1
|
Zenchenko AA, Varizhuk IV, Drenichev MS, Oslovsky VE. Synthesis of O-Nicotinoyl-Substituted Depot Forms of Biologically Active N 6-Benzyladenosine Analogs. Curr Protoc 2025; 5:e70121. [PMID: 40145248 DOI: 10.1002/cpz1.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
This unit describes an effective method for the preparation of N6-benzyl-2',3',5'-tri-O-nicotinoyl adenosine and N6-(3-fluorobenzyl)-2',3',5'-tri-O-nicotinoyl adenosine. These compounds are depot forms of biologically active N6-benzyladenosine (BAR) and its fluorinated analog N6-(3-fluorobenzyl)adenosine (FBAR), which had previously shown pronounced antiviral activity against human enterovirus EV-A71. BAR and FBAR bearing biodegradable O-nicotinoyl ester moieties were obtained by a three-step synthesis starting from inosine. An attractive feature of this strategy is the possibility of obtaining biodegradable depot forms of various biologically active ribonucleoside derivatives, particularly N6-substituted adenosine derivatives. © 2025 Wiley Periodicals LLC. Basic Protocol: Preparation of N6-benzyl-2',3',5'-tri-O-nicotinoyl adenosine (4a). Alternate Protocol: Preparation of N6-(3-fluorobenzyl)-2',3',5'-tri-O-nicotinoyl adenosine (4b).
Collapse
Affiliation(s)
- Anastasia A Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Irina V Varizhuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Zenchenko AA, Semenova YD, Naberezhnaya ER, Gumennaya YD, Lipatova AV, Oslovsky VE. New N 6-Substituted Adenine Derivatives with High Antiviral Activity against RNA-Containing Viruses. DOKL BIOCHEM BIOPHYS 2025; 520:38-41. [PMID: 39847294 DOI: 10.1134/s1607672924600787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 01/24/2025]
Abstract
In this work, two new compounds, N6-(4,5-dimethoxyphenyl)adenine and N6-(3,5-di-trifluoromethylphenyl)adenine, with a broad range of antiviral activity against RNA viruses were identified. We showed that these compounds exhibit pronounced antiviral activity against human poliovirus types 1, 2, and 3, belonging to enterovirus C species. Both compounds also demonstrated pronounced antiviral activity against Coxsackie viruses B3, B5, and B6, belonging to enterovirus B species. In addition, the compounds demonstrated antiviral activity against Newcastle disease virus, which belongs to the paramyxovirus genus. The compounds discovered in this work can subsequently serve as prototypes for the development of new antiviral drugs against epidemiologically significant human RNA viruses.
Collapse
Affiliation(s)
- A A Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yu D Semenova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E R Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ya D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - V E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
4
|
Ahmed-Belkacem R, Sutto-Ortiz P, Delpal A, Troussier J, Canard B, Vasseur JJ, Decroly E, Debart F. 5'-cap RNA/SAM mimetic conjugates as bisubstrate inhibitors of viral RNA cap 2'-O-methyltransferases. Bioorg Chem 2024; 143:107035. [PMID: 38199140 DOI: 10.1016/j.bioorg.2023.107035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Collapse
Affiliation(s)
| | | | - Adrien Delpal
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | | | | | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
5
|
Zenchenko AA, Drenichev MS, Khvatov EV, Uvarova VI, Goryashchenko AS, Frolenko VS, Karpova EV, Kozlovskaya LI, Osolodkin DI, Ishmukhametov AA, Mikhailov SN, Oslovsky VE. Elongation of N 6-benzyladenosine scaffold via Pd-catalyzed C-C bond formation leads to derivatives with antiflaviviral activity. Bioorg Med Chem 2024; 98:117552. [PMID: 38128296 DOI: 10.1016/j.bmc.2023.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Decoration of nucleoside analogues with lipophilic groups often leads to compounds with improved antiviral activity. For example, N6-benzyladenosine derivatives containing elongated lipophilic substituents in the benzyl core efficiently inhibit reproduction of tick-borne encephalitis virus (TBEV), while N6-benzyladenosine itself potently inhibits reproduction of human enterovirus A71 (EV-A71). We have extended a series of N6-benzyladenosine analogues using effective synthetic methods of CC bond formation based on Pd-catalyzed cross-coupling reactions (Sonogashira and Suzuki) in order to study the influence of bulky lipophilic substituents in the N6 position of adenosine on the antiviral activity against flaviviruses, such as TBEV, yellow fever virus (YFV) and West Nile virus (WNV), as well as a panel of enteroviruses including EV-A71, Echovirus 30 (E30), and poliovirus type 2 (PV2). Reproduction of tested flaviviruses appeared to be inhibited by the micromolar concentrations of the compounds, while cytotoxicity in most cases was beyond the detection limit. Time-of-addition studies demonstrated that the hit compounds inhibited the stage of viral RNA synthesis, but not the stages of the viral entry or protein translation. As a result, several new promising antiflaviviral leads have been identified. On the other hand, none of the synthesized compounds inhibited enterovirus reproduction, indicating a possibility of involvement of flavivirus-specific pathways in their mechanism of action.
Collapse
Affiliation(s)
| | | | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | | | - Vasilisa S Frolenko
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Evgenia V Karpova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | | |
Collapse
|
6
|
Feferbaum-Leite S, Santos IA, Grosche VR, da Silva GCD, Jardim ACG. Insights into enterovirus a-71 antiviral development: from natural sources to synthetic nanoparticles. Arch Microbiol 2023; 205:334. [PMID: 37730918 DOI: 10.1007/s00203-023-03660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.
Collapse
Affiliation(s)
- Shiraz Feferbaum-Leite
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | | | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil.
| |
Collapse
|
7
|
Berzina MY, Eletskaya BZ, Kayushin AL, Dorofeeva EV, Lutonina OI, Fateev IV, Zhavoronkova ON, Bashorin AR, Arnautova AO, Smirnova OS, Antonov KV, Paramonov AS, Dubinnyi MA, Esipov RS, Miroshnikov AI, Konstantinova ID. Intramolecular Hydrogen Bonding in N 6-Substituted 2-Chloroadenosines: Evidence from NMR Spectroscopy. Int J Mol Sci 2023; 24:ijms24119697. [PMID: 37298648 DOI: 10.3390/ijms24119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Two forms were found in the NMR spectra of N6-substituted 2-chloroadenosines. The proportion of the mini-form was 11-32% of the main form. It was characterized by a separate set of signals in COSY, 15N-HMBC and other NMR spectra. We assumed that the mini-form arises due to the formation of an intramolecular hydrogen bond between the N7 atom of purine and the N6-CH proton of the substituent. The 1H,15N-HMBC spectrum confirmed the presence of a hydrogen bond in the mini-form of the nucleoside and its absence in the main form. Compounds incapable of forming such a hydrogen bond were synthesized. In these compounds, either the N7 atom of the purine or the N6-CH proton of the substituent was absent. The mini-form was not found in the NMR spectra of these nucleosides, confirming the importance of the intramolecular hydrogen bond in its formation.
Collapse
Affiliation(s)
- Maria Ya Berzina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Barbara Z Eletskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexei L Kayushin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Elena V Dorofeeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga I Lutonina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ilya V Fateev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga N Zhavoronkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Arthur R Bashorin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexandra O Arnautova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga S Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Konstantin V Antonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Maxim A Dubinnyi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, 141700 Moscow, Russia
| | - Roman S Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Anatoly I Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Irina D Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| |
Collapse
|
8
|
Zhou J, Horton JR, Menna M, Fiorentino F, Ren R, Yu D, Hajian T, Vedadi M, Mazzoccanti G, Ciogli A, Weinhold E, Hüben M, Blumenthal RM, Zhang X, Mai A, Rotili D, Cheng X. Systematic Design of Adenosine Analogs as Inhibitors of a Clostridioides difficile-Specific DNA Adenine Methyltransferase Required for Normal Sporulation and Persistence. J Med Chem 2023; 66:934-950. [PMID: 36581322 PMCID: PMC9841527 DOI: 10.1021/acs.jmedchem.2c01789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 12/31/2022]
Abstract
Antivirulence agents targeting endospore-transmitted Clostridioides difficile infections are urgently needed. C. difficile-specific DNA adenine methyltransferase (CamA) is required for efficient sporulation and affects persistence in the colon. The active site of CamA is conserved and closely resembles those of hundreds of related S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which makes the design of selective inhibitors more challenging. We explored the solvent-exposed edge of the SAM adenosine moiety and systematically designed 42 analogs of adenosine carrying substituents at the C6-amino group (N6) of adenosine. We compare the inhibitory properties and binding affinity of these diverse compounds and present the crystal structures of CamA in complex with 14 of them in the presence of substrate DNA. The most potent of these inhibitors, compound 39 (IC50 ∼ 0.4 μM and KD ∼ 0.2 μM), is selective for CamA against closely related bacterial and mammalian DNA and RNA adenine methyltransferases, protein lysine and arginine methyltransferases, and human adenosine receptors.
Collapse
Affiliation(s)
- Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - John R. Horton
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Martina Menna
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Ren Ren
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Taraneh Hajian
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masoud Vedadi
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giulia Mazzoccanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessia Ciogli
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Elmar Weinhold
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Michael Hüben
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
9
|
The Lipophilic Purine Nucleoside-Tdp1 Inhibitor-Enhances DNA Damage Induced by Topotecan In Vitro and Potentiates the Antitumor Effect of Topotecan In Vivo. Molecules 2022; 28:molecules28010323. [PMID: 36615517 PMCID: PMC9822400 DOI: 10.3390/molecules28010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, such as topotecan (Tpc). Tdp1 eliminates covalent Top1-DNA (Top1c) complexes that appear under the action of topotecan and determines the cytotoxic effect of this drug. We hypothesize that Tdp1 inhibition would sensitize cells towards the effect of Tpc. Herein, we report the synthesis and study of lipophilic derivatives of purine nucleosides that efficiently suppress Tdp1 activity, with IC50 values in the 0.3-22.0 μM range. We also showed that this compound class can enhance DNA damage induced by topotecan in vitro by Comet assay on human cell lines HeLa and potentiate the antitumor effect of topotecan in vivo on a mice ascitic Krebs-2 carcinoma model. Thereby, this type of compound may be useful to develop drugs, that sensitize the effect of topotecan and reduce the required dose and, as a result, side effects.
Collapse
|
10
|
Savelieva EM, Zenchenko AA, Drenichev MS, Kozlova AA, Kurochkin NN, Arkhipov DV, Chizhov AO, Oslovsky VE, Romanov GA. In Planta, In Vitro and In Silico Studies of Chiral N6-Benzyladenine Derivatives: Discovery of Receptor-Specific S-Enantiomers with Cytokinin or Anticytokinin Activities. Int J Mol Sci 2022; 23:ijms231911334. [PMID: 36232653 PMCID: PMC9569578 DOI: 10.3390/ijms231911334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023] Open
Abstract
Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties.
Collapse
Affiliation(s)
- Ekaterina M. Savelieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
| | - Anastasia A. Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Anna A. Kozlova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Nikolay N. Kurochkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Dmitry V. Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
| | - Alexander O. Chizhov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky pr. 47, 119991 Moscow, Russia
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Georgy A. Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
- Correspondence: or
| |
Collapse
|
11
|
Synthesis of Pyrimidine Conjugates with 4-(6-Amino-hexanoyl)-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine and Evaluation of Their Antiviral Activity. Molecules 2022; 27:molecules27134236. [PMID: 35807481 PMCID: PMC9268552 DOI: 10.3390/molecules27134236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
A series of pyrimidine conjugates containing a fragment of racemic 7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine and its (S)-enantiomer attached via a 6-aminohexanoyl fragment were synthesized by the reaction of nucleophilic substitution of chlorine in various chloropyrimidines. The structures of the synthesized compounds were confirmed by 1H, 19F, and 13C NMR spectral data. Enantiomeric purity of optically active derivatives was confirmed by chiral HPLC. Antiviral evaluation of the synthesized compounds has shown that the replacement of purine with a pyrimidine fragment leads to a decrease in the anti-herpesvirus activity compared to the lead compound, purine conjugate. The studied compounds did not exhibit significant activity against influenza A (H1N1) virus.
Collapse
|
12
|
Zenchenko AA, Oslovsky VE, Varizhuk IV, Karpova EV, Osolodkin DI, Kozlovskaya LI, Ishmukhametov AA, Drenichev MS. Cytotoxicity reduction by O-nicotinoylation of antiviral 6-benzylaminopurine ribonucleosides. Toxicol In Vitro 2022; 82:105355. [PMID: 35390475 DOI: 10.1016/j.tiv.2022.105355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 11/27/2022]
Abstract
One of the promising approaches in the development of nucleoside prodrugs is to use the nucleoside analogs containing lipophilic biodegradable residues, which are cleaved to biologically active forms after metabolic transformations in the cell. The introduction of such fragments makes it possible to reduce the general toxicity of the drug candidate and increase its stability in the cell. In order to study the influence of biodegradable lipophilic groups on antiviral activity and cytotoxicity, in this work we synthesized N6-benzyl-2',3',5'-tri-O-nicotinoyl adenosine and N6-(3-fluorobenzyl)-2',3',5'-tri-O-nicotinoyl adenosine, derivatives of N6-benzyladenosine (BAR) and N6-(3-fluorobenzyl)adenosine (FBAR), which had previously shown prominent antiviral activity against human enterovirus EV-A71 but appeared to be cytotoxic. As a result, the obtained fully-O-nicotinoylated BAR and FBAR inhibited reproduction of EV-A71 strains BrCr and 46,973 and manifested significantly lower cytotoxicity compared to non-protected compounds. In addition, we performed enzymatic hydrolysis of the fully-O-nicotinoylated FBAR in the presence of esterases (Cal B and PLE) to investigate metabolic degradation of O-nicotinoylated compounds in cells. As a result, both enzymes hydrolyzed the tested substrate to form the corresponding O-deprotected nucleoside that may suggest the role of hydrolase-type enzymes as general participants of metabolic activation of O-nicotinoylated prodrugs in different cells.
Collapse
Affiliation(s)
| | | | - Irina V Varizhuk
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia
| | - Evgenia V Karpova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | |
Collapse
|
13
|
Sebastian D, Satishkumar S, Pradhan P, Yang L, Lakshman MK. General Approach to N6,C5'-Difunctionalization of Adenosine. J Org Chem 2021; 87:18-39. [PMID: 34905365 DOI: 10.1021/acs.joc.1c01587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among the C6-halo purine ribonucleosides, the readily accessible 6-chloro derivative has been known to undergo slow SNAr reactions with amines, particularly aryl amines. In this work, we show that in 0.1 M AcOH in EtOH, aryl amines react quite efficiently at the C6-position of 2',3',5'-tri-O-(t-BuMe2Si)-protected 6-chloropurine riboside (6-ClP-riboside), with concomitant cleavage of the 5'-silyl group. These two-step processes proceeded in generally good yields, and notably, reactions in the absence of AcOH were much slower and/or lower yielding. Corresponding reactions of 2',3',5'-tri-O-(t-BuMe2Si)-protected 6-ClP-riboside with alkyl amines proceeded well but without desilylation at the primary hydroxyl terminus. These differences are likely due to the acidities of the ammonium chlorides formed in these reactions, and the role of AcOH was not desilylation but possibly only purine activation. With 50% aqueous TFA in THF at 0 °C, cleavage of the 5'-silyl group from 2',3',5'-tri-O-(t-BuMe2Si)-protected N6-alkyl adenosine derivatives and from 6-ClP-riboside was readily achieved. Reactions of the 5'-deprotected 6-ClP-riboside with alkyl amines proceeded in high yields and under mild conditions. Because these complementary methodologies yielded N6-aryl and -alkyl adenosine derivatives containing a free 5'-hydroxyl group, a variety of product functionalizations were undertaken to yield N6,C5'-doubly modified nucleoside analogues.
Collapse
Affiliation(s)
- Dellamol Sebastian
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sakilam Satishkumar
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Padmanava Pradhan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Lijia Yang
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
14
|
Tosh DK, Toti KS, Hurst BL, Julander JG, Jacobson KA. Structure activity relationship of novel antiviral nucleosides against Enterovirus A71. Bioorg Med Chem Lett 2020; 30:127599. [PMID: 33031923 PMCID: PMC7534897 DOI: 10.1016/j.bmcl.2020.127599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
Various (North)-methanocarba adenosine derivatives, containing rigid bicyclo[3.1.0]hexane ribose substitution, were screened for activity against representative viruses, and inhibition was observed after treatment of Enterovirus A71 with a 2-chloro-N6-1-cyclopropyl-2-methylpropan-1-yl derivative (17). µM activity was also seen when testing 17 against other enteroviruses in the Picornaviridae family. Based on this hit, structural congeners of 17, containing other N6-alkyl groups and 5' modifications, were synthesized and tested. The structure activity relationship is relatively narrow, with most modifications of the adenine or the methanocarba ring reducing or abolishing the inhibitory potency. 4'-Truncated 31 (MRS5474), 4'-fluoromethyl 48 (MRS7704) and 4'-chloromethyl 49 nucleosides displayed EC50 ~3-4 µM, and 31 and 48 achieved SI ≥10. However, methanocarba analogues of ribavirin and N6-benzyladenosine, shown previously to have anti-EV-A71 activity, were inactive. Thus, we identified methanocarba nucleosides as a new scaffold for enterovirus inhibition with a narrow structure activity relationship and no similarity to previously published anti-enteroviral nucleosides.
Collapse
Affiliation(s)
- Dilip K Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA 20892, USA
| | - Kiran S Toti
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA 20892, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, VSB 305, Logan, UT 84322-5600, USA
| | - Justin G Julander
- Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, VSB 305, Logan, UT 84322-5600, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA 20892, USA.
| |
Collapse
|
15
|
Hwu JR, Panja A, Jayakumar S, Tsay SC, Tan KT, Huang WC, Hu YC, Leyssen P, Neyts J. Enterovirus Inhibition by Hinged Aromatic Compounds with Polynuclei. Molecules 2020; 25:molecules25173821. [PMID: 32842645 PMCID: PMC7503712 DOI: 10.3390/molecules25173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
The modern world has no available drugs for the treatment of enteroviruses (EV), which affect millions of people worldwide each year. The EV71 is a major causative disease for hand, foot, and mouth disease; sometimes it is associated with severe central nervous system diseases. Treatment for enteroviral infection is mainly supportive; treatment for aseptic meningitis caused by enteroviruses is also generally symptomatic. Upon the urgent request of new anti-enterovirus drugs, a series of hinged aromatic compounds with polynulei were synthesized through two different chemical pathways. Among these morpholine–furan/thiophene/pyrrole–benzene–pyrazole conjugates, three new agents exhibited inhibitory activity with EC50 = 2.29–6.16 μM toward EV71 strain BrCr in RD cells. Their selectivity index values were reached as high as 33.4. Their structure–activity relationship was deduced that a thiophene derivative with morpholine and trifluorobenzene rings showed the greatest antiviral activity, with EC50 = 2.29 μM.
Collapse
Affiliation(s)
- Jih Ru Hwu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
- Department of Chemistry, National Central University, Jhongli City, Taoyuan 320, Taiwan
- Correspondence: (J.R.H.); (J.N.)
| | - Avijit Panja
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
| | - Srinivasan Jayakumar
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
| | - Shwu-Chen Tsay
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
- Department of Chemistry, National Central University, Jhongli City, Taoyuan 320, Taiwan
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Wen-Chieh Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Yu-Chen Hu
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Pieter Leyssen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium;
| | - Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium;
- Correspondence: (J.R.H.); (J.N.)
| |
Collapse
|
16
|
Atdjian C, Coelho D, Iannazzo L, Ethève-Quelquejeu M, Braud E. Synthesis of Triazole-Linked SAM-Adenosine Conjugates: Functionalization of Adenosine at N-1 or N-6 Position without Protecting Groups. Molecules 2020; 25:molecules25143241. [PMID: 32708658 PMCID: PMC7397255 DOI: 10.3390/molecules25143241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
More than 150 RNA chemical modifications have been identified to date. Among them, methylation of adenosine at the N-6 position (m6A) is crucial for RNA metabolism, stability and other important biological events. In particular, this is the most abundant mark found in mRNA in mammalian cells. The presence of a methyl group at the N-1 position of adenosine (m1A) is mostly found in ncRNA and mRNA and is mainly responsible for stability and translation fidelity. These modifications are installed by m6A and m1A RNA methyltransferases (RNA MTases), respectively. In human, deregulation of m6A RNA MTases activity is associated with many diseases including cancer. To date, the molecular mechanism involved in the methyl transfer, in particular substrate recognition, remains unclear. We report the synthesis of new SAM-adenosine conjugates containing a triazole linker branched at the N-1 or N-6 position of adenosine. Our methodology does not require protecting groups for the functionalization of adenosine at these two positions. The molecules described here were designed as potential bisubstrate analogues for m6A and m1A RNA MTases that could be further employed for structural studies. This is the first report of compounds mimicking the transition state of the methylation reaction catalyzed by m1A RNA MTases.
Collapse
|
17
|
Vylíčilová H, Bryksová M, Matušková V, Doležal K, Plíhalová L, Strnad M. Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back. Biomolecules 2020; 10:biom10060832. [PMID: 32485963 PMCID: PMC7356397 DOI: 10.3390/biom10060832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/18/2023] Open
Abstract
Cytokinins and their sugar or non-sugar conjugates are very active growth-promoting factors in plants, although they occur at very low concentrations. These compounds have been identified in numerous plant species. This review predominantly focuses on 9-substituted adenine-based cytokinin conjugates, both artificial and endogenous, sugar and non-sugar, and their roles in plants. Acquired information about their biological activities, interconversions, and metabolism improves understanding of their mechanisms of action and functions in planta. Although a number of 9-substituted cytokinins occur endogenously, many have also been prepared in laboratories to facilitate the clarification of their physiological roles and the determination of their biological properties. Here, we chart advances in knowledge of 9-substituted cytokinin conjugates from their discovery to current understanding and reciprocal interactions between biological properties and associated structural motifs. Current organic chemistry enables preparation of derivatives with better biological properties, such as improved anti-senescence, strong cell division stimulation, shoot forming, or more persistent stress tolerance compared to endogenous or canonical cytokinins. Many artificial cytokinin conjugates stimulate higher mass production than naturally occurring cytokinins, improve rooting, or simply have high stability or bioavailability. Thus, knowledge of the biosynthesis, metabolism, and activity of 9-substituted cytokinins in various plant species extends the scope for exploiting both natural and artificially prepared cytokinins in plant biotechnology, tissue culture, and agriculture.
Collapse
Affiliation(s)
- Hana Vylíčilová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Magdaléna Bryksová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Vlasta Matušková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
- Correspondence:
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| |
Collapse
|
18
|
Distinct Peculiarities of In Planta Synthesis of Isoprenoid and Aromatic Cytokinins. Biomolecules 2020; 10:biom10010086. [PMID: 31948077 PMCID: PMC7022850 DOI: 10.3390/biom10010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022] Open
Abstract
The biosynthesis of aromatic cytokinins in planta, unlike isoprenoid cytokinins, is still unknown. To compare the final steps of biosynthesis pathways of aromatic and isoprenoid cytokinins, we synthesized a series of nucleoside derivatives of natural cytokinins starting from acyl-protected ribofuranosyl-, 2'-deoxyribofuranosyl- and 5'-deoxyribofuranosyladenine derivatives using stereoselective alkylation with further deblocking. Their cytokinin activity was determined in two bioassays based on model plants Arabidopsis thaliana and Amaranthus caudatus. Unlike cytokinins, cytokinin nucleosides lack the hormonal activity until the ribose moiety is removed. According to our experiments, ribo-, 2'-deoxyribo- and 5'-deoxyribo-derivatives of isoprenoid cytokinin N6-isopentenyladenine turned in planta into active cytokinins with clear hormonal activity. As for aromatic cytokinins, both 2'-deoxyribo- and 5'-deoxyribo-derivatives did not exhibit analogous activity in Arabidopsis. The 5'-deoxyribo-derivatives cannot be phosphorylated enzymatically in vivo; therefore, they cannot be "activated" by the direct LOG-mediated cleavage, largely occurring with cytokinin ribonucleotides in plant cells. The contrasting effects exerted by deoxyribonucleosides of isoprenoid (true hormonal activity) and aromatic (almost no activity) cytokinins indicates a significant difference in the biosynthesis of these compounds.
Collapse
|
19
|
New aromatic 6-substituted 2′-deoxy-9-(β)-d-ribofuranosylpurine derivatives as potential plant growth regulators. Bioorg Med Chem 2020; 28:115230. [DOI: 10.1016/j.bmc.2019.115230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023]
|
20
|
Oslovsky VE, Savelieva EM, Drenichev MS, Romanov GA, Mikhailov SN. Comparative Analysis of the Biosynthesis of Isoprenoid and Aromatic Cytokinins. DOKL BIOCHEM BIOPHYS 2019; 488:346-349. [PMID: 31768857 DOI: 10.1134/s1607672919050156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 12/21/2022]
Abstract
To compare the biosynthesis pathways of aromatic and isoprenoid cytokinins, a series of nucleoside derivatives of natural cytokinins was synthesized and their cytokinin activity was determined in a test system based on the model plant Arabidopsis thaliana. Cytokinin nucleosides are known to lack the hormonal activity until cleaving the ribose moiety at the position 9. Our experiments have shown that both ribo- and 5'-deoxyribo derivatives of N6-isopentenyladenine were able to turn into active cytokinins in planta exhibiting cytokinin activity. By contrast, 5'-deoxy nucleosides of aromatic cytokinins did not show similar activity. Since 5'-deoxy nucleosides cannot phosphorylate in vivo, the direct pathway of active cytokinin formation by cleavage of nucleotides is blocked here. The detected activity in 5'-deoxy nucleosides of isoprenoid cytokinins and the lack of the activity in 5'-deoxy nucleosides of aromatic cytokinins indicates the difference in the biosynthesis of these compounds.
Collapse
Affiliation(s)
- V E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - E M Savelieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - M S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - G A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - S N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
21
|
|
22
|
Krasnov VP, Musiyak VV, Vozdvizhenskaya OA, Galegov GA, Andronova VL, Gruzdev DA, Chulakov EN, Vigorov AY, Ezhikova MA, Kodess MI, Levit GL, Charushin VN. N-[ω-(Purin-6-yl)aminoalkanoyl] Derivatives of Chiral Heterocyclic Amines as Promising Anti-Herpesvirus Agents. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Vera V. Musiyak
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Georgiy A. Galegov
- Gamaleya Federal Research Centre for Epidemiology and Microbiology; Ministry of Healthcare of the Russian Federation; Ivanovsky Institute of Virology; 123098 Moscow Russia
| | - Valeria L. Andronova
- Gamaleya Federal Research Centre for Epidemiology and Microbiology; Ministry of Healthcare of the Russian Federation; Ivanovsky Institute of Virology; 123098 Moscow Russia
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Evgeny N. Chulakov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Alexey Yu. Vigorov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Marina A. Ezhikova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Mikhail I. Kodess
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| |
Collapse
|
23
|
Lanko K, Ma Y, Delang L, Mirabelli C, Neyts J. Antiviral effects of selected nucleoside analogues against human parechoviruses A1 and A3. Antiviral Res 2018; 162:51-53. [PMID: 30550798 DOI: 10.1016/j.antiviral.2018.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Parechoviruses A (HPeV, Picornaviridae) are neglected human pathogens that cause sepsis-like illness and severe neurological complications in infants. There are no antivirals available for the treatment of HPeV infections. We here report on cell-based assays that allow for medium-throughput antiviral screening of compound libraries against HPeV. The nucleoside viral polymerase inhibitor 2'-C-methylcytidine was identified as being an in vitro replication inhibitor of HPeV1 and HPeV3 that can serve as a reference molecule for further antiviral studies.
Collapse
Affiliation(s)
- Kristina Lanko
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Yipeng Ma
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Leen Delang
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| |
Collapse
|
24
|
Oslovsky VE, Drenichev MS, Alexeev CS, Solyev PN, Esipov RS, Mikhailov SN. Synthesis of Cytokinins via Enzymatic Arsenolysis of Purine Nucleosides. ACTA ACUST UNITED AC 2018; 75:e61. [DOI: 10.1002/cpnc.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Cyril S. Alexeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Roman S. Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow Russia
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
25
|
Drenichev MS, Oslovsky VE, Tararov VI, Mikhailov SN. Synthesis of N 6 -Substituted Adenosines as Cytokinin Nucleosides. ACTA ACUST UNITED AC 2018; 72:14.15.1-14.15.16. [PMID: 29927122 DOI: 10.1002/cpnc.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit describes preparation of N6 -substituted adenosines (cytokinin nucleosides), a unique class of compounds with a wide spectrum of biological activities. Regioselective alkylation of N6 -acetyl-2',3',5'-tri-O-acetyladenosine with alkyl halides under basic conditions or alcohols under Mitsunobu conditions followed by deprotection are the methods of choice for the preparation of the cytokinin nucleosides. The attractive feature of this strategy is the possibility of using a broad library of commercially available alkyl halides and alcohols under mild reaction conditions. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vitali I Tararov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
26
|
Oslovsky VE, Solyev PN, Polyakov KM, Alexeev CS, Mikhailov SN. Chemoenzymatic synthesis of cytokinins from nucleosides: ribose as a blocking group. Org Biomol Chem 2018. [PMID: 29520402 DOI: 10.1039/c8ob00223a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleoside phosphorylases are involved in the salvage pathways of nucleoside biosynthesis and catalyze the reversible reaction of a nucleobase with α-d-ribose-1-phosphate to yield a corresponding nucleoside and an inorganic phosphate. The equilibrium of these reactions is shifted towards nucleosides, especially in the case of purines. Purine nucleoside phosphorylase (PNP, EC 2.4.2.1) is widely used in labs and industry for the synthesis of nucleosides of practical importance. Bacterial PNPs have relatively broad substrate specificity utilizing a wide range of purines with different substituents to form the corresponding nucleosides. To shift the reaction in the opposite direction we have used arsenolysis instead of phosphorolysis. This reaction is irreversible due to the hydrolysis of the resulting α-d-ribose-1-arsenate. As a result, heterocyclic bases are formed in quantitative yields and can be easily isolated. We have developed a novel method for the preparation of cytokinins based on the enzymatic cleavage of the N-glycosidic bond of N6-substituted adenosines in the presence of PNP and Na2HAsO4. According to the HPLC analysis the conversion proceeds in quantitative yields. In the proposed strategy the ribose residue acts as a protective group. No contamination of the final products with AsO43- has been detected via HPLC-HRMS; simple analytical arsenate detection via ESI-MS has been proposed.
Collapse
Affiliation(s)
- Vladimir E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russian Federation.
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russian Federation.
| | - Konstantin M Polyakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russian Federation.
| | - Cyril S Alexeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russian Federation.
| | - Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russian Federation.
| |
Collapse
|
27
|
Kozlovskaya LI, Golinets AD, Eletskaya AA, Orlov AA, Palyulin VA, Kochetkov SN, Alexandrova LA, Osolodkin DI. Selective Inhibition of Enterovirus A Species Members' Reproduction by Furano[2, 3- d]pyrimidine Nucleosides Revealed by Antiviral Activity Profiling against (+)ssRNA Viruses. ChemistrySelect 2018; 3:2321-2325. [PMID: 32328513 PMCID: PMC7169607 DOI: 10.1002/slct.201703052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
The rational design of broad-spectrum antivirals requires data on antiviral activity of compounds against multiple viruses, which are often not available. We have developed a panel of (+)ssRNA viruses composed of Enterovirus and Flavivirus genera members allowing to study these activity spectra. Antiviral activity profiling of a set of nucleoside analogues revealed N 4-hydroxycytidine as an efficient inhibitor of replication of coxsackieviruses and other enteroviruses, but ineffective against tick-borne encephalitis virus. Furano[2, 3-d]pyrimidine nucleosides with n-pentyl or n-hexyl tails showed selective inhibition of Enterovirus A representatives. 5-(Tetradec-1-yn-1-yl)-uridine showed selective inhibition of tick-borne encephalitis virus at the micromolar level.
Collapse
Affiliation(s)
- Liubov I. Kozlovskaya
- Institute of Poliomielitis and Viral EncephalitidesFSBSI Chumakov FSC R&D IBP RASPoselok Instituta Poliomielita, 8 bd. 1, Poselenie MoskovskyMoscow 108819Russia
- Sechenov First Moscow State Medical University, Trubetskaya ul., 8Moscow 119991Russia
| | - Anastasia D. Golinets
- Institute of Poliomielitis and Viral EncephalitidesFSBSI Chumakov FSC R&D IBP RASPoselok Instituta Poliomielita, 8 bd. 1, Poselenie MoskovskyMoscow 108819Russia
- Sechenov First Moscow State Medical University, Trubetskaya ul., 8Moscow 119991Russia
| | - Anastasia A. Eletskaya
- Institute of Poliomielitis and Viral EncephalitidesFSBSI Chumakov FSC R&D IBP RASPoselok Instituta Poliomielita, 8 bd. 1, Poselenie MoskovskyMoscow 108819Russia
- Lomonosov Moscow State University, Leninskie Gory, 1Moscow 119991Russia
| | - Alexey A. Orlov
- Institute of Poliomielitis and Viral EncephalitidesFSBSI Chumakov FSC R&D IBP RASPoselok Instituta Poliomielita, 8 bd. 1, Poselenie MoskovskyMoscow 108819Russia
- Lomonosov Moscow State University, Leninskie Gory, 1Moscow 119991Russia
| | | | - Sergey N. Kochetkov
- Engelhargt Institute of Molecular BiologyRussian Academy of Sciences, Ul. Vavilova, 32Moscow 119991Russia
| | - Liudmila A. Alexandrova
- Engelhargt Institute of Molecular BiologyRussian Academy of Sciences, Ul. Vavilova, 32Moscow 119991Russia
| | - Dmitry I. Osolodkin
- Institute of Poliomielitis and Viral EncephalitidesFSBSI Chumakov FSC R&D IBP RASPoselok Instituta Poliomielita, 8 bd. 1, Poselenie MoskovskyMoscow 108819Russia
- Sechenov First Moscow State Medical University, Trubetskaya ul., 8Moscow 119991Russia
- Lomonosov Moscow State University, Leninskie Gory, 1Moscow 119991Russia
| |
Collapse
|
28
|
Eyer L, Nencka R, de Clercq E, Seley-Radtke K, Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother 2018; 26:2040206618761299. [PMID: 29534608 PMCID: PMC5890575 DOI: 10.1177/2040206618761299] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Nucleoside analogs represent the largest class of small molecule-based antivirals, which currently form the backbone of chemotherapy of chronic infections caused by HIV, hepatitis B or C viruses, and herpes viruses. High antiviral potency and favorable pharmacokinetics parameters make some nucleoside analogs suitable also for the treatment of acute infections caused by other medically important RNA and DNA viruses. This review summarizes available information on antiviral research of nucleoside analogs against arthropod-borne members of the genus Flavivirus within the family Flaviviridae, being primarily focused on description of nucleoside inhibitors of flaviviral RNA-dependent RNA polymerase, methyltransferase, and helicase/NTPase. Inhibitors of intracellular nucleoside synthesis and newly discovered nucleoside derivatives with high antiflavivirus potency, whose modes of action are currently not completely understood, have drawn attention. Moreover, this review highlights important challenges and complications in nucleoside analog development and suggests possible strategies to overcome these limitations.
Collapse
Affiliation(s)
- Luděk Eyer
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Erik de Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
29
|
Sapegin AV. Xth International Conference of Young Scientists in Chemistry “Mendeleev-2017.” Section “Bioorganic and Medicinal Chemistry”. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Oslovsky VE, Drenichev MS, Sun L, Kurochkin NN, Kunetsky VE, Mirabelli C, Neyts J, Leyssen P, Mikhailov SN. Fluorination of Naturally Occurring N⁶-Benzyladenosine Remarkably Increased Its Antiviral Activity and Selectivity. Molecules 2017; 22:molecules22071219. [PMID: 28726764 PMCID: PMC6152005 DOI: 10.3390/molecules22071219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022] Open
Abstract
Recently, we demonstrated that the natural cytokinin nucleosides N⁶-isopentenyladenosine (iPR) and N⁶-benzyladenosine (BAPR) exert a potent and selective antiviral effect on the replication of human enterovirus 71. In order to further characterize the antiviral profile of this class of compounds, we generated a series of fluorinated derivatives of BAPR and evaluated their activity on the replication of human enterovirus 71 in a cytopathic effect (CPE) reduction assay. The monofluorination of the BAPR-phenyl group changed the selectivity index (SI) slightly because of the concomitant high cell toxicity. Interestingly, the incorporation of a second fluorine atom resulted in a dramatic improvement of selectivity. Moreover, N⁶-trifluoromethylbenzyladenosines derivatives (9-11) exhibited also a very interesting profile, with low cytotoxicity observed. In particular, the analogue N⁶-(3-trifluoromethylbenzyl)-adenosine (10) with a four-fold gain in potency as compared to BAPR and the best SI in the class represents a promising candidate for further development.
Collapse
Affiliation(s)
- Vladimir E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Liang Sun
- Laboratory for Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Nikolay N Kurochkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Vladislav E Kunetsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Carmen Mirabelli
- Laboratory for Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Johan Neyts
- Laboratory for Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Pieter Leyssen
- Laboratory for Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
31
|
Orlov AA, Drenichev MS, Oslovsky VE, Kurochkin NN, Solyev PN, Kozlovskaya LI, Palyulin VA, Karganova GG, Mikhailov SN, Osolodkin DI. New tools in nucleoside toolbox of tick-borne encephalitis virus reproduction inhibitors. Bioorg Med Chem Lett 2017; 27:1267-1273. [DOI: 10.1016/j.bmcl.2017.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
|