1
|
Ma Q, Ma K, Dong Y, Meng Y, Zhao J, Li R, Bai Q, Wu D, Jiang D, Sun J, Zhao Y. Binding mechanism and antagonism of the vesicular acetylcholine transporter VAChT. Nat Struct Mol Biol 2025; 32:818-827. [PMID: 39806024 DOI: 10.1038/s41594-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
The vesicular acetylcholine transporter (VAChT) has a pivotal role in packaging and transporting acetylcholine for exocytotic release, serving as a vital component of cholinergic neurotransmission. Dysregulation of its function can result in neurological disorders. It also serves as a target for developing radiotracers to quantify cholinergic neuron deficits in neurodegenerative conditions. Here we unveil the cryo-electron microscopy structures of human VAChT in its apo state, the substrate acetylcholine-bound state and the inhibitor vesamicol-bound state. These structures assume a lumen-facing conformation, offering a clear depiction of architecture of VAChT. The acetylcholine-bound structure provides a detailed understanding of how VAChT recognizes its substrate, shedding light on the coupling mechanism of protonation and substrate binding. Meanwhile, the vesamicol-bound structure reveals the binding mode of vesamicol to VAChT, laying the structural foundation for the design of the next generation of radioligands targeting VAChT.
Collapse
Affiliation(s)
- Qiao Ma
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Ma
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanli Dong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yufei Meng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Renjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Wu
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Daohua Jiang
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Helbert H, Deuther-Conrad W, de Haan M, Wenzel B, Luurtsema G, Szymanski W, Brust P, Dierckx RAJO, Feringa BL, Elsinga PH. Synthesis and in vitro evaluation of spirobenzovesamicols as potential 11C-PET tracer alternatives to [ 18F]FEOBV for vesicular acetylcholine transporter (VAChT) imaging. EJNMMI Radiopharm Chem 2025; 10:7. [PMID: 39894871 PMCID: PMC11788271 DOI: 10.1186/s41181-025-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Through its central role in neurotransmission, the vesicular acetylcholine transporter (VAChT) is an increasingly valuable target for positron emission tomography (PET). VAChT ligands have been mostly derived from the vesamicol structure, but with limitations in available labelling methods and selectivity for VAChT against σ receptors being a common pitfall of such compounds, the development of selective VAChT tracers remains a challenge. Modern labelling techniques, in this case the [11C]MeLi cross-coupling methodology, expands labelling opportunities, allowing to explore novel vesamicol-based structures as potential PET-tracers. RESULTS A series of vesamicol derivatives was synthesized and their binding towards VAChT, σ1 and σ2 receptors assessed. Of all compound tested, (-)-2-methylspirobenzovesamicol ((-)-4) was the most promising with a 16 ± 4 nM affinity towards VAChT, a 29-fold weaker affinity for σ1 receptors and negligible binding (> 1 μM) towards σ2 receptors. The radiolabelling was performed from the corresponding bromide using a [11C]MeLi cross-coupling protocol, yielding 2-[11C]methylspirobenzovesamicol in 32-37% RCY. New in vitro binding data is also made available for (-)-FEOBV with human-sourced σ1 receptors, revealing a 300-fold stronger affinity for VAChT compared to σ receptors. CONCLUSION (-)-2-methylspirobenzovesamicol was identified as a potent and selective VAChT ligand, with moderate to low affinity for σ receptors, and its racemate was radiolabeled in good radiochemical yields with Carbon-11. At this stage, [11C]-methyl-2-methylspirobenzovesamicol appears a promising 11C-PET tracer for VAChT imaging.
Collapse
Affiliation(s)
- Hugo Helbert
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Michel de Haan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
- Luebeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, Lübeck, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
3
|
Bononi G, Lonzi C, Tuccinardi T, Minutolo F, Granchi C. The Benzoylpiperidine Fragment as a Privileged Structure in Medicinal Chemistry: A Comprehensive Review. Molecules 2024; 29:1930. [PMID: 38731421 PMCID: PMC11085656 DOI: 10.3390/molecules29091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.
Collapse
Affiliation(s)
| | | | | | | | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.B.); (C.L.); (T.T.); (F.M.)
| |
Collapse
|
4
|
Harrington S, Pyche J, Burns AR, Spalholz T, Ryan KT, Baker RJ, Ching J, Rufener L, Lautens M, Kulke D, Vernudachi A, Zamanian M, Deuther-Conrad W, Brust P, Roy PJ. Nemacol is a small molecule inhibitor of C. elegans vesicular acetylcholine transporter with anthelmintic potential. Nat Commun 2023; 14:1816. [PMID: 37002199 PMCID: PMC10066365 DOI: 10.1038/s41467-023-37452-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.
Collapse
Affiliation(s)
- Sean Harrington
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jacob Pyche
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tina Spalholz
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Kaetlyn T Ryan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel J Baker
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Justin Ching
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Lucien Rufener
- INVENesis Sàrl, Route de Neuchâtel 15A, 2072, St Blaise (NE), Switzerland
| | - Mark Lautens
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Daniel Kulke
- Research Parasiticides, Bayer Animal Health GmbH, Monheim, Germany
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
- Global Innovation, Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55218, Ingelheim am Rhein, Germany
| | | | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562, Lübeck, Germany
| | - Peter J Roy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Vercouillie J, Buron F, Sérrière S, Rodrigues N, Gulhan Z, Chartier A, Chicheri G, Marzag H, Oury A, Percina N, Bodard S, Ben Othman R, Busson J, Suzenet F, Guilloteau D, Marchivie M, Emond P, Routier S, Chalon S. Development and preclinical evaluation of [18F]FBVM as a new potent PET tracer for vesicular acetylcholine transporter. Eur J Med Chem 2022; 244:114794. [DOI: 10.1016/j.ejmech.2022.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
|
6
|
Helbert H, Antunes IF, Luurtsema G, Szymanski W, Feringa BL, Elsinga PH. Cross-coupling of [ 11C]methyllithium for 11C-labelled PET tracer synthesis. Chem Commun (Camb) 2021; 57:203-206. [PMID: 33300515 DOI: 10.1039/d0cc05392a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cross-coupling of aryl bromides with [11C]CH3Li for the labelling of a variety of tracers for positron emission tomography (PET) is presented. The radiolabelled products were obtained in excellent yields, at rt and after short reaction times (3-5 min) compatible with the half-life of 11C (20.4 min). The automation of the protocol on a synthesis module is investigated, representing an important step towards a fast method for the synthesis of 11C-labelled compounds for PET imaging.
Collapse
Affiliation(s)
- Hugo Helbert
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
7
|
Miwa D, Kitamura Y, Kozaka T, Shigeno T, Ogawa K, Taki J, Kinuya S, Shiba K. (-)-o-[ 11 C]methyl-trans-decalinvesamicol ((-)-[ 11 C]OMDV) as a PET ligand for the vesicular acetylcholine transporter. Synapse 2020; 74:e22176. [PMID: 32500935 DOI: 10.1002/syn.22176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 11/10/2022]
Abstract
To develop a PET imaging agent to visualize brain cholinergic neurons and synaptic changes caused by Alzheimer's disease, (-)- and (+)-o-[11 C]methyl-trans-decalinvesamicol ([11 C]OMDV) were isolated and investigated for differences in not only their binding affinity and selectivity to vesicular acetylcholine transporter (VAChT), but also their in vivo activities. [11 C]OMDV has a high binding affinity for VAChT both in vitro and in vivo. Racemic OMDV and o-trimethylstannyl-trans-decalinvesamicol (OTDV), which are precursors for synthesis of [11 C]OMDV, were separated into (-)-optical isomers ((-)-OMDV and (-)-OTDV) and (+)-optical isomers ((+)-OMDV and (+)-OTDV) by HPLC. In the in vitro binding assay, (-)-OMDV(7.2 nM) showed eight times higher binding affinity (Ki) to VAChT than that of (+)-OMDV(57.5 nM). In the biodistribution study, the blood-brain barrier permeability of both enantiomers ((-)-[11 C]OMDV and (+)-[11 C]OMDV) was similarly high (about 1.0%ID/g) at 2 min post-injection. However, (+)-[11 C]OMDV clearance from the brain was faster than (-)-[11 C]OMDV. In the in vivo blocking study, accumulation of (-)-[11 C]OMDV in the cortex was markedly decreased (approximately 30% of control) by coadministration of vesamicol, and brain uptake of (-)-[11 C]OMDV was not significantly altered by coadministration of (+)-pentazocine or (+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP). PET-CT imaging revealed inhibition of the rat brain uptake of (-)-[11 C]OMDV by coadministration of vesamicol. In conclusion, (-)-[11 C]OMDV, which is an enantiomer of OMDV, selectively binds to VAChT with high affinity in the rat brain in vivo. (-)-[11 C]OMDV may be utilized as a potential PET ligand for studying presynaptic cholinergic neurons in the brain.
Collapse
Affiliation(s)
- Daisuke Miwa
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Yoji Kitamura
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takashi Kozaka
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Taiki Shigeno
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kazuma Ogawa
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Junichi Taki
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Seigo Kinuya
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Schildt A, de Vries EFJ, Willemsen ATM, Giacobbo BL, Moraga-Amaro R, Sijbesma JWA, van Waarde A, Sossi V, Dierckx RAJO, Doorduin J. Effect of Dopamine D 2 Receptor Antagonists on [ 18F]-FEOBV Binding. Mol Pharm 2020; 17:865-872. [PMID: 32011892 PMCID: PMC7054895 DOI: 10.1021/acs.molpharmaceut.9b01129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
interaction of dopaminergic and cholinergic neurotransmission
in, e.g., Parkinson’s disease has been well established. Here,
D2 receptor antagonists were used to assess changes in
[18F]-FEOBV binding to the vesicular acetylcholine transporter
(VAChT) in rodents using positron emission tomography (PET). After
pretreatment with either 10 mg/kg haloperidol, 1 mg/kg raclopride,
or vehicle, 90 min dynamic PET scans were performed with arterial
blood sampling. The net influx rate (Ki) was obtained from Patlak graphical analysis, using a metabolite-corrected
plasma input function and dynamic PET data. [18F]-FEOBV
concentration in whole-blood or plasma and the metabolite-corrected
plasma input function were not significantly changed by the pretreatments
(adjusted p > 0.07, Cohen’s d 0.28–1.89) while the area-under-the-curve (AUC) of the parent
fraction of [18F]-FEOBV was significantly higher after
haloperidol treatment (adjusted p = 0.022, Cohen’s d = 2.51) than in controls. Compared to controls, the AUC
of [18F]-FEOBV, normalized for injected dose and body weight,
was nonsignificantly increased in the striatum after haloperidol (adjusted p = 0.4, Cohen’s d = 1.77) and raclopride
(adjusted p = 0.052, Cohen’s d = 1.49) treatment, respectively. No changes in the AUC of [18F]-FEOBV were found in the cerebellum (Cohen’s d 0.63–0.74). Raclopride treatment nonsignificantly
increased Ki in the striatum 1.3-fold
compared to control rats (adjusted p = 0.1, Cohen’s d = 1.1) while it reduced Ki in the cerebellum by 28% (adjusted p = 0.0004,
Cohen’s d = 2.2) compared to control rats.
Pretreatment with haloperidol led to a nonsignificant reduction in Ki in the striatum (10%, adjusted p = 1, Cohen’s d = 0.44) and a 40–50%
lower Ki than controls in all other brain
regions (adjusted p < 0.0005, Cohen’s d = 3.3–4.7). The changes in Ki induced by the selective D2 receptor antagonist
raclopride can in part be quantified using [18F]-FEOBV
PET imaging. Haloperidol, a nonselective D2/σ receptor
antagonist, either paradoxically decreased cholinergic activity or
blocked off-target [18F]-FEOBV binding to σ receptors.
Hence, further studies evaluating the binding of [18F]-FEOBV
to σ receptors using selective σ receptor ligands are
necessary.
Collapse
Affiliation(s)
- Anna Schildt
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands.,Department of Physics and Astronomy, University of British Columbia, 143-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Jürgen W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, 143-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| |
Collapse
|
9
|
In Vivo and In Vitro Characteristics of Radiolabeled Vesamicol Analogs as the Vesicular Acetylcholine Transporter Imaging Agents. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4535476. [PMID: 30008624 PMCID: PMC6020543 DOI: 10.1155/2018/4535476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
The vesicular acetylcholine transporter (VAChT), a presynaptic cholinergic neuron marker, is a potential internal molecular target for the development of an imaging agent for early diagnosis of neurodegenerative disorders with cognitive decline such as Alzheimer's disease (AD). Since vesamicol has been reported to bind to VAChT with high affinity, many vesamicol analogs have been studied as VAChT imaging agents for the diagnosis of cholinergic neurodeficit disorder. However, because many vesamicol analogs, as well as vesamicol, bound to sigma receptors (σ1 and σ2) besides VAChT, almost all the vesamicol analogs have been shown to be unsuitable for clinical trials. In this report, the relationships between the chemical structure and the biological characteristics of these developed vesamicol analogs were investigated, especially the in vitro binding profile and the in vivo regional brain accumulation.
Collapse
|
10
|
Sharma A, Agarwal J, Peddinti RK. Direct access to the optically active VAChT inhibitor vesamicol and its analogues via the asymmetric aminolysis of meso-epoxides with secondary aliphatic amines. Org Biomol Chem 2018; 15:1913-1920. [PMID: 28169381 DOI: 10.1039/c6ob02479c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First highly enantioselective synthesis of biologically important vesamicol, benzovesamicol, and their derivatives was achieved via the desymmetrization of meso-epoxides with secondary aliphatic amines (4-phenylpiperidine derivatives) using a chiral [salenCo(iii)-BF4] catalyst at room temperature. All products were obtained in good yield and with excellent optical induction.
Collapse
Affiliation(s)
- Arun Sharma
- Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Jyoti Agarwal
- Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | | |
Collapse
|
11
|
Do spiroindolines have the potential to replace vesamicol as lead compound for the development of radioligands targeting the vesicular acetylcholine transporter? Bioorg Med Chem 2017; 25:5107-5113. [PMID: 28347632 DOI: 10.1016/j.bmc.2017.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 11/24/2022]
Abstract
The vesicular acetylcholine transporter (VAChT) is an important target for in vivo imaging of neurodegenerative processes using positron emission tomography (PET). So far the development of VAChT PET radioligands is based on the single known lead compound vesamicol. In this study we investigated a recently published spiroindoline based compound class (Sluder et al., 2012), which was suggested to have potential in the development of VAChT ligands. Therefore, we synthesized a small series of N,N-substituted spiro[indoline-3,4'-piperidine] derivatives and determined their in vitro binding affinities toward the VAChT. In order to investigate the selectivity, the off-target binding toward σ1 and σ2 receptors was determined. The compounds possessed VAChT affinities with Ki values in the range of 39-376nM. Binding affinities toward the σ1 and σ2 receptors are in a similar range indicating that the strong structural difference between the spiroindolines and vesamicol did not improve the selectivity. The observed potential to additionally bind to σ receptors let us assume that the herein investigated spiroindolines are not suitable to replace vesamicol as lead compound for the development of VAChT ligands.
Collapse
|
12
|
Roslin S, De Rosa M, Deuther-Conrad W, Eriksson J, Odell LR, Antoni G, Brust P, Larhed M. Synthesis and in vitro evaluation of 5-substituted benzovesamicol analogs containing N-substituted amides as potential positron emission tomography tracers for the vesicular acetylcholine transporter. Bioorg Med Chem 2017; 25:5095-5106. [PMID: 28185725 DOI: 10.1016/j.bmc.2017.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
Herein, new ligands for the vesicular acetylcholine transporter (VAChT), based on a benzovesamicol scaffold, are presented. VAChT is acknowledged as a marker for cholinergic neurons and a positron emission tomography tracer for VAChT could serve as a tool for quantitative analysis of cholinergic neuronal density. With an easily accessible triflate precursor, aminocarbonylations were utilized to evaluate the chemical space around the C5 position on the tetrahydronaphthol ring. Synthesized ligands were evaluated for their affinity and selectivity for VAChT. Small, preferably aromatic, N-substituents proved to be more potent than larger substituents. Of the fifteen compounds synthesized, benzyl derivatives (±)-7i and (±)-7l had the highest affinities for VAChT. Compound (±)-7i was chosen to investigate the importance of stereochemistry for binding to VAChT and selectivity toward the σ1 and σ2 receptors. Enantiomeric resolution gave (+)-7i and (-)-7i, and the eutomer showed seven times better affinity. Although racemate (±)-7i was initially promising, the affinity of (-)-7i for VAChT was not better than 56.7nM which precludes further preclinical evaluation. However, the nanomolar binding together with the ready synthesis of [11C]-(±)-7i shows that (-)-7i can serve as a scaffold for future optimizations to provide improved 11C-labelled VAChT PET tracers.
Collapse
Affiliation(s)
- Sara Roslin
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Maria De Rosa
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318 Leipzig, Germany
| | - Jonas Eriksson
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Luke R Odell
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Gunnar Antoni
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318 Leipzig, Germany
| | - Mats Larhed
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|