, and the interaction between the mTOR pathway and human telomerase reverse transcriptase (hTERT) is essential for the survival of cancer cells. In our study, we treated MCF-7, breast cancer stem cell (BCSC) and normal breast epithelial cell MCF10A with the BIBR1532 inhibitor. The IC 50 doses for the 48th hour of BIBR1532 treatment were detected as 34.59 μM in MCF-7, 29.91 μM in BCSCs, and 29.07 μM in MCF10A. It has been observed that this agent induces apoptosis in the BCSC and MCF-7 cell lines. According to the results of cell cycle analysis, G 2 /M phase accumulation was observed in BCSC and MCF-7 cell lines. It has also been shown that BIBR1532 suppresses telomerase activity in BCSC and MCF-7. The effect of BIBR1532 on the mTOR signalling pathway has been investigated for the first time in this study. It is thought that the telomerase inhibitor may bring a new approach to the treatment and it may be useful in the treatment of CSCs.
Collapse
Affiliation(s)
- Fatma Doğan
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | | | - Bakiye Göker Bağca
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Zeka Abbaszadeh
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Fatma Söğütlü
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Röya Gasımlı
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Cumhur Gündüz
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Çığır Biray Avcı
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| |
Collapse
|
40
|
Chen Y, Li P, Su S, Chen M, He J, Liu L, He M, Wang H, Xue W. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base. RSC Adv 2019; 9:23045-23052. [PMID: 35514467 PMCID: PMC9067368 DOI: 10.1039/c9ra05139b] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
A series of novel myricetin derivatives containing a 1,2,4-triazole Schiff base were designed and synthesized. Their structures were systematically characterized using 1H NMR, 13C NMR, and HRMS. During antibacterial bioassays, 6f, 6i, and 6q demonstrated a good inhibitory effect against Xanthomonas axonopodis pv. citri (Xac), with half-maximal effective concentration (EC50) values of 10.0, 9.4, and 8.8 μg mL−1, respectively, which were better than those of bismerthiazol (54.9 μg mL−1) and thiodiazole copper (61.1 μg mL−1). Note that 6w demonstrated a good inhibitory effect against Ralstonia solanacearum (Rs) with and EC50 value of 15.5 μg mL−1, which was better than those of bismerthiazol (55.2 μg mL−1) and thiodiazole copper (127.9 μg mL−1). Similarly, 6a, 6d, and 6e demonstrated a good inhibitory effect against Xanthomonas oryzae pv. oryzae (Xoo) with EC50 values of 47.1, 61.2, and 61.0 μg mL−1, respectively, which were better than those of bismerthiazol (148.2 μg mL−1) and thiodiazole copper (175.5 μg mL−1). Furthermore, we used scanning electron microscopy (SEM) to study the possible sterilization process of the target compound 6q against Xac. The results indicated the possibility of destroying the bacterial cell membrane structure, resulting in an incomplete bacterial structure, and thus achieving inhibition. Furthermore, antiviral bioassays revealed that most compounds exhibited excellent antiviral activity against tobacco mosaic virus (TMV) at a concentration of 500 μg mL−1. The results of the molecular docking studies for 6g with TMV-CP (PDB code: 1EI7) showed that compound 6g had partially interacted with TMV-CP. Therefore, mechanistic studies of the action of compound 6g could be further studied based on that. The myricetin derivatives containing a 1,2,4-triazole Schiff base were designed and synthesized. Antibacterial mechanism was investigated through SEM.![]()
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Pu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Hua Wang
- Institute for Plant Protection and Soil Science
- Hubei Academy of Agricultural Sciences
- Wuhan
- China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| |
Collapse
|
41
|
Ruan X, Zhang C, Jiang S, Guo T, Xia R, Chen Y, Tang X, Xue W. Design, Synthesis, and Biological Activity of Novel Myricetin Derivatives Containing Amide, Thioether, and 1,3,4-Thiadiazole Moieties. Molecules 2018; 23:E3132. [PMID: 30501066 PMCID: PMC6321191 DOI: 10.3390/molecules23123132] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
A series of myricetin derivatives containing amide, thioether, and 1,3,4-thiadiazole moieties were designed and synthesized, and their antiviral and antibacterial activities were assessed. The bioassays showed that all the title compounds exhibited potent in vitro antibacterial activities against Xanthomonas citri (Xac), Ralstonia solanacearum (Rs), and Xanthomonas oryzae pv. Oryzae (Xoo). In particular, the compounds 5a, 5f, 5g, 5h, 5i, and 5l, with EC50 values of 11.5⁻27.3 μg/mL, showed potent antibacterial activity against Xac that was better than the commercial bactericides Bismerthiazol (34.7 μg/mL) and Thiodiazole copper (41.1% μg/mL). Moreover, the in vivo antiviral activities against tobacco mosaic virus (TMV) of the target compounds were also tested. Among these compounds, the curative, protection, and inactivation activities of 5g were 49.9, 52.9, and 73.3%, respectively, which were better than that of the commercial antiviral Ribavirin (40.6, 51.1, and 71.1%, respectively). This study demonstrates that myricetin derivatives bearing amide, thioether, and 1,3,4-thiadiazole moieties can serve as potential alternative templates for the development of novel, highly efficient inhibitors against plant pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- Xianghui Ruan
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Cheng Zhang
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Shichun Jiang
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Tao Guo
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Rongjiao Xia
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Ying Chen
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Xu Tang
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
42
|
Quan Wang J, Di Yang M, Chen X, Wang Y, Zeng Chen L, Cheng X, Hua Liu X. Discovery of new chromen-4-one derivatives as telomerase inhibitors through regulating expression of dyskerin. J Enzyme Inhib Med Chem 2018; 33:1199-1211. [PMID: 30132373 PMCID: PMC6104605 DOI: 10.1080/14756366.2018.1466881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A series of new trimethoxyphenyl-4H-chromen derivatives as telomerase inhibitors through regulation dyskerin were designed and synthesised. The anticancer activity assay in vitro showed that compound 5i 3-(4-(4-isonicotinoylpiperazin-1-yl)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one exhibited high activity against Hela, SMMC-7721, SGC-7901, U87 and HepG2 cell lines. Compound 5i also showed potent inhibitory activity against telomerase. The further results confirmed this title compound could significantly improve pathological changes induced rat hepatic tumor in vivo. Preliminary mechanisms showed that compound 5i inhibited telomerase activity through decrease expression of dyskerin.
Collapse
Affiliation(s)
- Jie Quan Wang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China
| | - Meng Di Yang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China
| | - Xing Chen
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China
| | - Yang Wang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China
| | - Liu Zeng Chen
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China
| | - Xiu Cheng
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China
| | - Xin Hua Liu
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China.,b School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China
| |
Collapse
|
43
|
Novel curcumin analogue hybrids: Synthesis and anticancer activity. Eur J Med Chem 2018; 156:493-509. [PMID: 30025345 DOI: 10.1016/j.ejmech.2018.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
Abstract
In this study, twenty curcumin analogue hybrids as potential anticancer agents through regulation protein of TrxR were designed and synthesized. Results of anticancer activity showed that 5,7-dimethoxy-3-(3-(2-((1E, 4E)-3-oxo-5-(pyridin-2-yl)penta-1,4-dien-1- yl)phenoxy)propoxy)-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (compound 7d) could induce gastric cancer cells apoptosis by arresting cell cycle, break mitochondria function and inhibit TrxR activity. Meanwhile, western blot revealed that this compound could dramatically up expression of Bax/Bcl-2 ratio and high expression of TrxR oxidation. These results preliminarily show that the important role of ROS mediated activation of ASK1/MAPK signaling pathways by this title compound.
Collapse
|
44
|
Li Y, Cui SX, Sun SY, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH, Qu XJ. Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice. Oncotarget 2018; 7:60446-60460. [PMID: 27507058 PMCID: PMC5312395 DOI: 10.18632/oncotarget.11108] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
Myricetin is a natural dietary flavonoid compound. We evaluated the efficacy of myricetin against intestinal tumorigenesis in adenomatous polyposis coli multiple intestinal neoplasia (APCMin/+) mice. Myricetin was given orally once a day for 12 consecutive weeks. APCMin/+ mice fed with myricetin developed fewer and smaller polyps without any adverse effects. Histopathological analysis showed a decreased number of dysplastic cells and degree of dysplasia in each polyp. Immunohistochemical and western blot analysis revealed that myricetin selectively inhibits cell proliferation and induces apoptosis in adenomatous polyps. The effects of myricetin were associated with a modulation the GSK-3β and Wnt/β-catenin pathways. ELISA analysis showed a reduced concentration of pro-inflammatory cytokines IL-6 and PGE2 in blood, which were elevated in APCMin/+ mice. The effect of myricetin treatment was more prominent in the adenomatous polyps originating in the colon. Further studies showed that myricetin downregulates the phosphorylated p38 MAPK/Akt/mTOR signaling pathways, which may be the mechanisms for the inhibition of adenomatous polyps by myricetin. Taken together, our data show that myricetin inhibits intestinal tumorigenesis through a collection of biological activities. Given these results, we suggest that myricetin could be used preventatively to reduce the risk of developing colon cancers.
Collapse
Affiliation(s)
- Ye Li
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Shu-Xiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Shi-Yue Sun
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Wen-Na Shi
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Zhi-Yu Song
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Shu-Qing Wang
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Xin-Feng Yu
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Zu-Hua Gao
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Xian-Jun Qu
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Zhong X, Wang X, Chen L, Ruan X, Li Q, Zhang J, Chen Z, Xue W. Synthesis and biological activity of myricetin derivatives containing 1,3,4-thiadiazole scaffold. Chem Cent J 2017; 11:106. [PMID: 29086886 PMCID: PMC5645266 DOI: 10.1186/s13065-017-0336-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myricetin and 1,3,4-thiadiazole derivatives were reported to exhibit favorable antiviral and antibacterial activities. Aiming to discover novel myricetin analogues with potent activities, a series of novel myricetin derivatives containing 1,3,4-thiadiazole moiety were synthesized, and their antibacterial and antiviral activities were evaluated. RESULT Bioassay results indicated that some target compounds exhibited potential antibacterial and antiviral activities. Among them, compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 3p exhibited excellent antibacterial activities against Xanthomonas oryzae pv. Oryzae (Xoo), with EC50 values of 42.7, 38.6, 20.8, 12.9, 22.7, 27.3, 18.3 and 29.4 μg/mL, respectively, which were better than that of thiadiazole-copper (94.9 μg/mL). Compounds 3b, 3d, 3e, 3f, 3i and 3o showed good antibacterial activities against Ralstonia solanacearum (Rs), with EC50 values of 37.9, 72.6, 43.6, 59.6, 60.6 and 39.6 μg/mL, respectively, which were superior to that of thiadiazole-copper (131.7 μg/mL). In addition, compounds 3d, 3f, 3i and 3m showed better curative activities against tobacco mosaic virus (TMV), with EC50 values of 152.8, 99.7, 127.1, and 167.3 μg/mL, respectively, which were better than that of ningnanmycin (211.1 μg/mL). CONCLUSIONS A series of myricetin derivatives containing 1,3,4-thiadiazole scaffold were synthesized, and their antibacterial activities against Xoo and Rs and their antiviral activity against TMV were evaluated. Bioassays indicated that some target compounds exhibited potential antibacterial and antiviral activities. These results indicated this kind of myricetin analogues could be further studied as potential alternative templates in the search for novel antibacterial and antiviral agents.
Collapse
Affiliation(s)
- Xinmin Zhong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiaobin Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.,Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijuan Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xianghui Ruan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Juping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
46
|
Waghorn PA, Jackson MR, Gouverneur V, Vallis KA. Targeting telomerase with radiolabeled inhibitors. Eur J Med Chem 2017; 125:117-129. [PMID: 27657809 PMCID: PMC5154340 DOI: 10.1016/j.ejmech.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
The expression of telomerase in approximately 85% of cancers and its absence in the majority of normal cells makes it an attractive target for cancer therapy. However the lag period between initiation of telomerase inhibition and growth arrest makes direct inhibition alone an insufficient method of treatment. However, telomerase inhibition has been shown to enhance cancer cell radiosensitivity. To investigate the strategy of simultaneously inhibiting telomerase while delivering targeted radionuclide therapy to cancer cells, 123I-radiolabeled inhibitors of telomerase were synthesized and their effects on cancer cell survival studied. An 123I-labeled analogue of the telomerase inhibitor MST-312 inhibited telomerase with an IC50 of 1.58 μM (MST-312 IC50: 0.23 μM). Clonogenic assays showed a dose dependant effect of 123I-MST-312 on cell survival in a telomerase positive cell line, MDA-MB-435.
Collapse
Affiliation(s)
- Philip A Waghorn
- CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Mark R Jackson
- CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Veronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Katherine A Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
47
|
Kumar D, Sharma P, Singh H, Nepali K, Gupta GK, Jain SK, Ntie-Kang F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Adv 2017. [DOI: 10.1039/c7ra05441f] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pyran-based heterocycles are promising for anticancer drug discovery.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
- Sri Sai College of Pharmacy Manawala
| | - Harmanpreet Singh
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Kunal Nepali
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry
- M. M. College of Pharmacy
- Maharishi Markandeshwer University
- Mullana
- India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Fidele Ntie-Kang
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea
- Cameroon
| |
Collapse
|
48
|
Singh S, Ahmad A, Raghuvanshi DS, Hasanain M, Agarwal K, Dubey V, Fatima K, Alam S, Sarkar J, Luqman S, Khan F, Tandon S, Gupta A. Synthesis of 3,5-dihydroxy-7,8-dimethoxy-2-(4-methoxyphenyl)benzopyran-4-one derivatives as anticancer agents. Bioorg Med Chem Lett 2016; 26:5322-5327. [DOI: 10.1016/j.bmcl.2016.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022]
|
49
|
Shi JB, Chen LZ, Wang Y, Xiou C, Tang WJ, Zhou HP, Liu XH, Yao QZ. Benzophenone-nucleoside derivatives as telomerase inhibitors: Design, synthesis and anticancer evaluation in vitro and in vivo. Eur J Med Chem 2016; 124:729-739. [DOI: 10.1016/j.ejmech.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/22/2016] [Accepted: 09/03/2016] [Indexed: 01/19/2023]
|
50
|
Pan H, Hu Q, Wang J, Liu Z, Wu D, Lu W, Huang J. Myricetin is a novel inhibitor of human inosine 5'-monophosphate dehydrogenase with anti-leukemia activity. Biochem Biophys Res Commun 2016; 477:915-922. [PMID: 27378425 DOI: 10.1016/j.bbrc.2016.06.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/14/2023]
Abstract
Human inosine 5'-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC50 values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity.
Collapse
Affiliation(s)
- Huiling Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Qian Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Zehui Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Dang Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China.
| |
Collapse
|