1
|
Rocha Garcia MA, Sardi JDCO, Dos Santos MB, Lazarini JG, Rosalen PL, Regasini LO. Synthesis and evaluation of the antifungal and antibiofilm potential of aminochalcones. Arch Microbiol 2025; 207:37. [PMID: 39831986 DOI: 10.1007/s00203-025-04244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Candida is a commensal fungus of clinical interest that commonly lives in oral cavity and intestine but can become an opportunist microrganism and cause severe infections. A serie of 10 aminochalcones were designed and synthetized to obtain compounds anti-Candida with potent and broad-spectrum activity. The most active compound J34 demonstrated excellent in vitro activity against Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata and Candida krusei with minimum inhibitory concentration between 1.9 and 7.8 µg/mL. The association of aminochalcone J34 with amphotericin B demonstrated synergistic effect against C. albicans, with Fractional Inhibiroty Concentration Index (FICI) value of 0.5. Subinhibitory concentration of J34 inhibited the C. albicans adhesion to human keratinocytes. Treatment with J34 reduced C. albicans biofilm formation, as well as acts on preformed biofilm in concentration-dependent mode. Time-kill curve demonstrated that J34 had fungicidal action after 12 h of treatment. Preliminary mechanism of action study showed J34 interacts with membrane ergosterol but does not act on fungal cell wall of C. albicans. In additon, in vivo studies using Galleria mellonella indicated low toxic effect of chalcone J34 after 72 h of treatment.
Collapse
Affiliation(s)
- Mayara Aparecida Rocha Garcia
- Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil.
| | | | - Mariana Bastos Dos Santos
- Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil
| | - Josy Golsoni Lazarini
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Luis Octávio Regasini
- Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil
| |
Collapse
|
2
|
Bajaj S, Gupta A, Nema P, Rawal R, Kashaw V, Kashaw SK. Comprehensive Insight into Green Synthesis Approaches, Structural Activity Relationship, and Therapeutic Potential of Pyrazolic Chalcone Derivative. Mini Rev Med Chem 2025; 25:539-577. [PMID: 39513315 DOI: 10.2174/0113895575327555241024111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024]
Abstract
Pyrazolic chalcone exhibits diverse therapeutic activities, including anti-inflammatory, antioxidant, antimicrobial, antitumor, and anti-diabetic properties. Structural activity relationship (SAR) studies play a crucial role in understanding the molecular aspects governing their biological effects, guiding the rational design of derivatives with enhanced efficacy and reduced side effects. This review provides an overview of pyrazolic chalcone derivatives, emphasizing their synthesis through both conventional and green methods. In comparison, conventional synthesis methods have been widely employed in the past for the production of pyrazolic chalcones, often relying on traditional chemical processes that may involve the use of hazardous reagents and generate significant waste. On the other hand, green synthesis methods, in harmony with the growing emphasis on sustainable practices in drug discovery, offer a more environmentally friendly alternative. Green synthesis typically involves the use of eco-friendly reagents, solvents, and energy-efficient processes, resulting in reduced environmental impact and improved resource efficiency. Overall, pyrazolic chalcone derivatives represent a promising class of compounds with significant potential for therapeutic applications.
Collapse
Affiliation(s)
- Samyak Bajaj
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Akanksha Gupta
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyanshu Nema
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Rashmi Rawal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
3
|
Turani O, Castro MJ, Vazzana J, Mendioroz P, Volpe MA, Gerbino DC, Bouzat C. Potent Anthelmintic Activity of Chalcones Synthesized by an Effective Green Approach. ChemMedChem 2024; 19:e202400071. [PMID: 38573571 DOI: 10.1002/cmdc.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
There is currently an urgent need for new anthelmintic agents due to increasing resistance to the limited available drugs. The chalcone scaffold is a privileged structure for developing new drugs and has been shown to exhibit potential antiparasitic properties. We synthesized a series of chalcones via Claisen-Schmidt condensation, introducing a novel recoverable catalyst derived from biochar obtained from the pyrolysis of tree pruning waste. Employing microwave irradiation and a green solvent, this approach demonstrated significantly reduced reaction times and excellent compatibility with various functional groups. The result was the generation of a library of functionalized chalcones, exhibiting exclusive (E)-selectivity and high to excellent yields. The chalcone derivatives were evaluated on the free-living nematode Caenorhabditis elegans. The chalcone scaffold, along with two derivatives incorporating a methoxy substituent in either ring, caused a concentration-dependent decrease of worm motility, revealing potent anthelmintic activity and spastic paralysis not mediated by the nematode levamisole-sensitive nicotinic receptor. The combination of both methoxy groups in the chalcone scaffold resulted in a less potent compound causing worm hypermotility at the short term, indicating a distinct molecular mechanism. Through the identification of promising drug candidates, this work addresses the demand for new anthelmintic drugs while promoting sustainable chemistry.
Collapse
Affiliation(s)
- Ornella Turani
- INIBIBB (CONICET-UNS), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Camino La Carrindanga km 7, 8000, Bahía Blanca, Argentina
| | - M Julia Castro
- INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Juliana Vazzana
- INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Pamela Mendioroz
- INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - María A Volpe
- PLAPIQUI (CONICET-CCTBB), Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - Darío C Gerbino
- INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- INIBIBB (CONICET-UNS), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Camino La Carrindanga km 7, 8000, Bahía Blanca, Argentina
| |
Collapse
|
4
|
Cao V, Sukanadi IP, Loeanurit N, Suroengrit A, Paunrat W, Vibulakhaopan V, Hengphasatporn K, Shigeta Y, Chavasiri W, Boonyasuppayakorn S. A sulfonamide chalcone inhibited dengue virus with a potential target at the SAM-binding site of viral methyltransferase. Antiviral Res 2023; 220:105753. [PMID: 37967754 DOI: 10.1016/j.antiviral.2023.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Dengue infection is a global health problem as climate change facilitates the spread of mosquito vectors. Infected patients could progress to severe plasma leakage and hemorrhagic shock, where current standard treatment remains supportive. Previous reports suggested that several flavonoid derivatives inhibited mosquito-borne flaviviruses. This work aimed to explore sulfonamide chalcone derivatives as dengue inhibitors and to identify molecular targets. We initially screened 27 sulfonamide chalcones using cell-based antiviral and cytotoxic screenings. Two potential compounds, SC22 and SC27, were identified with DENV1-4 EC50s in the range of 0.71-0.94 and 3.15-4.46 μM, and CC50s at 14.63 and 31.02 μM, respectively. The compounds did not show any elevation in ALT or Cr in C57BL/6 mice on the 1st, 3rd, and 7th days after being administered intraperitoneally with 50 mg/kg SC22 or SC27 in a single dose. Moreover, the SAM-binding site of NS5 methyltransferase was a potential target of SC27 identified by computational and enzyme-based assays. The main target of SC22 was in a late stage of viral replication, but the exact target molecule had yet to be identified. In summary, a sulfonamide chalcone, SC27, was a potential DENV inhibitor that targeted viral methyltransferase. Further investigation should be the study of the structure-activity relationship of SC27 derivatives for higher potency and lower toxicity.
Collapse
Affiliation(s)
- Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; DaNang University of Medical Technology and Pharmacy, DaNang, 50200, Viet Nam
| | - I Putu Sukanadi
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naphat Loeanurit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aphinya Suroengrit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wattamon Paunrat
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vipanee Vibulakhaopan
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Vaccine Research and Development, Chulalongkorn University (Chula-VRC), Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Mijoba A, Fernandez-Moreira E, Parra-Giménez N, Espinosa-Tapia S, Blanco Z, Ramírez H, Charris JE. Synthesis of Benzocycloalkanone-Based Michael Acceptors and Biological Activities as Antimalarial and Antitrypanosomal Agents. Molecules 2023; 28:5569. [PMID: 37513441 PMCID: PMC10385825 DOI: 10.3390/molecules28145569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
A series of benzocycloalkanone derivatives have been prepared and evaluated as antimalarial and antitrypanosomal agents. The compounds were obtained by direct coupling of preformed 4-substituted benzaldehyde and indanone or tetralone substitutes through aldol condensation of Claisen-Schmidt using sodium hydroxide as a catalyst in ethanol at room temperature. Although designed to inhibit the formation of β-hematin in vitro, only three compounds, 10, 11, and 12, showed activities greater than 50% (75.16%, 63.02%, and 56.17%, respectively). The results of the in vivo antimalarial evaluation show that 10, 11, and 12 reduced parasitemia marginally, and an insignificant increase in the days of survival of the mice was observed. As trypanocidals, all compounds showed marginal activity as inhibitors of the proliferation of T. cruzi epimastigotes, except compound 33, with an activity of 51.08 ± 3.4% compared to the activity shown by the reference compound benznidazole 59.99 ± 2.9%. The compounds appear to have little cytotoxic effect against VERO cells in vitro; this new class of Michael acceptor agents clearly warrants further investigation.
Collapse
Affiliation(s)
- Ali Mijoba
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, Los Chaguaramos 1041-A, Caracas 47206, Venezuela
- Laboratory of Parasites Physiology, Biophysics and Biochemistry Center, Instituto Venezolano de Invest Gaciones Científicas, Altos de Pipe 1020-A, Caracas 21827, Venezuela
| | | | - Nereida Parra-Giménez
- Laboratory of Parasites Physiology, Biophysics and Biochemistry Center, Instituto Venezolano de Invest Gaciones Científicas, Altos de Pipe 1020-A, Caracas 21827, Venezuela
| | - Sandra Espinosa-Tapia
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Zuleyma Blanco
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, Los Chaguaramos 1041-A, Caracas 47206, Venezuela
| | - Hegira Ramírez
- Facultad de Ciencias de la Salud y Desarrollo Humano, Univesidad Ecotec, Km. 13.5 Samborondón, Samborondón 092302, Ecuador
| | - Jaime E Charris
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, Los Chaguaramos 1041-A, Caracas 47206, Venezuela
| |
Collapse
|
6
|
Arslan T, Senturk M, Karagoz L, Karagoz Y, Ekinci D, Efe A, Türkoğlu EA, Uras F. Synthesis
, in vitro
and
in silico
Biological Studies of Sulfonamide Chalcones as Esterase Inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Tayfun Arslan
- Department of Chemistry Faculty of Science and Art Giresun University 28200 Giresun Türkiye
| | - Murat Senturk
- Department of Biochemistry Faculty of Pharmacy Agri Ibrahim Cecen University 04100 Agri Türkiye
| | - Lütfi Karagoz
- Department of Biochemistry Faculty of Pharmacy Marmara University 34668 Istanbul Türkiye
| | - Yalcin Karagoz
- Department of Biochemistry Faculty of Pharmacy Agri Ibrahim Cecen University 04100 Agri Türkiye
| | - Deniz Ekinci
- Department of Agricultural Biotechnology Faculty of Agriculture Ondokuz Mayıs University 55139 Samsun Türkiye
| | - Asiye Efe
- Institute of Graduate Education Agri Ibrahim Cecen University 04100 Agri Türkiye
| | - Emir Alper Türkoğlu
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy University of Health Sciences Turkey 34668 Istanbul Türkiye
| | - Fikriye Uras
- Department of Biochemistry Faculty of Pharmacy Marmara University 34668 Istanbul Türkiye
| |
Collapse
|
7
|
Matsa R, Makam P, Anilakumari R, Sundharesan M, Mathew N, Kannan T. Design, synthesis, and in vitro evaluation of thiosemicarbazone derivatives as anti-filarial agents. Exp Parasitol 2022; 241:108363. [PMID: 36007586 DOI: 10.1016/j.exppara.2022.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2021] [Accepted: 08/17/2022] [Indexed: 11/04/2022]
Abstract
Effective macrofilaricidal drugs are not commercially available, and in an endeavour to find out new macrofilaricidal agents, in this research work, thiosemicarbazone derivatives have been prepared and tested against adult Setaria digitata, a cattle filarial parasite, as a model nematode for the filarial parasite, Wuchereria bancrofti. Lipinski and Veber rules have been used to design these molecules and found out that all the designed molecules show drug-like molecular properties. The in vitro anti-filarial potential of thiosemicarbazones against S. digitata was carried out using worm motility and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) reduction colorimetric assays at 100 μg/ml concentration for the incubation period of 24 h. The standard drugs used at present for filaria, Albendazole, Ivermectin and Diethylcarbamazine were not able to kill the adult filarial worms effectively. In contrast, phenyl thiosemicarbazones with trifluoromethyl substitution at 3rd and 4th positions, 2-pyrrolyl, and isatinyl made the adult worms immotile and also showed 69%-83% inhibition in formazan formation an indicator of non viability.
Collapse
Affiliation(s)
- Ramkishore Matsa
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605 014, India
| | - Parameshwar Makam
- Chemical Science Research Group, Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| | - R Anilakumari
- ICMR - Vector Control Research Centre, Indira Nagar, Puducherry, 605006, India
| | - M Sundharesan
- ICMR - Vector Control Research Centre, Indira Nagar, Puducherry, 605006, India
| | - Nisha Mathew
- ICMR - Vector Control Research Centre, Indira Nagar, Puducherry, 605006, India.
| | - Tharanikkarasu Kannan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605 014, India.
| |
Collapse
|
8
|
Bhoj P, Togre N, Khatri V, Goswami K. Harnessing Immune Evasion Strategy of Lymphatic Filariae: A Therapeutic Approach against Inflammatory and Infective Pathology. Vaccines (Basel) 2022; 10:vaccines10081235. [PMID: 36016123 PMCID: PMC9415972 DOI: 10.3390/vaccines10081235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human lymphatic filariae have evolved numerous immune evasion strategies to secure their long-term survival in a host. These strategies include regulation of pattern recognition receptors, mimicry with host glycans and immune molecules, manipulation of innate and adaptive immune cells, induction of apoptosis in effector immune cells, and neutralization of free radicals. This creates an anti-inflammatory and immunoregulatory milieu in the host: a modified Th2 immune response. Therefore, targeting filarial immunomodulators and manipulating the filariae-driven immune system against the filariae can be a potential therapeutic and prophylactic strategy. Filariae-derived immunosuppression can also be exploited to treat other inflammatory diseases and immunopathologic states of parasitic diseases, such as cerebral malaria, and to prevent leishmaniasis. This paper reviews immunomodulatory mechanisms acquired by these filariae for their own survival and their potential application in the development of novel therapeutic approaches against parasitic and inflammatory diseases. Insight into the intricate network of host immune-parasite interactions would aid in the development of effective immune-therapeutic options for both infectious and immune-pathological diseases.
Collapse
Affiliation(s)
| | - Namdev Togre
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
- Correspondence: (N.T.); (K.G.)
| | | | - Kalyan Goswami
- All India Institute of Medical Sciences, Saguna, Kalyani 741245, India
- Correspondence: (N.T.); (K.G.)
| |
Collapse
|
9
|
Mphahlele MJ, Zamisa SJ, El-Gogary TM. Characterization, Hirshfeld surface analysis, DFT study and an in vitro α-glucosidase/α-amylase/radical scavenging profiling of novel 5-styryl-2-(4-tolylsulfonamido) chalcones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Mphahlele MJ. Synthesis, Structural and Biological Properties of the Ring-A Sulfonamido Substituted Chalcones: A Review. Molecules 2021; 26:molecules26195923. [PMID: 34641467 PMCID: PMC8512312 DOI: 10.3390/molecules26195923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Sulfonamidochalcones continue to assert themselves as versatile synthetic intermedi-ates and several articles continue to appear in literature describing their synthesis, chemical transformation and biological properties. These compounds are not only of interest from the medicinal chemistry context, their conformations and crystalline structures also continue to attract attention to explore non-covalent (intramolecular and intermolecular) interactions, control molecular conformations, and improve their physicochemical and optical properties. Despite an exhaustive list of examples of the ring-A sulfonamide-appended chalcones described in the literature, there is no com-prehensive review dedicated to their synthesis, structural and biological properties. This review focuses attention on the synthesis, structure and biological properties of the ring-A sulfonamide-appended chalcones (o/m/p-sulfonamidochalcones) as well as their potential as non-linear optical materials.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa
| |
Collapse
|
11
|
Design, synthesis and antibacterial activity of chalcones against MSSA and MRSA planktonic cells and biofilms. Bioorg Chem 2021; 116:105279. [PMID: 34509799 DOI: 10.1016/j.bioorg.2021.105279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is the one of the most successful modern pathogens. The same bacterium that lives as a skin and mucosal commensal can be transmitted in health-care and community-settings and causes severe infections. Thus, there is a great challenge for a discovery of novel anti-Staphylococcus aureus compounds, which should act against resistant strains. Herein, we designed and synthesized a series of 17 chalcones, substituted by amino group on ring A, which were evaluated against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus MRSA planktonic cells. The antibacterial potency was improved by substituents on ring B, which were designed according to Topliss' manual method. 4-bromo-3'-aminochalcone (5f) was the most active, demonstrating minimum inhibitory concentration (MIC) values of 1.9 μg mL-1 and 7.8 µg mL-1 against MSSA and MRSA, respectively. The association of 5f with vancomycin demonstrated synergistic effect against MSSA and MRSA, with Fractional Inhibitory Concentration Index (FICI) values of 0.4 and 0.3, respectively. Subinhibitory concentration of 5f inhibited the MSSA and MRSA adhesion to human keratinocytes. Chalcone 5f was able to reduce MSSA and MRSA biofilm formation, as well as acts on preformed biofilm in concentration-dependent mode. Scanning electron microscopy analyses confirmed severe perturbations caused by 5f on MSSA and MRSA biofilm architecture. The acute toxicity assay, using Galleria mellonella larvae, indicated a low toxic effect of 5f after 72 h, displaying lethality of 20% and 30% at 7.8 μg mL-1 and 78.0 μg mL-1, respectively. In addition, the antibacterial activity spectrum of 5f indicated action against planktonic cells of Enterococcus faecalis (MIC = 7.8 μg mL-1), Acinetobacter baumannii (MIC = 15.6 μg mL-1) and Mycobacterium tuberculosis (MIC = 5.7 μg mL-1). Altogether, these results open new avenues for 5f as an anti-Staphylococcus aureus agent, with potential applications as antibacterial drug, adjunct of antibiotics and medical devices coating.
Collapse
|
12
|
Role of Glutathione in Chalcone Derivative Induced Apoptosis of Brugia malayi and its Possible Therapeutic Implication. Acta Parasitol 2021; 66:406-415. [PMID: 33037957 DOI: 10.1007/s11686-020-00291-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/28/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Oxidative stress is an essential component of innate response against microbes. The oxidative impact has a very subtle connection with apoptosis. Our previous work indicated presumptive evidence of apoptosis by the chalcone derivatives against the human lymphatic filarial parasite. Evidence suggests the involvement of glutathione-S-transferase (GST) in the mechanism of action of chalcone drugs. In the present study, we explored the implications of redox status in apoptosis of the parasite by this drug. RESULTS Treatment with the representative drug, 4t, significantly decreased GSH level and increased GST activity in the Brugia malayi microfilariae (Mf) in comparison to Mf without 4t treatment. Drug-induced loss of motility of the parasites was reversed by the treatment with GSH (41%) and NAC (19%). A significant fall in rGST activity was observed due to drug addition, which could be reversed by the addition of GSH co-substrate, but not with the re-addition of rGST, indicating a vital role of GSH. In silico study demonstrated a favorable drug-GST enzyme interaction. Oxidative stress was reflected by increased protein carbonylation and intracellular reactive oxygen species level, in the drug-treated parasite. Mitochondrial oxygen consumption was reduced by the drug, which was reversed on the addition of GSH. Mitochondrial dysfunction was confirmed by MTT and cytochrome c assay. Apoptosis was confirmed by the inhibition in PARP activity. CONCLUSION We conclude that the depletion of GSH by chalcone with concomitant mitochondrial dysfunction revealed a novel rationale of apoptosis in the parasite. Such a mechanism might have wide therapeutic implications.
Collapse
|
13
|
Rashid F, Zaib S, Ibrar A, Ejaz SA, Saeed A, Iqbal J, Khan I. New Hybrid Scaffolds Based on Carbazole-Chalcones as Potent Anticancer Agents. Anticancer Agents Med Chem 2021; 21:1082-1091. [PMID: 32698741 DOI: 10.2174/1871520620666200721110732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Despite various technological advances for the treatment of cancer, the identification of new chemical entities with potent anticancer effects remain an indispensable requirement of the time due to multi-drug resistance exhibited by previously developed anticancer drugs. Particularly, the hybrid drugs incorporating two individual bioactive pharmacophores present medicinally important structural leads, thus improving the pharmacodynamic profile of the drug molecules. The antiproliferative and pro-apoptotic activity of the carbazole-chalcone hybrids on human breast and cervical cancer cells will be examined. MATERIALS AND METHODS To overcome such complications, in the current study, we evaluated the cytotoxic effects of carbazole-chalcone hybrids on human breast adenocarcinoma (MCF-7), cervical adenocarcinoma (HeLa) cells and normal cells, i.e., Baby Hamster Kidney cells (BHK-21) using MTT (dimethyl-2-thiazolyl-2,5- diphenyl-2H-tetrazolium bromide) assay. The mechanistic studies were performed on potent compound 4g by fluorescent microscopic studies, release of Lactate Dehydrogenase (LDH) and mitochondrial membrane potential, activation of caspase-9 and -3 and flow cytometric analysis. RESULTS As revealed by MTT assay, compound 4g was identified as the most potent derivative among the tested series with IC50 values of 5.64 and 29.15μM against HeLa and MCF-7 cells, respectively. The results were compared with cisplatin. Fluorescent microscopic studies using 4',6-diamidino-2-phenylindole (DAPI) and Propidium Iodide (PI) staining confirmed the occurrence of apoptosis in HeLa cells treated with the most active compound 4g. Moreover, compound 4g also triggered the release of Lactate Dehydrogenase (LDH) in treated HeLa and MCF-7 cells while a fluorescence assay displayed a remarkable increase in the activity of caspase-9 and -3. Moreover, flow cytometric results revealed that compound 4g caused G0/G1 arrest in the treated HeLa cells. CONCLUSION Our results demonstrated that the compound 4g possesses chemotherapeutic properties against breast cancer and cervical adenocarcinoma cells, thus warranting further research to test the anticancer potential of this compound at preclinical and clinical level.
Collapse
Affiliation(s)
- Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Science, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Syeda A Ejaz
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
14
|
Synthesis, Structure and Evaluation of the N-(2-Acetyl-4-(styryl)phenyl)-4-benzenesulfonamide Derivatives for Anticholinesterase and Antioxidant Activities. CRYSTALS 2021. [DOI: 10.3390/cryst11040341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N-(2-Acetyl-4-bromophenyl)-4-methylbenzenesulfonamide (2) was transformed into 5-(4-methoxymethylstyryl)-2-(p-tolylsulfonamido)acetophenone (3a) and 5-(4- trifluoromethylstyryl)-2-(p-tolylsulfonamido)acetophenone (3b). Their structures were determined using a combination of NMR (1H & 13C) and mass spectroscopic as well as single crystal X-ray diffraction techniques. These compounds and the corresponding precursor, 2-amino-5-bromoacetophenone (1), were evaluated through enzymatic assays in vitro for inhibitory effect against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities as well as antioxidant effect through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Molecular docking was performed on 3a to determine plausible protein–ligand interactions on a molecular level. Their drug likeness properties (absorption, distribution, metabolism, and excretion) and ability to cross the blood–brain barrier (BBB) have also been predicted at theoretical level.
Collapse
|
15
|
Zhao F, Sun X, Lu W, Xu L, Shi J, Yang S, Zhou M, Su F, Lin F, Cao F. Synthesis of novel, DNA binding heterocyclic dehydroabietylamine derivatives as potential antiproliferative and apoptosis-inducing agents. Drug Deliv 2020; 27:216-227. [PMID: 31984809 PMCID: PMC7034089 DOI: 10.1080/10717544.2020.1716879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 11/14/2022] Open
Abstract
Several dehydroabietylamine derivatives containing heterocyclic moieties such as thiophene and pyrazine ring were successfully synthesized. The antiproliferative activities of these thiophene-based Schiff-bases, thiophene amides, and pyrazine amides were investigated in vitro against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver), and HUVEC (umbilical vein) cells by MTT assay. The toxicity of L1-L10 (IC50 = 5.92- >100 μM) was lower than L0 (1.27 μM) and DOX (4.40 μM) in every case. Compound L1 had higher anti-HepG2 (0.66 μM), anti-MCF-7 (5.33 μM), and anti-A549 (2.11 μM) and compound L3 had higher anti-HepG2 (1.63 μM) and anti-MCF-7 (2.65 μM) activities. Both of these compounds were recognized with high efficiency in apoptosis induction in HepG2 cells and intercalated binding modes with DNA. Moreover, with average IC50 values of 0.66 and 5.98 μM, L1 was nine times more effective at suppressing cultured HepG2 cells viability than normal cells (SI = 9). The relative tumor proliferation rate (T/C) was 38.6%, the tumor inhibition rate was up to 61.2%, which indicated that L1 had no significant toxicity but high anti-HepG2 activity in vivo. Thus, it may be a potential antiproliferation drug with nontoxic side effects.
Collapse
Affiliation(s)
- Fengyi Zhao
- Co-Innovation Center for Sustainable Forestry
in Southern China, Nanjing Forestry University, Nanjing, PR
China
- College of Forestry, Nanjing Forestry
University, Nanjing, PR China
- College of Science, Nanjing Forestry
University, Nanjing, PR China
| | - Xu Sun
- College of Science, Nanjing Forestry
University, Nanjing, PR China
- College of Information Science and Technology,
Nanjing Forestry University, Nanjing, PR China
| | - Wen Lu
- College of Science, Nanjing Forestry
University, Nanjing, PR China
| | - Li Xu
- Co-Innovation Center for Sustainable Forestry
in Southern China, Nanjing Forestry University, Nanjing, PR
China
- College of Science, Nanjing Forestry
University, Nanjing, PR China
| | - Jiuzhou Shi
- College of Science, Nanjing Forestry
University, Nanjing, PR China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing
Forestry University, Nanjing, PR China
| | - Mengyi Zhou
- Advanced Analysis and Testing Center, Nanjing
Forestry University, Nanjing, PR China
| | - Fan Su
- Advanced Analysis and Testing Center, Nanjing
Forestry University, Nanjing, PR China
| | - Feng Lin
- Advanced Analysis and Testing Center, Nanjing
Forestry University, Nanjing, PR China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry
in Southern China, Nanjing Forestry University, Nanjing, PR
China
- College of Forestry, Nanjing Forestry
University, Nanjing, PR China
| |
Collapse
|
16
|
Xie C, Zhang S, Zhang W, Wu C, Yong C, Sun Y, Zeng Z, Zhang Q, Huang Z, Chen T, Zhang Y. Synthesis, biological activities, and docking study of novel chalcone-pleuromutilin derivatives. Chem Biol Drug Des 2020; 96:836-849. [PMID: 32271987 DOI: 10.1111/cbdd.13692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/21/2020] [Accepted: 03/22/2020] [Indexed: 11/30/2022]
Abstract
The issue of antibiotic resistance is becoming progressively serious these days, and the feasible solution to address it is to develop and discover novel antibiotics. The diterpene natural pleuromutilin is a prominent candidate for its special mode of action by inhibiting protein synthesis. In this study, a series of novel pleuromutilin derivatives with chalcone moiety was designed and synthesized, and their antibacterial activities were assessed in vitro. As suggested from the results, most of compounds exhibited potent activities against two methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591 and 43300. The further modification of the chalcone structure, aza-cyclic derivatives were afforded and then assessed, and potent activities against the tested strains were reported. The preliminary docking studies were conducted to explore the interactions between target molecules and binding site.
Collapse
Affiliation(s)
- Chuan Xie
- School of Science, Xihua University, Chengdu, China
| | - Siyu Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Wei Zhang
- School of Science, Xihua University, Chengdu, China
| | - Chunxia Wu
- School of Science, Xihua University, Chengdu, China
| | - Can Yong
- School of Science, Xihua University, Chengdu, China
| | - Yuhao Sun
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | | | - Qian Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Zixin Huang
- School of Science, Xihua University, Chengdu, China
| | - Tian Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | | |
Collapse
|
17
|
Roh K, Lee JH, Kang H, Park KW, Song Y, Lee S, Ku JM. Synthesis and evaluation of butein derivatives for in vitro and in vivo inflammatory response suppression in lymphedema. Eur J Med Chem 2020; 197:112280. [PMID: 32361286 DOI: 10.1016/j.ejmech.2020.112280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/13/2023]
Abstract
Herein, we demonstrate that butein (1) can prevent swelling in a murine lymphedema model by suppressing tumor necrosis factor α (TNF-α) production. Butein derivatives were synthesized and evaluated to identify compounds with in vitro anti-inflammatory activity. Among them, 20 μM of compounds 7j, 7m, and 14a showed 50% suppression of TNF-α production in mouse peritoneal macrophages after lipopolysaccharide stimulation. Compound 14a, exhibited the strongest potency with an in vitro IC50 of 14.6 μM and suppressed limb volume by 70% in a murine lymphedema model. The prodrug strategy enabled a six-fold increase in kinetic solubility of compound 1 and five-fold higher levels of active metabolite in the blood for compound 14a via oral administration in the pharmacokinetics study. We suggest that the compound 14a could be developed as a potential therapeutic agent targeting anti-inflammatory activity to alleviate lymphedema progression.
Collapse
Affiliation(s)
- Kangsan Roh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Hun Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, 147 Gwanggyo-ro, Suwon, 16229, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jin-Mo Ku
- Bio-Center, Gyeonggido Business & Science Accelerator, 147 Gwanggyo-ro, Suwon, 16229, Republic of Korea.
| |
Collapse
|
18
|
Çelik G. New chalcone-3-O-glycoside derivatives: Synthesis and characterization. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820915165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seven novel carbohydrate conjugates of new chalcone-3- O-glycosides were synthesized and characterized. Starting from the substituted 3′-hydroxyarylmethylacetophenone derivatives (chalcones) with α-acetobromoglucose in anhydrous acetone were synthesized 2,3,4,6-tetra- O-acetyl-3′- O-β-d-glucopyranosyloxychalcones. Deblocking the latter with CH3ONa in dry methanol results in substituted chalcone-3- O-glycosides (3′- O-β-d-glucopyranosyloxychalcones). The structures of the newly synthesized chalcone-3- O-glycosides were characterized based on1H nuclear magnetic resonance,13C nuclear magnetic resonance, mass spectroscopy, and Fourier-transform infrared spectroscopy.
Collapse
Affiliation(s)
- Gonca Çelik
- Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
19
|
A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide–chalcones and their in vitro antimicrobial activity. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02568-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Custodio JMF, Moura AF, de Moraes MO, Perez CN, Napolitano HB. On the in silico and in vitro anticancer activity of sulfonamide chalcones: potential JNKK3 inhibitors. NEW J CHEM 2020. [DOI: 10.1039/c9nj05612b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although many compound classes have been studied as JNK inhibitors, we are interested in using chalcones for this purpose. Do different groups drive to different bindings modes to JNK?
Collapse
Affiliation(s)
- Jean M. F. Custodio
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
- Instituto de Química
| | - Andrea F. Moura
- Núcleo de Pesquisas e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
- Núcleo de Pesquisa em Biotecnologia e Biodiversidade – BIOTEC
| | - Manoel O. de Moraes
- Núcleo de Pesquisas e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | | |
Collapse
|
21
|
In vitro apoptotic effect on human lymphatic filarial parasite by piperidine derivatives and thymidine reversal study. Parasitol Res 2019; 119:165-175. [DOI: 10.1007/s00436-019-06492-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
22
|
Boniface PK, Elizabeth FI. An Insight into the Discovery of Potent Antifilarial Leads Against Lymphatic Filariasis. Curr Drug Targets 2019; 21:657-680. [PMID: 31800381 DOI: 10.2174/1389450120666191204152415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Lymphatic filariasis is a neglected tropical disease caused by infection with filarial worms that are transmitted through mosquito bites. Globally, 120 million people are infected, with nearly 40 million people disfigured and disabled by complications such as severe swelling of the legs (elephantiasis) or scrotum (hydrocele). Current treatments (ivermectin, diethylcarbamazine) have limited effects on adult parasites and produce side effects; therefore, there is an urgent to search for new antifilarial agents. Numerous studies on the antifilarial activity of pure molecules have been reported accross the recent literature. The present study describes the current standings of potent antifilarial compounds against lymphatic filariasis. METHODS A literature search was conducted for naturally occurring and synthetic antifilarial compounds by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, and Springer, among others) from their inception until September 2019. RESULTS Numerous compounds have been reported to exhibit antifilarial acitivity in adult and microfilariae forms of the parasites responsible for lymphatic filariasis. In silico studies of active antifilarial compounds (ligands) showed molecular interactions over the protein targets (trehalose-6-phosphate phosphatase, thymidylate synthase, among others) of lymphatic filariasis, and supported the in vitro results. CONCLUSION With reference to in vitro antifilarial studies, there is evidence that natural and synthetic products can serve as basic scaffolds for the development of antifilarial agents. The optimization of the most potent antifilarial compounds can be further performed, followed by their in vivo studies.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ferreira Igne Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Kazmi M, Khan I, Khan A, Halim SA, Saeed A, Mehsud S, Al-Harrasi A, Ibrar A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg Med Chem 2019; 27:115123. [DOI: 10.1016/j.bmc.2019.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022]
|
24
|
Bhoj P, Togre N, Bahekar S, Goswami K, Chandak H, Patil M. Immunomodulatory Activity of Sulfonamide Chalcone Compounds in Mice Infected with Filarial Parasite, Brugia malayi. Indian J Clin Biochem 2019; 34:225-229. [PMID: 31092998 DOI: 10.1007/s12291-017-0727-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Diethyl carbamazine (DEC) is being used as a sole drug to treat the lymphatic filariasis, although encountered with many limitations. Importantly, DEC works with putative host immunomodulating activities without any direct antifilarial effect. This study aimed to assess the possible modulatory effect on host immune system by sulfonamide chalcone compound, having direct antifilarial activity. The immunomodulatory activity of DEC and/or chalcone compound, 4t on mice peritoneal exudate cells (PECs) was analyzed initially in vitro. This was followed by the study of in vivo effect of these test agents in the parasitaemic BALB/c mice induced by Brugia malayi microfilariae. Cytokine profile and iNOS induction were measured from PECs of mice. 4t compound showed anti-inflammatory activity in vivo in contrast to DEC. Further 4t was found to increase anti-inflammatory and regulatory cytokines, IL-10 and TGF-β gene expression with down regulation of pro-inflammatory cytokines TNF-α and IFN-γ and iNOS in mice PECs in in vitro. In conclusion, chalcones having direct antifilarial effect also upsurges anti-inflammatory host immune response. Therefore, the results might be envisaged as 4t to be a better alternative to DEC in the chronic case of lymphatic filariasis.
Collapse
Affiliation(s)
- Priyanka Bhoj
- 1Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, 442102 India
| | - Namdev Togre
- 1Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, 442102 India
| | - Sandeep Bahekar
- 2Department of Chemistry, G. S. Science, Arts and Commerce College, Khamgaon, 444303 India
| | - Kalyan Goswami
- 1Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, 442102 India
| | - Hemant Chandak
- 2Department of Chemistry, G. S. Science, Arts and Commerce College, Khamgaon, 444303 India
| | - Mandakini Patil
- 3University Department of Biochemistry, RTM Nagpur University, Nagpur, 440033 India
| |
Collapse
|
25
|
Manupati K, Debnath S, Goswami K, Bhoj PS, Chandak HS, Bahekar SP, Das A. Glutathione S-transferase omega 1 inhibition activates JNK-mediated apoptotic response in breast cancer stem cells. FEBS J 2019; 286:2167-2192. [PMID: 30873742 DOI: 10.1111/febs.14813] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/13/2018] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Glutathione S-transferase omega 1 (GSTO1) contributes to the inactivation of a wide range of drug compounds via conjugation to glutathione during phase reactions. Chemotherapy-induced GSTO1 expression in breast cancer cells leads to chemoresistance and promotes metastasis. In search of novel GSTO1 inhibitors, we identified S2E, a thia-Michael adduct of sulfonamide chalcone with low LC50 (3.75 ± 0.73 μm) that binds to the active site of GSTO1, as revealed by molecular docking (glide score: -8.1), cellular thermal shift assay and fluorescence quenching assay (Kb ≈ 10 × 105 mol·L-1 ). Docking studies confirmed molecular interactions between GSTO1 and S2E, and identified the hydrogen bond donor Val-72 (2.14 Å) and hydrogen bond acceptor Ser-86 (2.77 Å). Best pharmacophore hypotheses could effectively map S2E and identified the 4-methyl group of the benzene sulfonamide ring as crucial to its anti-cancer activity. Lack of a thiophenyl group in another analog, 2e, reduced its efficacy as observed by cytotoxicity and pharmacophore matching. Furthermore, GSTO1 inhibition by S2E, along with tamoxifen, led to a significant increase in apoptosis and decreased migration of aggressive MDA-MB-231 cells, as well as significantly decreased migration, invasion and mammosphere formation in sorted breast cancer stem cells (CSCs, CD24- /CD44+ ). GSTO1 silencing in breast CSCs also significantly increased apoptosis and decreased migration. Mechanistically, GSTO1 inhibition activated the c-Jun N-terminal kinase stress kinase, inducing a mitochondrial apoptosis signaling pathway in breast CSCs via the pro-apoptotic proteins BAX, cytochrome c and cleaved caspase 3. Our study elucidated the role of the GSTO1 inhibitor S2E as a potential therapeutic strategy for preventing chemotherapy-induced breast CSC-mediated cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Science and Innovative Research, New Delhi, India
| | - Sudhan Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, India
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Priyanka S Bhoj
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Hemant S Chandak
- Department of Chemistry, G. S. Science, Arts & Commerce College, Khamgaon, India
| | - Sandeep P Bahekar
- Department of Chemistry, G. S. Science, Arts & Commerce College, Khamgaon, India
| | - Amitava Das
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Science and Innovative Research, New Delhi, India
| |
Collapse
|
26
|
Zhao F, Lu W, Su F, Xu L, Jiang D, Sun X, Shi J, Zhou M, Lin F, Cao F. Synthesis and potential antineoplastic activity of dehydroabietylamine imidazole derivatives. MEDCHEMCOMM 2018; 9:2091-2099. [PMID: 30746067 PMCID: PMC6336084 DOI: 10.1039/c8md00487k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022]
Abstract
To seek more efficient and lower toxicity anticancer compounds, several imidazole combining dehydroabietylamine derivatives including organic salts (L 1 -L 2 ) and amides (L 3 -L 5 ) were synthesized. Their antineoplastic activity against HeLa (cervix), MCF-7 (breast), A549 (lung) and HepG2 (liver) cells and HUVECs (umbilical vein, normal cells) in vitro were evaluated by MTT assay. The results unequivocally showed that nearly all compounds had better antineoplastic activity and lower toxicity than dehydroabietylamine (L 0 ). For MCF-7 cells, L 2 (0.75 μM) and L 5 (2.17 μM) had higher anti-MCF-7 activity than L 0 and DOX. For A549 cells, L 1 (1.85 μM) and L 2 (4.37 μM) had higher anti-A549 activity than L 0 ; in particular, the IC50 value of L 1 was much lower than that of DOX. Among these investigated compounds, L 2 and L 5 had lower IC50 values (0.75 μM and 2.17 μM) against MCF-7 cells and lower toxicity, which suggested that they may be potential future anticancer drugs. In addition, L 1 and L 2 could suppress cancer cell proliferation by inducing apoptosis. L 1 -L 5 could bind with DNA through intercalation.
Collapse
Affiliation(s)
- Fengyi Zhao
- College of Forestry , Nanjing Forestry University , Nanjing 210037 , PR China .
- College of Science , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Wen Lu
- College of Science , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Fan Su
- Advanced Analysis and Testing Centre , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Li Xu
- College of Science , Nanjing Forestry University , Nanjing 210037 , PR China
- Co-Innovation Centre for Sustainable Forestry in Southern China , Nanjing Forestry University , China
- Sate Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541001 , PR China
| | - Dong Jiang
- College of Science , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Xu Sun
- Advanced Analysis and Testing Centre , Nanjing Forestry University , Nanjing 210037 , PR China
- College of Information Science and Technology , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Jiuzhou Shi
- College of Science , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Mengyi Zhou
- Advanced Analysis and Testing Centre , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Feng Lin
- Advanced Analysis and Testing Centre , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Fuliang Cao
- College of Forestry , Nanjing Forestry University , Nanjing 210037 , PR China .
- Co-Innovation Centre for Sustainable Forestry in Southern China , Nanjing Forestry University , China
| |
Collapse
|
27
|
Mahapatra DK, Ghorai S, Bharti SK, Patil AG, Gayen S. Current Discovery Progress of Some Emerging Anti-infective Chalcones: Highlights from 2016 to 2017. Curr Drug Discov Technol 2018; 17:30-44. [PMID: 30033873 DOI: 10.2174/1570163815666180720170030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/22/2022]
Abstract
The anti-infective potentials of the natural products are very well known for centuries and are a part of traditional healing. The foremost therapeutic classes include flavones, isoflavones, flavonols, flavanones, flavanols, proanthocyanidins, anthocyanidins, chalcones, and aurones. The chalcone or 1,3-diphenyl-2E-propene-1-one represents the class of natural products which are comprised of benzylideneacetophenone function; i.e. two aromatic moieties linked together by an α, β-unsaturated carbonyl bridge comprising three-carbons. At present, chalcone is one of the privileged scaffolds that can be synthesized in the laboratory to derive different pharmacologically active compounds. This article is the continued form of the previously published work on anti-infective perspectives of chalcones (highlighted till 2015). The current work emphasizes on the discovery process of the chalcone in the period of 2016 to 2017 on malaria, trypanosomiasis, leishmaniasis, filaria, tuberculosis, netamodes, Human Immunodeficiency Virus (HIV), Tobacco Mosaic Virus (TMV), Severe Acute Respiratory Syndrome (SARS), and miscellaneous conditions. This review comprehensively focuses on the latest progress related with the anti-infective chalcones. The content includes the crucial structural features of chalcone scaffold including structure-activity relationship(s) along with their plausible mechanism of action(s) from the duration Jan 2016 to Dec 2017. This literature will be of prime interest to medicinal chemists in getting ideas and concepts for better rational development of potential anti-infective inhibitors.
Collapse
Affiliation(s)
- Debarshi K Mahapatra
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Soumajit Ghorai
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Sanjay K Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Asmita G Patil
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| |
Collapse
|
28
|
Bakthadoss M, Kumar PV. Ruthenium‐Catalyzed Site‐selective Enone Carbonyl Directed
ortho
‐C−H Activation of Aromatics and Heteroaromatics with Alkenes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Polu Vijay Kumar
- Department of ChemistryPondicherry University Pondicherry - 605014 India
| |
Collapse
|
29
|
Kantekin H, Yalazan H, Kahriman N, Ertem B, Serdaroğlu V, Pişkin M, Durmuş M. New peripherally and non-peripherally tetra-substituted metal-free, magnesium(II) and zinc(II) phthalocyanine derivatives fused chalcone units: Design, synthesis, spectroscopic characterization, photochemistry and photophysics. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Bhoj PS, Ingle RG, Goswami K, Jena L, Wadher S. Apoptotic impact on Brugia malayi by sulphonamido-quinoxaline: search for a novel therapeutic rationale. Parasitol Res 2018; 117:1559-1572. [PMID: 29568978 DOI: 10.1007/s00436-018-5834-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
Human lymphatic filariasis although not fatal but poses serious socioeconomic burden due to associated disability. This is reflected by the huge magnitude of the estimated disability-adjusted life years of about 5.09 million. Therefore, following WHO mandate, our earlier studies on antifilarial drug development revealed the significance of apoptosis. Apoptotic impact has been implicated in anticancer rationale of several drugs. In this study, we explored the antifilarial potential of sulphonamido-quinoxaline compounds, shown to be specific inhibitor for c-Met kinase in human cancer cells. Out of studied compounds, Q4, showing favorable drug-likeness and medicinal chemistry properties on bioinformatics platform along with subsequently recorded lowest IC100 value, was considered as a suitable antifilarial candidate. Significant apoptosis due to mitochondrial involvement was recorded in drug-treated parasite unlike untreated control. In spite of homology between human c-Met kinase and Brugia malayi counterpart, comparative docking result of this compound showed more favorable binding parameters with the parasitic target. The wide gap between IC100 and LD50 values further confirmed the therapeutic safety. We propose sulphonamido-quinoxaline derivative as a lead candidate for antifilarial drug development. Further study is warranted to authenticate parasitic c-Met kinase as a novel therapeutic target reminiscent of anticancer rationale implicating inhibition of proliferation.
Collapse
Affiliation(s)
- Priyanka S Bhoj
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, Maharashtra, 442102, India
| | - Rahul G Ingle
- School of Pharmacy, S.R.T.M. University, Nanded, Maharashtra, 436306, India
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, Maharashtra, 442102, India.
| | - Lingaraj Jena
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, Maharashtra, 442102, India
| | - Shailesh Wadher
- School of Pharmacy, S.R.T.M. University, Nanded, Maharashtra, 436306, India
| |
Collapse
|
31
|
Bahekar SP, Chandak HS. Synthesis of Thiazolopyrimidines via Annulation of N-(4,6-Diaryl-2-thioxo-1,2,3,6-tetrahydropyrimidin-4-yl)phenyl)aryl-sulfonamides. ChemistrySelect 2018. [DOI: 10.1002/slct.201702785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandeep P. Bahekar
- Department of Chemistry, G. S. Science; Arts and Commerce College, Nandura Road; National High Way No. 6 Khamgaon 444 303 (MS) India
| | - Hemant S Chandak
- Department of Chemistry, G. S. Science; Arts and Commerce College, Nandura Road; National High Way No. 6 Khamgaon 444 303 (MS) India
| |
Collapse
|
32
|
Shih TL, Liu MH, Li CW, Kuo CF. Halo-Substituted Chalcones and Azachalcones-Inhibited, Lipopolysaccharited-Stimulated, Pro-Inflammatory Responses through the TLR4-Mediated Pathway. Molecules 2018; 23:E597. [PMID: 29518899 PMCID: PMC6017711 DOI: 10.3390/molecules23030597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 12/15/2022] Open
Abstract
A series of B-ring, halo-substituted chalcones and azachalcones were synthesized to evaluate and compare their anti-inflammatory activity. Mouse BALB/c macrophage RAW 264.7 were pre-treated with 10 μg/mL of each compound for one hour before induction of inflammation by lipopolysaccharide (1 μg/mL) for 6 h. Some halo-chalcones and -azachalcones suppressed expression of pro-inflammatory factors toll-like receptor 4 (TLR4), IκB-α, transcription factor p65, interleukine 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and cyclooxygenase 2 (COX-2). The present results showed that the synthetic halo-azachalcones exhibited more significant inhibition than halo-chalcones. Therefore, the nitrogen atom in this series of azachalcones must play a more crucial role than the corresponding C-2 hydroxyl group of chalcones in biological activity. Our findings will lay the background for the future development of anti-inflammatory nutraceuticals.
Collapse
Affiliation(s)
- Tzenge-Lien Shih
- Department of Chemistry, Tamkang University, Tamsui Dist., New Taipei City 251, Taiwan.
| | - Ming-Hwa Liu
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Zhongshan Dist., Taipei 104, Taiwan.
| | - Chia-Wai Li
- Department of Chemistry, Tamkang University, Tamsui Dist., New Taipei City 251, Taiwan.
| | - Chia-Feng Kuo
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Zhongshan Dist., Taipei 104, Taiwan.
| |
Collapse
|
33
|
Huang X, Hua S, Huang R, Liu Z, Gou S, Wang Z, Liao Z, Wang H. Dual-targeting antitumor hybrids derived from Pt(IV) species and millepachine analogues. Eur J Med Chem 2018; 148:1-25. [PMID: 29448138 DOI: 10.1016/j.ejmech.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Many strategies have been developed to circumvent the shortcomings of Pt(II)-based chemotherapy, but the inherent problems still have not been effectively resolved. Here we report a new series of dual-targeting Pt(IV) prodrugs, conjugates of millepachine analogues with the related Pt(IV) complexes derived from cisplatin or oxaliplatin, respectively, which can inhibit tubulin polymerization and induce DNA damage. Among them, compound 19 possessed excellent antitumor activities against the tested human cancer cell lines, and arrested the cell cycle at the G2/M phases and ultimately induced cell apoptosis. Interestingly, its low cytotoxicity toward two human normal cells and sensitivity toward two cisplatin-resistant cells revealed the possibility for cancer therapy. More importantly, 19 displayed excellent antitumor efficacy in the SK-OV-3 xenograft model better than cisplatin and the corresponding millepachine analogue. Our research provided an efficient strategy for multi-targeting antitumor drug development.
Collapse
Affiliation(s)
- Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shixian Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Rizhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
34
|
Zhao F, Wang W, Lu W, Xu L, Yang S, Cai XM, Zhou M, Lei M, Ma M, Xu HJ, Cao F. High anticancer potency on tumor cells of dehydroabietylamine Schiff-base derivatives and a copper(II) complex. Eur J Med Chem 2018; 146:451-459. [PMID: 29407970 DOI: 10.1016/j.ejmech.2018.01.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
Abstract
Five bioactive dehydroabietylamine Schiff-base derivatives (L1-L5) had been synthesized from Dehydroabietylamine (L0), and the complex Cu(L1)2 had been obtained from the compound L1 and copper(II) acetate. Their activities against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver) and HUVEC (umbilical vein, normal cell) in vitro were investigated. The toxicity of L1-L5 and Cu(L1)2 was all lower than L0. For MCF-7 cell, L1, L3, L4, L5 and Cu(L1)2 had higher antitumor activity than L0. The smallest IC50 value was 2.58 μM of L5. For A549 cell, the IC50 value of the compound L4 was smaller than L0, which indicated that the compound L4 had higher anti-A549 activity than L0. For HepG2 cell, the IC50 value of L4(0.24 μM) and L5 (0.14 μM) were much smaller than L0, which suggested L4 and L5 had higher anti-HepG2 activity. L5 was 180 times more effective at inhibiting cultured HepG2 cells survival than normal cells, with average IC50 values of 0.14 and 25.56 μM. Furthermore, L0, L4 and L5 contrasting with Doxorubicin had been measured with the ability to induce apoptosis. It turned out that L4 and L5 could induce more HepG2 cells apoptosis, which suggested they may be potential antitumor drugs.
Collapse
Affiliation(s)
- Fengyi Zhao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China
| | - Weifan Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Wen Lu
- College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Li Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China; College of Science, Nanjing Forestry University, Nanjing, 210037, PR China; Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037, PR China; Sate Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541001, PR China.
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xu-Min Cai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Mengyi Zhou
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Hai-Jun Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China.
| |
Collapse
|
35
|
Gupta S, Maurya P, Upadhyay A, Kushwaha P, Krishna S, Siddiqi MI, Sashidhara KV, Banerjee D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur J Med Chem 2018; 143:1981-1996. [DOI: 10.1016/j.ejmech.2017.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023]
|
36
|
Khalifa NM, Al-Omar MA, Ali OM. Synthesis and characterization of novel chalcones linked 3-[1-(3-chlorophenyl)-3-(pyren-1-yl)]-1H-pyrazole moiety. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217110275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Antiproliferative and pro-apoptotic activities of 2′- and 4′-aminochalcones against tumor canine cells. Eur J Med Chem 2017; 138:884-889. [DOI: 10.1016/j.ejmech.2017.06.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/27/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022]
|
38
|
Arshad MN, Al-Dies AAM, Asiri AM, Khalid M, Birinji AS, Al-Amry KA, Braga AA. Synthesis, crystal structures, spectroscopic and nonlinear optical properties of chalcone derivatives: A combined experimental and theoretical study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.090] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 2017; 117:7762-7810. [PMID: 28488435 PMCID: PMC6131713 DOI: 10.1021/acs.chemrev.7b00020] [Citation(s) in RCA: 856] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive,
Gainesville, Florida 32610, United States
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
40
|
Sławiński J, Szafrański K, Pogorzelska A, Żołnowska B, Kawiak A, Macur K, Belka M, Bączek T. Novel 2-benzylthio-5-(1,3,4-oxadiazol-2-yl)benzenesulfonamides with anticancer activity: Synthesis, QSAR study, and metabolic stability. Eur J Med Chem 2017; 132:236-248. [PMID: 28364658 DOI: 10.1016/j.ejmech.2017.03.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/30/2017] [Accepted: 03/21/2017] [Indexed: 02/03/2023]
Abstract
A series of novel 2-benzylthio-4-chloro-5-(5-substituted 1,3,4-oxadiazol-2-yl)benzenesulfonamides (4-27) have been synthesized as potential anticancer agents. MTT assay was carried out to determine the cytotoxic activity against three human cancer cell lines: colon cancer HCT-116, breast cancer MCF-7 and cervical cancer HeLa as well as to determine the influence on human keratinocyte cell line HaCaT. Relatively high (IC50: 7-17 μM) cytostatic activity and selectivity against HeLa cell line was found for compounds 6, 7, 9-11 and 16. While compounds 23-27 bearing styryl moieties attached to a 1,3,4-oxadiazole ring at position 5, exhibited significant activity against two and/or three cancer cell lines with IC50: 11-29 μM. Further quantitative structure-activity relationships based on molecular descriptors calculated by DRAGON software, were investigated by Orthogonal Projections to Latent Structures (OPLS) technique and Variable Influence on Projection (VIP) analysis. Considering molecular descriptors with the highest influence on projection (highest VIP values) lipophilicity of tested compounds was pointed as main factor affecting activity towards HCT-116 cell line, while structural parameters associated with presence of styryl substituent in position 5 of 1,3,4-oxadiazole ring were identified as essential for activity towards MCF-7 breast cancer. In vitro tests for metabolic stability in the presences of pooled human liver microsomes and NADPH showed that some of the most active compounds 26 and 27 presented favorable metabolic stability with t1/2 in the range of 28.1-36.0 min.
Collapse
Affiliation(s)
- Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Aneta Pogorzelska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland; Laboratory of Human Physiology, Medical University of Gdańsk, ul. Tuwima 15, 80-210 Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
41
|
Coskun D, Erkisa M, Ulukaya E, Coskun MF, Ari F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur J Med Chem 2017; 136:212-222. [PMID: 28494257 DOI: 10.1016/j.ejmech.2017.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
Cancer treatment still requires new compounds to be discovered. Chalcone and its derivatives exhibit anticancer potential in different cancer cells. A new series of benzofuran substituted chalcone derivatives was synthesized by the base-catalyzed Claisen-Schmidt reaction of the 1-(7-ethoxy-1-benzofuran-2-yl) ethanone with different aromatic aldehydes to yield 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives 3a-j. The derivatives were characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectroscopy techniques. The anti-growth effect of chalcone compounds was tested in breast cancer (MCF-7), non-small cell lung cancer (A549) and prostate cancer (PC-3) cell lines by the SRB and ATP cell viability assays. Apoptosis was detected by mitochondrial membrane potential, Annexin V staining and caspase 3/7 activity. Formation of reactive oxygen species was determined by DCFDA. The results revealed that chalcone derivatives have anticancer activity with especially chalcone derivative 3a showing cytotoxic effects on cancer cells. In addition, chalcone derivative 3a induced apoptosis through caspase dependent pathways in prostate, lung and breast cancer cells.
Collapse
Affiliation(s)
- Demet Coskun
- Firat University, Faculty of Science, Department of Chemistry, 23119, Elazig, Turkey.
| | - Merve Erkisa
- Uludag University, Faculty of Science and Arts, Department of Biology, 16059, Bursa, Turkey
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, 34010, Istanbul, Turkey
| | - Mehmet Fatih Coskun
- Firat University, Faculty of Science, Department of Chemistry, 23119, Elazig, Turkey
| | - Ferda Ari
- Uludag University, Faculty of Science and Arts, Department of Biology, 16059, Bursa, Turkey
| |
Collapse
|
42
|
Huang X, Huang R, Li L, Gou S, Wang H. Synthesis and biological evaluation of novel chalcone derivatives as a new class of microtubule destabilizing agents. Eur J Med Chem 2017; 132:11-25. [DOI: 10.1016/j.ejmech.2017.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
|
43
|
Inhibition of LPS-stimulated ROS production by fluorinated and hydroxylated chalcones in RAW 264.7 macrophages with structure-activity relationship study. Bioorg Med Chem Lett 2017; 27:1205-1209. [DOI: 10.1016/j.bmcl.2017.01.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 02/07/2023]
|
44
|
Koran K, Tekin Ç, Biryan F, Tekin S, Sandal S, Görgülü AO. Synthesis, structural and thermal characterizations, dielectric properties and in vitro cytotoxic activities of new 2,2,4,4-tetra(4′-oxy-substituted-chalcone)-6,6-diphenylcyclotriphosphazene derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1810-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Synthesis and biological evaluation of novel pyrazolic chalcone derivatives as novel hepatocellular carcinoma therapeutics. Eur J Med Chem 2017; 129:12-26. [PMID: 28219046 DOI: 10.1016/j.ejmech.2017.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/06/2023]
Abstract
Despite having the second highest mortality associated with cancer, currently Sorafenib is the only FDA-approved chemotherapeutic agent available for liver cancer patients which can only improve survival for few months. In this study, various pyrazolic chalcone analogous compounds were synthesized and evaluated as potential chemotherapeutic agents for the treatment of hepatocellular carcinoma (HCC). Modifying the central pyrazole ring at the C(3)-position with different heteroaryl rings and substituting the C(4)-position of pyrazole with differently substituted chalcone moiety produced fouthy two variant compounds. For all these compounds, cytotoxicity was evaluated using sulforhodamine B assay and real time cell growth tracking, respectively. Based on 50% inhibitory concentration (IC50) values, compounds 39, 42, 49, and 52 were shown to exhibit potent cytotoxic activity against all the cancer cell lines tested, and had better cytotoxic activities than the well-known chemotherapeutic drug 5-FU. Therefore, these compounds were chosen to be further evaluated in a panel of HCC cell lines. Flow cytometric analysis of HCC cells treated with compounds 39, 42, 49, and 52 demonstrated that these compounds caused cell cycle arrest at G2/M phase followed by the apoptotic cell death and impaired cell growth as shown by real-time cell growth surveillance. Consistent with these results, western blotting of HCC cells treated with the compounds resulted in molecular changes for cell cycle proteins, where p21 levels were increased independent of p53 and the levels of the key initiators of mitosis Cyclin B1 and CDK1 were shown to decrease upon treatment. In conclusion, chalcone derivatives 42 and 52 show potent bioactivities by modulating the expression of cell-cycle related proteins and resulting in cell-cycle arrest in the HCC cell lines tested here, indicating that the compounds can be considered as preclinical candidates.
Collapse
|
46
|
Cai CY, Rao L, Rao Y, Guo JX, Xiao ZZ, Cao JY, Huang ZS, Wang B. Analogues of xanthones--Chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates. Eur J Med Chem 2017; 130:51-59. [PMID: 28242551 DOI: 10.1016/j.ejmech.2017.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/11/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
Two series of compounds (chalcones and bis-chalcones) were designed, synthesized, and evaluated as α-glucosidase inhibitors (AGIs) with 1-deoxynojirimycin as positive control in vitro. Most of the compounds with two or four hydroxyl groups showed better inhibitory activities than 1-deoxynojirimycin towards α-glucosidase with noncompetitive mechanism. Moreover, most of the hydroxy bis-chalcones exhibit good α-glucosidase inhibitory activities in enzyme test. Inspiringly, bis-chalcones 2g (at 1 μM concentration) has stronger effect than 1-deoxynojirimycin on reducing the glucose level in HepG-2 cells (human liver cancer cell line).
Collapse
Affiliation(s)
- Chao-Yun Cai
- School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Li Rao
- School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Yong Rao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Jin-Xuan Guo
- School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Zhi-Zun Xiao
- School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Jing-Yu Cao
- School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Bo Wang
- School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou, 510275, PR China.
| |
Collapse
|
47
|
Sangshetti JN, Shinde DB, Kulkarni A, Arote R. Two decades of antifilarial drug discovery: a review. RSC Adv 2017. [DOI: 10.1039/c7ra01857f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Filariasis is one of the oldest, most debilitating, disabling, and disfiguring neglected tropical diseases with various clinical manifestations and a low rate of mortality, but has a high morbidity rate, which results in social stigma.
Collapse
Affiliation(s)
| | | | | | - Rohidas Arote
- Department of Molecular Genetics
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| |
Collapse
|