1
|
Sumran G, Sharma M, Aggarwal R. Insight into the therapeutic potential of pyrazole-thiazole hybrids: A comprehensive review. Arch Pharm (Weinheim) 2024; 357:e2400576. [PMID: 39367561 DOI: 10.1002/ardp.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Several pyrazole-thiazole hybrids featuring two potentially bioactive pharmacophores with or without linker have been synthesized using the molecular hybridization approach as target structures by medicinal chemists to modulate multiple drug targets simultaneously. The presented review aims to provide an overview of the diversified and wide array of pharmacological activities of these hybrids bestowing anticancer, antifungal, antibacterial, analgesic, anti-inflammatory, antioxidant, antitubercular, antiviral, antiparasitic, and miscellaneous activities. The structure-activity relationships and potential mechanism of action are also reviewed to shed light on the development of more effective and biotargeted candidates. This review focuses on the latest research advances in the biological profile of pyrazole-thiazole hybrids reported from 2015 to the present, providing medicinal researchers with a comprehensive platform to rationally design and develop more promising pyrazole-thiazole hybrids.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, India
| | - Manisha Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| |
Collapse
|
2
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
3
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Qiu J, Zou Y, Li S, Yang L, Qiu Z, Kong F, Gu X. Discovery of benzimidazole substituted 1, 2, 4-oxadiazole compounds as novel anti-HBV agents with TLR8-agonistic activities. Eur J Med Chem 2022; 244:114833. [DOI: 10.1016/j.ejmech.2022.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
|
5
|
Xie D, Yang J, Niu X, Wang Z, Wu Z. Synthesis and bioactivity evaluation of 5‐trifluoromethyl‐1
H
‐pyrazole‐4‐carboxamide derivatives as potential anticancer and antifungal agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dewen Xie
- School of Pharmaceutical Sciences Guizhou University Guiyang China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Xue Niu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang China
- School of Chemistry and Chemical Engineering Guizhou University Guiyang China
| | - Zhenchao Wang
- School of Pharmaceutical Sciences Guizhou University Guiyang China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| |
Collapse
|
6
|
Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents. Molecules 2022; 27:molecules27092700. [PMID: 35566055 PMCID: PMC9101374 DOI: 10.3390/molecules27092700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses have been a long-term source of infectious diseases that can lead to large-scale infections and massive deaths. Especially with the recent highly contagious coronavirus (COVID-19), antiviral drugs were developed nonstop to deal with the emergence of new viruses and subject to drug resistance. Nitrogen-containing heterocycles have compatible structures and properties with exceptional biological activity for the drug design of antiviral agents. They provided a broad spectrum of interference against viral infection at various stages, from blocking early viral entry to disrupting the viral genome replication process by targeting different enzymes and proteins of viruses. This review focused on the synthesis and application of antiviral agents derived from various nitrogen-containing heterocycles, such as indole, pyrrole, pyrimidine, pyrazole, and quinoline, within the last ten years. The synthesized scaffolds target HIV, HCV/HBV, VZV/HSV, SARS-CoV, COVID-19, and influenza viruses.
Collapse
|
7
|
Targeting the Virus Capsid as a Tool to Fight RNA Viruses. Viruses 2022; 14:v14020174. [PMID: 35215767 PMCID: PMC8879806 DOI: 10.3390/v14020174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses.
Collapse
|
8
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Design and synthesis of novel quinazolinone derivatives as anti-HBV agents with TLR8 agonist effect. Eur J Med Chem 2022; 231:114159. [DOI: 10.1016/j.ejmech.2022.114159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/04/2023]
|
10
|
High throughput screening identifies inhibitors for parvovirus B19 infection of human erythroid progenitor cells. J Virol 2021; 96:e0132621. [PMID: 34669461 DOI: 10.1128/jvi.01326-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parvovirus B19 (B19V) infection can cause hematological disorders and fetal hydrops during pregnancy. Currently, no antivirals or vaccines are available for the treatment or the prevention of B19V infection. To identify novel small-molecule antivirals against B19V replication, we developed a high throughput screening assay, which is based on an in vitro nicking assay using recombinant N-terminal 1-176 amino acids of the viral large nonstructural protein (NS1N) and a fluorescently labeled DNA probe (OriQ) that spans the nicking site of the viral DNA replication origin. We collectively screened 17,040 compounds and identified 2,178 (12.78%) hits that possess >10% inhibition of the NS1 nicking activity, among which 84 hits were confirmed to inhibit nicking in a dose-dependent manner. Using ex vivo expanded primary human erythroid progenitor cells (EPCs) infected by B19V, we validated 24 compounds demonstrated >50% in vivo inhibition of B19V infection at 10 μM, which can be categorized into 7 structure scaffolds. Based on the therapeutic index [half maximal cytotoxic concentration (CC50)/half maximal effective concentration (EC50)] in EPCs, the top 4 compounds were chosen to examine their inhibitions of B19V infection in EPCs at two times of the 90% maximal effective concentration (EC90). A purine derivative (P7), demonstrated an antiviral effect (EC50=1.46 μM) without prominent cytotoxicity (CC50=71.8 μM) in EPCs, exhibited 92% inhibition of B19V infection in EPCs at 3.32 μM, which can be used as the lead compound in future studies for the treatment of B19V infection caused hematological disorders. Importance B19V encodes a large non-structural protein NS1. Its N-terminal domain (NS1N) consisting of 1-176 amino acids binds to viral DNA and serves as an endonuclease to nick the viral DNA replication origins, which is a pivotal step in rolling hairpin-dependent B19V DNA replication. For high throughput screening (HTS) of anti-B19V antivirals, we miniaturized a fluorescence-based in vitro nicking assay, which employs a fluorophore-labeled probe spanning the trs and the NS1N protein, into a 384-well plate format. The HTS assay showed a high reliability and capability in screening 17,040 compounds. Based on the therapeutic index [half maximal cytotoxic concentration (CC50)/half maximal effective concentration (EC50)] in EPCs, a purine derivative demonstrated an antiviral effect of 92% inhibition of B19V infection in EPCs at 3.32 μM (two times EC90). Our study demonstrated a robust HTS assay for screening antivirals against B19V infection.
Collapse
|
11
|
Senaweera S, Du H, Zhang H, Kirby KA, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Discovery of New Small Molecule Hits as Hepatitis B Virus Capsid Assembly Modulators: Structure and Pharmacophore-Based Approaches. Viruses 2021; 13:770. [PMID: 33925540 PMCID: PMC8146408 DOI: 10.3390/v13050770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CpAMs) have shown promise as potent anti-HBV agents in both preclinical and clinical studies. Herein, we report our efforts in identifying novel CpAM hits via a structure-based virtual screening against a small molecule protein-protein interaction (PPI) library, and pharmacophore-guided compound design and synthesis. Curated compounds were first assessed in a thermal shift assay (TSA), and the TSA hits were further evaluated in an antiviral assay. These efforts led to the discovery of two structurally distinct scaffolds, ZW-1841 and ZW-1847, as novel HBV CpAM hits, both inhibiting HBV in single-digit µM concentrations without cytotoxicity at 100 µM. In ADME assays, both hits displayed extraordinary plasma and microsomal stability. Molecular modeling suggests that these hits bind to the Cp dimer interfaces in a mode well aligned with known CpAMs.
Collapse
Affiliation(s)
- Sameera Senaweera
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Karen A. Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| |
Collapse
|
12
|
Aziz H, Zahoor AF, Shahzadi I, Irfan A. Recent Synthetic Methodologies Towards the Synthesis of Pyrazoles. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1614638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hira Aziz
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| |
Collapse
|
13
|
Dengale SG, Akolkar HN, Karale BK, Darekar NR, Mhaske SD, Shaikh MH, Raut DN, Deshmukh KK. Synthesis of 3‐(trifluoromethyl)‐1‐(perfluorophenyl)‐1
H
‐pyrazol‐5(4
H
)‐one derivatives via Knoevenagel condensation and their biological evaluation. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sujata G. Dengale
- P.G. and Research, Department of Chemistry Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarada Science College Sangamner India
| | - Hemantkumar N. Akolkar
- P.G. and Research, Department of Chemistry Radhabai Kale Mahila Mahavidyalaya Ahmednagar India
| | - Bhausaheb K. Karale
- P.G. and Research, Department of Chemistry Radhabai Kale Mahila Mahavidyalaya Ahmednagar India
| | - Nirmala R. Darekar
- P.G. and Research, Department of Chemistry Radhabai Kale Mahila Mahavidyalaya Ahmednagar India
| | | | - Mubarak H. Shaikh
- P.G. and Research, Department of Chemistry Radhabai Kale Mahila Mahavidyalaya Ahmednagar India
| | | | - Keshav K. Deshmukh
- P.G. and Research, Department of Chemistry Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarada Science College Sangamner India
| |
Collapse
|
14
|
Salem MS, Al-Mabrook SAM, El-Hashash MAEM. Design, Synthesis and Antiproliferative Activity of Novel Heterocycles from 6-Iodo-2-phenyl-4H-benzo[d][1,3]thiazine-4-thione. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1847287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Marwa S. Salem
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasiya, Egypt
| | - Selima A. M. Al-Mabrook
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasiya, Egypt
- Faculty of science, Alasmarya Islamic University, Zliten, Libya
| | | |
Collapse
|
15
|
Synthesis, X-ray structure, vibrational spectroscopy, DFT, biological evaluation and molecular docking studies of (E)-N’-(4-(dimethylamino)benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128541] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Qiu J, Zhou Q, Zhang Y, Guan M, Li X, Zou Y, Huang X, Zhao Y, Chen W, Gu X. Discovery of novel quinazolinone derivatives as potential anti-HBV and anti-HCC agents. Eur J Med Chem 2020; 205:112581. [PMID: 32791397 DOI: 10.1016/j.ejmech.2020.112581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
As a continuation of earlier works, a series of novel quinazolinone derivatives (5a-s) were synthesized and evaluated for their in vitro anti-HBV and anti-hepatocellular carcinoma cell (HCC) activities. Among them, compounds 5j and 5k exhibited most potent inhibitory effect on HBV DNA replication in both drug sensitive and resistant (lamivudine and entecavir) HBV strains. Interestingly, besides the anti-HBV effect, compound 5k could significantly inhibit the proliferation of HepG2, HUH7 and SK- cells, with IC50 values of 5.44, 6.42 and 6.75 μM, respectively, indicating its potential anti-HCC activity. Notably, the in vitro anti-HCC activity of 5k were more potent than that of positive control 5-fluorouracil and sorafenib. Further studies revealed that compound 5k could induce HepG2 cells apoptosis by dose-dependently upregulating Bad and Bax expression and decreasing Bcl-2 and Bcl-xl protein level. Considering the potent anti-HBV and anti-HCC effect, compound 5k might be a promising lead to develop novel therapeutic agents towards HBV infection and HBV-induced HCC.
Collapse
Affiliation(s)
- Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qingqing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yinpeng Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Mingyu Guan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yueting Zou
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xuan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yali Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wang Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
17
|
Jia H, Yu J, Du X, Cherukupalli S, Zhan P, Liu X. Design, diversity-oriented synthesis and biological evaluation of novel heterocycle derivatives as non-nucleoside HBV capsid protein inhibitors. Eur J Med Chem 2020; 202:112495. [PMID: 32712535 DOI: 10.1016/j.ejmech.2020.112495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
The capsid assembly is a significant phase for the hepatitis B virus (HBV) lifespan and is an essential target for anti-HBV drug discovery and development. Herein, we used scaffold hopping, bioisosterism, and pharmacophore hybrid-based strategies to design and synthesize six series of various heterocycle derivatives (pyrazole, thiazole, pyrazine, pyrimidine, and pyridine) and screened for in vitro anti-HBV non-nucleoside activity. Drug candidate NZ-4 and AT-130 were used as lead compounds. Several compounds exhibited prominent anti-HBV activity compared to lead compound NZ-4 and positive drug Lamivudine, especially compound II-8b, showed the most prominent anti-HBV DNA replication activity (IC50 = 2.2 ± 1.1 μM). Also compounds IV-8e and VII-5b showed the best in vitro anti-HBsAg secretion (IC50 = 3.8 ± 0.7 μM, CC50 > 100 μM) and anti-HBeAg secretion (IC50 = 9.7 ± 2.8 μM, CC50 > 100 μM) respectively. Besides, II-8b can interact HBV capsid protein with good affinity constants (KD = 60.0 μM), which is equivalent to lead compound NZ-4 ((KD = 50.6 μM). The preliminary structure-activity relationships (SARs) of the newly synthesized compounds were summarized, which may help researchers to discover more potent anti-HBV agents.
Collapse
Affiliation(s)
- Haiyong Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; School of Pharmacy, Weifang Medical University, 261053, Weifang, Shandong, PR China
| | - Ji Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xianhong Du
- School of Pharmacy, Weifang Medical University, 261053, Weifang, Shandong, PR China; Department of Immunology, Key Laboratory for Experimental, Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Shandong University School of Medicine, Jinan, 250012, Shandong Province, China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
18
|
Yu J, Jia H, Guo X, Desta S, Zhang S, Zhang J, Ding X, Liang X, Liu X, Zhan P. Design, synthesis, and evaluation of novel heteroaryldihydropyrimidine derivatives as non‐nucleoside hepatitis B virus inhibitors by exploring the solvent‐exposed region. Chem Biol Drug Des 2020; 95:567-583. [PMID: 30825248 DOI: 10.1111/cbdd.13512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/28/2018] [Accepted: 02/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Ji Yu
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Haiyong Jia
- School of Pharmacy Weifang Medical University Weifang China
| | - Xiaowei Guo
- Department of Immunology Key Laboratory for Experimental, Teratology of Ministry of Education Shandong Provincial Key Laboratory of Infection and Immunology Shandong University School of Medicine Jinan China
| | - Samuel Desta
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Shuo Zhang
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Jian Zhang
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Xiao Ding
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Xiaohong Liang
- Department of Immunology Key Laboratory for Experimental, Teratology of Ministry of Education Shandong Provincial Key Laboratory of Infection and Immunology Shandong University School of Medicine Jinan China
| | - Xinyong Liu
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Peng Zhan
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| |
Collapse
|
19
|
Design, Synthesis and Biological Activities of Novel N-Aryl-1H-pyrazole-5-carboxylate Derivatives. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9274-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Merry T, Maddela P, Devaraya K, Kondapi AK, Pradeep CP. Et
3
N‐Prompted Efficient Synthesis of Anthracenyl Pyrazolines and Their Cytotoxicity Evaluation against Cancer Cell Lines. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thechano Merry
- Department of ChemistryNagaland University Lumami Nagaland 798627 India
| | - Prabhakar Maddela
- Department of ChemistryNagaland University Lumami Nagaland 798627 India
| | - Kiran Devaraya
- Department of Biotechnology & Bioinformatics, School of Life SciencesUniversity of Hyderabad Hyderabad 500046 India
| | - Anand K. Kondapi
- Department of Biotechnology & Bioinformatics, School of Life SciencesUniversity of Hyderabad Hyderabad 500046 India
| | - Chullikkattil P. Pradeep
- School of Basic SciencesIndian Institute of Technology Mandi Mandi Himachal Pradesh 175001 India
| |
Collapse
|
21
|
Ibrahim HM, Behbehani H. Sustainable Synthetic Approach for (Pyrazol-4-ylidene)pyridines By Metal Catalyst-Free Aerobic C(sp 2)-C(sp 3) Coupling Reactions between 1-Amino-2-imino-pyridines and 1-Aryl-5-pyrazolones. ACS OMEGA 2019; 4:11701-11711. [PMID: 31460276 PMCID: PMC6682090 DOI: 10.1021/acsomega.9b01650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 05/26/2023]
Abstract
A novel, metal catalyst-free, and efficient method has been developed for the synthesis of (pyrazol-4-ylidene)pyridine derivatives. The process involves dehydrogenative coupling of 1-amino-2-imino-pyridines with 1-aryl-5-pyrazolone derivatives utilizing O2 as the sole oxidant. The new method benefits from a high atom economy, efficiency, and substrate scope, as well as the simplicity of reaction and product purification procedures.
Collapse
Affiliation(s)
- Hamada Mohamed Ibrahim
- Chemistry
Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum, Egypt
| | - Haider Behbehani
- Chemistry
Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
22
|
Synthesis, spectroscopic characterization, reactive properties by DFT calculations, molecular dynamics simulations and biological evaluation of Schiff bases tethered 1,2,4-triazole and pyrazole rings. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Cui YJ, Tang LQ, Zhang CM, Liu ZP. Synthesis of Novel Pyrazole Derivatives and Their Tumor Cell Growth Inhibitory Activity. Molecules 2019; 24:molecules24020279. [PMID: 30642134 PMCID: PMC6359563 DOI: 10.3390/molecules24020279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
To find novel antitumor agents, a series of 1H-benzofuro[3,2-c]pyrazole derivatives 4a-e were designed and synthesized. The treatment of 6-methoxybenzofuran-3(2H)-one 3 with LiHMDS in anhydrous tetrahydrofuran (THF) followed by reaction with 3-substitued phenyl isothiocyanate gave the thioamide intermediates, which underwent condensation with hydrazine monohydrate in dioxane/EtOH (1:1) to provide the benzofuropyrazole derivatives 4a–e as well as the unexpected pyrazole derivatives 5a–e. In tumor cell growth inhibitory assay, all the benzofuropyrazole derivatives were not active against the breast tumor MCF-7 cell, only 4a was highly active and more potent than ABT-751 against the leukemia K562 (GI50 = 0.26 μM) and lung tumor A549 cells (GI50 = 0.19 μM), while other benzofuropyrazoles showed very weak inhibitory activity. In contrast, the pyrazoles 5a-e were in general more potent than the benzofuropyrazoles 4a–e. Compound 5a exhibited a similar tendency to that of 4a with high potency against K562 and A549 cells but weak effects on MCF-7 cell. Both pyrazoles 5b and 5e exhibited high inhibitory activities against K562, MCF-7 and A549 cells. The most active compound 5b was much more potent than ABT-751 against K562 and A549 cells with GI50 values of 0.021 and 0.69 μM, respectively. Moreover, 5b was identified as a novel tubulin polymerization inhibitor with an IC50 of 7.30 μM.
Collapse
Affiliation(s)
- Ying-Jie Cui
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Long-Qian Tang
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Cheng-Mei Zhang
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Zhao-Peng Liu
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
24
|
Singh US, Mulamoottil VA, Chu CK. 2′-Fluoro-6′-methylene carbocyclic adenosine and its phosphoramidate prodrug: A novel anti-HBV agent, active against drug-resistant HBV mutants. Med Res Rev 2018; 38:977-1002. [DOI: 10.1002/med.21490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Uma S. Singh
- Department of Pharmaceutical and Biomedical Sciences; University of Georgia; Athens GA USA
| | | | - Chung K. Chu
- Department of Pharmaceutical and Biomedical Sciences; University of Georgia; Athens GA USA
| |
Collapse
|
25
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
26
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
27
|
Qiu J, Gong Q, Gao J, Chen W, Zhang Y, Gu X, Tang D. Design, synthesis and evaluation of novel phenyl propionamide derivatives as non-nucleoside hepatitis B virus inhibitors. Eur J Med Chem 2018; 144:424-434. [DOI: 10.1016/j.ejmech.2017.12.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
|
28
|
Design, synthesis and primary biological evaluation of the novel 2-pyridone derivatives as potent non-nucleoside HBV inhibitors. Eur J Med Chem 2017; 136:144-153. [PMID: 28494252 DOI: 10.1016/j.ejmech.2017.04.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
|