1
|
Bhutkar M, Kumar A, Rani R, Singh V, Saha A, Pathak A, Kothiala A, Mahajan S, Waghmode B, Verma S, Kumar R, Mudgal R, Sircar D, Kumar P, Tomar S. Structure-based identification of herbacetin and caffeic acid phenethyl ester as inhibitors of S-adenosylmethionine-dependent viral methyltransferase. FEBS Lett 2025. [PMID: 40353321 DOI: 10.1002/1873-3468.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 05/14/2025]
Abstract
Chikungunya (CHIKV) and dengue (DENV) viruses pose a public health risk and lack antiviral treatments. Structure-based molecular docking of a natural MTase substrates library identified herbacetin (HC) and caffeic acid phenethyl ester (CAPE) as potential CHIKV nsP1 and DENV NS5 MTase inhibitors. Binding affinities and MTase inhibition were confirmed using purified proteins. The crystal structure of DENV 3 NS5 MTase and CAPE complex revealed CAPE binding at viral RNA capping sites. Interestingly, HC and CAPE depleted polyamines crucial for RNA virus replication and decreased viral titer with IC50 values of ~ 13.44 and ~ 0.57 μm against CHIKV, and ~ 7.24 and ~ 1.01 μm against DENV 3, respectively. Polyamine addition did not reverse the antiviral effects, suggesting a dual inhibition mechanism. Impact statement This study reveals the antiviral potential of natural small molecules, Herbacetin (HC) and Caffeic acid phenethyl ester (CAPE) against Dengue and Chikungunya viruses. The molecules deplete polyamine levels and directly inhibit viral methyltransferases. This study opens new avenues for developing antiviral strategies that target both host factors and viral components.
Collapse
Affiliation(s)
- Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Amith Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Akashjyoti Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Aditi Kothiala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Bhairavnath Waghmode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Ravi Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Rajat Mudgal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| |
Collapse
|
2
|
Ahmadi K, Jahantigh HR, Ahmadi N, Shahbazi B. Repurposing FDA-approved drugs and natural compounds to inhibit the RNA-dependent RNA polymerase domain of dengue virus 2 or dengue virus 3. Sci Rep 2025; 15:12698. [PMID: 40221558 PMCID: PMC11993590 DOI: 10.1038/s41598-025-96284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The dengue virus, a member of the arbovirus family, can cause a variety of clinical symptoms. However, there are currently no Food and Drug Administration-approved drugs are currently available for its treatment. We have used RNA-dependent RNA polymerase to identify drug candidates against dengue virus 2 or dengue virus 3. The Smina molecular docking program was used to screen natural compounds and FDA-approved drugs. This study used the pkCSM web server for pharmacokinetic profiling, OSIRIS Data Warrior for physicochemical property assessment, Data Warrior software for cytotoxicity profiling, and molecular dynamics simulations to evaluate the stability of ligand-RdRp interactions. Specifically, the drugs and compounds with the highest negative binding energy and most hydrogen bonds are chlorthalidone, valdecoxib, and ZINC14824819, which interact with the RdRp domain of dengue virus 2, and empagliflozin, netarsudil, and ZINC13375652, which interact with the RdRp domain of dengue virus 3. We propose several FDA-approved drugs and natural compounds that can bind to the RdRp of dengue virus serotypes 2 and 3 and prevent the virus from infecting cells. These compounds show a high level of safety and strong skin and intestinal absorption. Further in vitro and in vivo testing is needed to verify these predictions and assess therapeutic potential.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Department of Medical Biotechnology, School of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Nahid Ahmadi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Behzad Shahbazi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Dulay ANG, de Guzman JCC, Marquez ZYD, Santana ESD, Arce J, Orosco FL. The potential of Chlorella spp. as antiviral source against African swine fever virus through a virtual screening pipeline. J Mol Graph Model 2024; 132:108846. [PMID: 39151375 DOI: 10.1016/j.jmgm.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
African swine fever (ASF) causes high mortality in pigs and threatens global swine production. There is still a lack of therapeutics available, with two vaccines under scrutiny and no approved small-molecule drugs. Eleven (11) viral proteins were used to identify potential antivirals in in silico screening of secondary metabolites (127) from Chlorella spp. The metabolites were screened for affinity and binding selectivity. High-scoring compounds were assessed through in silico ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) predictions, compared to structurally similar drugs, and checked for off-target docking with prepared swine receptors. Molecular dynamics (MD) simulations determined binding stability while binding energy was measured in Molecular Mechanics - Generalized Born Surface Area (MMGBSA) or Poisson-Boltzmann Surface Area (MMPBSA). Only six (6) compounds passed until MD analyses, of which five (5) were stable after 100 ns of MD runs. Of these five compounds, only three had binding affinities that were comparable to or stronger than controls. Specifically, phytosterols 24,25-dihydrolanosterol and CID 4206521 that interact with the RNA capping enzyme (pNP868R), and ergosterol which bound to the Erv-like thioreductase (pB119L). The compounds identified in this study can be used as a theoretical basis for in vitro screening to develop potent antiviral drugs against ASFV.
Collapse
Affiliation(s)
- Albert Neil G Dulay
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines
| | - John Christian C de Guzman
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines
| | - Zyra Ysha D Marquez
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Elisha Sofia D Santana
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Jessamine Arce
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig, 1632, Philippines.
| |
Collapse
|
4
|
Roney M, Dubey A, Nasir MH, Huq AM, Tufail A, Tajuddin SN, Zamri NB, Mohd Aluwi MFF. Computational evaluation of quinones of Nigella sativa L. as potential inhibitor of dengue virus NS5 methyltransferase. J Biomol Struct Dyn 2024; 42:8701-8711. [PMID: 37632317 DOI: 10.1080/07391102.2023.2248262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
Aedes aegypti is the primary vector for the transmission of the dengue virus, which causes dengue fever, dengue hemorrhagic illness and dengue shock syndrome. There is now no antiviral medication available to treat DENV, which kills thousands of people each year and infects millions of individuals. A possible target for the creation of fresh and efficient dengue treatments is the DENV-3 NS5 MTase. So, Nigella sativa quinones were examined using in silico methods to find natural anti-DENV compounds. The in silico docking was conducted utilising the Discovery Studio software on the quinones of N. sativa and the active site of the target protein DENV-3 NS5 MTase. In addition, the druggability and pharmacokinetics of the lead compound were assessed. Dithymoquinone was comparable to the reference compound in terms of its ability to bind to the active site of target protein. Dithymoquinone met the requirements for drug likeness and Lipinski's principles, as demonstrated by the ADMET analysis and drug likeness results. The current study indicated that the dithymoquinone from N. sativa had anti-DENV activity, suggesting further drug development and dengue treatment optimisation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial SCiences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Muhammad Hassan Nasir
- Faculty of Medicine, University Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Terengganu Darul Iman, Malaysia
| | - Akm Moyeenul Huq
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Department of Pharmacy, School of Medicine, University of Asia Pacific 74/A, Dhaka, Bangladesh
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Saiful Nizam Tajuddin
- Faculty of Industrial SCiences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Normaiza Binti Zamri
- Faculty of Industrial SCiences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial SCiences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
5
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
6
|
Tsukamoto Y, Igarashi M, Kato H. Targeting cap1 RNA methyltransferases as an antiviral strategy. Cell Chem Biol 2024; 31:86-99. [PMID: 38091983 DOI: 10.1016/j.chembiol.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.
Collapse
Affiliation(s)
- Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
8
|
Patar AK, Borah SM, Barman J, Bora A, Baruah TJ. Dronabinol as an answer to flavivirus infections: an in-silico investigation. J Biomol Struct Dyn 2023; 41:11219-11230. [PMID: 36576139 DOI: 10.1080/07391102.2022.2160817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2022] [Indexed: 12/29/2022]
Abstract
Flavivirus infections are common in several parts of the world. Two major types of flaviviruses are dengue and zika viruses. Both these two viral infections have caused many fatalities around the world. There is an absence of a vaccine and an effective medication against these viruses. In this study, we analyzed the ability of dronabinol to act as a potential cure against these viral infections. We performed the docking of dronabinol with several viral proteins followed by molecular dynamics simulation, MM/PBSA and PCA analysis. We checked the ability of the polyphenol dronabinol to interfere with the binding of viral helicases to their cellular targets. We performed 2 D-QSAR studies, drug likeliness, ADMET and target prediction studies. From our study, we observed that dronabinol had the best docking ability against the helicase proteins of dengue and zika. Molecular dynamics simulation and MM/PBSA investigation confirmed the stability of the binding while PCA investigation showed a lowering of molecular motions in response to dronabinol docking to the helicases. Dronabinol interfered in the binding of the helicases to RNA. 2 D QSAR studies revealed a low IC50 value for dronabinol. Dronabinol showed favorable drug-likeness, ADMET properties and target prediction results. Thus we propose dronabinol be further investigated in-vitro as a cure against dengue and zika virus infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abani Kumar Patar
- Department of Biochemistry, Assam Royal Global University, Guwahati, Assam, India
| | - Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Jitul Barman
- Department of Biochemistry, Assam Royal Global University, Guwahati, Assam, India
| | - Anupam Bora
- Department of Biochemistry, Assam Royal Global University, Guwahati, Assam, India
| | - Taranga Jyoti Baruah
- Department of Biochemistry, Assam Royal Global University, Guwahati, Assam, India
| |
Collapse
|
9
|
Cao V, Sukanadi IP, Loeanurit N, Suroengrit A, Paunrat W, Vibulakhaopan V, Hengphasatporn K, Shigeta Y, Chavasiri W, Boonyasuppayakorn S. A sulfonamide chalcone inhibited dengue virus with a potential target at the SAM-binding site of viral methyltransferase. Antiviral Res 2023; 220:105753. [PMID: 37967754 DOI: 10.1016/j.antiviral.2023.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Dengue infection is a global health problem as climate change facilitates the spread of mosquito vectors. Infected patients could progress to severe plasma leakage and hemorrhagic shock, where current standard treatment remains supportive. Previous reports suggested that several flavonoid derivatives inhibited mosquito-borne flaviviruses. This work aimed to explore sulfonamide chalcone derivatives as dengue inhibitors and to identify molecular targets. We initially screened 27 sulfonamide chalcones using cell-based antiviral and cytotoxic screenings. Two potential compounds, SC22 and SC27, were identified with DENV1-4 EC50s in the range of 0.71-0.94 and 3.15-4.46 μM, and CC50s at 14.63 and 31.02 μM, respectively. The compounds did not show any elevation in ALT or Cr in C57BL/6 mice on the 1st, 3rd, and 7th days after being administered intraperitoneally with 50 mg/kg SC22 or SC27 in a single dose. Moreover, the SAM-binding site of NS5 methyltransferase was a potential target of SC27 identified by computational and enzyme-based assays. The main target of SC22 was in a late stage of viral replication, but the exact target molecule had yet to be identified. In summary, a sulfonamide chalcone, SC27, was a potential DENV inhibitor that targeted viral methyltransferase. Further investigation should be the study of the structure-activity relationship of SC27 derivatives for higher potency and lower toxicity.
Collapse
Affiliation(s)
- Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; DaNang University of Medical Technology and Pharmacy, DaNang, 50200, Viet Nam
| | - I Putu Sukanadi
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naphat Loeanurit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aphinya Suroengrit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wattamon Paunrat
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vipanee Vibulakhaopan
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Vaccine Research and Development, Chulalongkorn University (Chula-VRC), Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Chen H, Lin S, Yang F, Chen Z, Guo L, Yang J, Lin X, Wang L, Duan Y, Wen A, Zhang X, Dai Y, Yin K, Yuan X, Yu C, He Y, He B, Cao Y, Dong H, Li J, Zhao Q, Liu Q, Lu G. Structural and functional basis of low-affinity SAM/SAH-binding in the conserved MTase of the multi-segmented Alongshan virus distantly related to canonical unsegmented flaviviruses. PLoS Pathog 2023; 19:e1011694. [PMID: 37831643 PMCID: PMC10575543 DOI: 10.1371/journal.ppat.1011694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Alongshan virus (ALSV), a newly discovered member of unclassified Flaviviridae family, is able to infect humans. ALSV has a multi-segmented genome organization and is evolutionarily distant from canonical mono-segmented flaviviruses. The virus-encoded methyltransferase (MTase) plays an important role in viral replication. Here we show that ALSV MTase readily binds S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) but exhibits significantly lower affinities than canonical flaviviral MTases. Structures of ALSV MTase in the free and SAM/SAH-bound forms reveal that the viral enzyme possesses a unique loop-element lining side-wall of the SAM/SAH-binding pocket. While the equivalent loop in flaviviral MTases half-covers SAM/SAH, contributing multiple hydrogen-bond interactions; the pocket-lining loop of ALSV MTase is of short-length and high-flexibility, devoid of any physical contacts with SAM/SAH. Subsequent mutagenesis data further corroborate such structural difference affecting SAM/SAH-binding. Finally, we also report the structure of ALSV MTase bound with sinefungin, an SAM-analogue MTase inhibitor. These data have delineated the basis for the low-affinity interaction between ALSV MTase and SAM/SAH and should inform on antiviral drug design.
Collapse
Affiliation(s)
- Hua Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Duan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ao Wen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yushan Dai
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqing Yin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongzhang Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yarong He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Quan Liu
- Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Mensah IK, Norvil AB, He M, Lendy E, Hjortland N, Tan H, Pomerantz RT, Mesecar A, Gowher H. Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development. J Biol Chem 2023; 299:105257. [PMID: 37716702 PMCID: PMC10582764 DOI: 10.1016/j.jbc.2023.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and radiolabeled AdoMet coenzyme. The assay is fast, highly reproducible, exhibits linear progress-curve kinetics under multiple turnover conditions, has high sensitivity in competitive inhibition assays, and significantly lower background levels compared with the currently used method. Using our newly developed microplate assay, we observed no significant difference in the catalytic constants of the full-length nonstructural protein 5 enzyme and the truncated MTase domain. These data suggest that, unlike the Zika virus RNA-dependent RNA polymerase activity, the MTase activity is unaffected by RNA-dependent RNA polymerase-MTase interdomain interaction. Given its quantitative nature and accuracy, this method can be used to characterize various RNA MTases, and, therefore, significantly contribute to the field of epitranscriptomics and drug development against infectious diseases.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Allison B Norvil
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Ming He
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Emma Lendy
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Nicole Hjortland
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Hern Tan
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Richard T Pomerantz
- Department Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Andrew Mesecar
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
12
|
Kulkarni B, Manjunatha K, Joy MN, Sajith AM, Santra S, Zyryanov GV, Prashantha CN, Alshammari MB, Sunil K. Exploration of NMI-MsCl mediated amide bond formation for the synthesis of novel 3,5-substituted-1,2,4-oxadiazole derivatives: synthesis, evaluation of anti-inflammatory activity and molecular docking studies. Mol Divers 2023; 27:1867-1878. [PMID: 36219380 DOI: 10.1007/s11030-022-10536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
We herein report the facile synthesis of a series of 3,5-substituted-1,2,4-oxadiazole derivatives 9a-e and 10a-e in good to excellent yields by employing NMI-MsCl mediated amide bond formation reaction. The anti-inflammatory potential of the newly synthesized compounds were evaluated by anti-denaturation assay using diclofenac sodium as the reference drug. The compounds 9a and 9d demonstrated promising activity profile when compared to the reference standard. The SAR and molecular docking studies were also carried out for obtaining more details about the profound activity profile of the synthesized molecules. The synthesized compounds were docked against two target proteins TGF-β and IL-1 by AutoDock vina and Auto Dock 4.2.
Collapse
Affiliation(s)
- B Kulkarni
- Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - K Manjunatha
- Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu, 641046, India.
- Department of Chemistry, Nagarjuna College of Engineering and Technology, Devanahalli, Bengaluru, Karnataka, 562164, India.
| | - Muthipeedika Nibin Joy
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
| | | | - Sougata Santra
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
| | - Grigory V Zyryanov
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, Yekaterinburg, Russia, 620219
| | - C N Prashantha
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka, 560064, India
| | - Mohammed B Alshammari
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj, 11942, Saudi Arabia
| | - K Sunil
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, 572107, India
| |
Collapse
|
13
|
Grenier D, Audebert S, Preto J, Guichou JF, Krimm I. Linkers in fragment-based drug design: an overview of the literature. Expert Opin Drug Discov 2023; 18:987-1009. [PMID: 37466331 DOI: 10.1080/17460441.2023.2234285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION In fragment-based drug design, fragment linking is a popular strategy where two fragments binding to different sub-pockets of a target are linked together. This attractive method remains challenging especially due to the design of ideal linkers. AREAS COVERED The authors review the types of linkers and chemical reactions commonly used to the synthesis of linkers, including those utilized in protein-templated fragment self-assembly, where fragments are directly linked in the presence of the protein. Finally, they detail computational workflows and software including generative models that have been developed for fragment linking. EXPERT OPINION The authors believe that fragment linking offers key advantages for compound design, particularly for the design of bivalent inhibitors linking two distinct pockets of the same or different subunits. On the other hand, more studies are needed to increase the potential of protein-templated approaches in FBDD. Important computational tools such as structure-based de novo software are emerging to select suitable linkers. Fragment linking will undoubtedly benefit from developments in computational approaches and machine learning models.
Collapse
Affiliation(s)
- Dylan Grenier
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Solène Audebert
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jordane Preto
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Jean-François Guichou
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Isabelle Krimm
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| |
Collapse
|
14
|
Sreekanth GP. Perspectives on the current antiviral developments towards RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) domains of dengue virus non-structural protein 5 (DENV-NS5). Eur J Med Chem 2023; 256:115416. [PMID: 37159959 DOI: 10.1016/j.ejmech.2023.115416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Dengue virus (DENV) infection is one of the most emerging arboviral infections in humans. DENV is a positive-stranded RNA virus in the Flaviviridae family consisting of an 11 kb genome. DENV non-structural protein 5 (DENV-NS5) constitutes the largest among the non-structural proteins, which act as two domains, the RNA-dependent RNA polymerase (RdRp) and RNA methyltransferase enzyme (MTase). The DENV-NS5 RdRp domain contributes to the viral replication stages, whereas the MTase initiates viral RNA capping and facilitates polyprotein translation. Given the functions of both DENV-NS5 domains have made them an important druggable target. Possible therapeutic interventions and drug discoveries against DENV infection were thoroughly reviewed; however, a current update on the therapeutic strategies specific to DENV-NS5 or its active domains was not attempted. Since most potential compounds and drugs targeting the DENV-NS5 were evaluated in both in vitro cultures and animal models, a more detailed evaluation of molecules/drug candidates still requires investigation in randomized controlled clinical trials. This review summarizes current perspectives on the therapeutic strategies adopted to target the DENV-NS5 (RdRp and MTase domains) at the host-pathogen interface and further discusses the directions to identify candidate drugs to combat DENV infection.
Collapse
Affiliation(s)
- Gopinathan Pillai Sreekanth
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, Telangana, India.
| |
Collapse
|
15
|
Delgado-Maldonado T, Moreno-Herrera A, Pujadas G, Vázquez-Jiménez LK, González-González A, Rivera G. Recent advances in the development of methyltransferase (MTase) inhibitors against (re)emerging arboviruses diseases dengue and Zika. Eur J Med Chem 2023; 252:115290. [PMID: 36958266 DOI: 10.1016/j.ejmech.2023.115290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Emerging and/or re-emerging viral diseases such as dengue and Zika are a worldwide concern. Therefore, new antiviral therapeutics are necessary. In this sense, a non-structural protein with methyltransferase (MTase) activity is an attractive drug target because it plays a crucial role in dengue and Zika virus replication. Different drug strategies such as virtual screening, molecular docking, and molecular dynamics have identified new inhibitors that bind on the MTase active site. Therefore, in this review, we analyze MTase inhibitors, including S-adenosyl-L-methionine (SAM), S-adenosyl-l-homocysteine (SAH) and guanosine-5'-triphosphate (GTP) analogs, nitrogen-containing heterocycles (pyrimidine, adenosine, and pyridine), urea derivatives, and natural products. Advances in the design of MTase inhibitors could lead to the optimization of a possible single or broad-spectrum antiviral drug against dengue and Zika virus.
Collapse
Affiliation(s)
- Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007, Tarragona, Catalonia, Spain
| | - Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico.
| |
Collapse
|
16
|
Lichen-Derived Diffractaic Acid Inhibited Dengue Virus Replication in a Cell-Based System. Molecules 2023; 28:molecules28030974. [PMID: 36770642 PMCID: PMC9918999 DOI: 10.3390/molecules28030974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Dengue is a mosquito-borne flavivirus that causes 21,000 deaths annually. Depsides and depsidones of lichens have previously been reported to be antimicrobials. In this study, our objective was to identify lichen-derived depsides and depsidones as dengue virus inhibitors. The 18 depsides and depsidones of Usnea baileyi, Usnea aciculifera, Parmotrema dilatatum, and Parmotrema tsavoense were tested against dengue virus serotype 2. Two depsides and one depsidone inhibited dengue virus serotype 2 without any apparent cytotoxicity. Diffractaic acid, barbatic acid, and Parmosidone C were three active compounds further characterized for their efficacies (EC50), cytotoxicities (CC50), and selectivity index (SI; CC50/EC50). Their EC50 (SI) values were 2.43 ± 0.19 (20.59), 0.91 ± 0.15 (13.33), and 17.42 ± 3.21 (8.95) μM, respectively. Diffractaic acid showed the highest selectivity index, and similar efficacies were also found in dengue serotypes 1-4, Zika, and chikungunya viruses. Cell-based studies revealed that the target was mainly in the late stage with replication and the formation of infectious particles. This report highlights that a lichen-derived diffractaic acid could become a mosquito-borne antiviral lead as its selectivity indices ranged from 8.07 to 20.59 with a proposed target at viral replication.
Collapse
|
17
|
Jarerattanachat V, Boonarkart C, Hannongbua S, Auewarakul P, Ardkhean R. In silico and in vitro studies of potential inhibitors against Dengue viral protein NS5 Methyl Transferase from Ginseng and Notoginseng. J Tradit Complement Med 2023; 13:1-10. [PMID: 36685072 PMCID: PMC9845645 DOI: 10.1016/j.jtcme.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aim Dengue is a potentially deadly tropical infectious disease transmitted by mosquito vector Aedes aegypti with no antiviral drug available to date. Dengue NS5 protein is crucial for viral replication and is the most conserved among all four Dengue serotypes, making it an attractive drug target. Both Ginseng and Notoginseng extracts and isolates have been shown to be effective against various viral infections yet against Dengue Virus is understudied. We aim to identify potential inhibitors against Dengue NS5 Methyl transferase from small molecular compounds found in Ginseng and Notoginseng. Experimental procedure A molecular docking model of Dengue NS5 Methyl transferase (MTase) domain was tested with decoys and then used to screen 91 small molecular compounds found in Ginseng and Notoginseng followed by Molecular dynamics simulations and the per-residue free energy decompositions based on molecular mechanics/Poisson-Boltzmann (generalised Born) surface area (MM/PB(GB)SA) calculations of the hit. ADME predictions and drug-likeness analyses were discussed to evaluate the viability of the hit as a drug candidate. To confirm our findings, in vitro studies of antiviral activities against RNA and a E protein synthesis and cell toxicity were carried out. Results and conclusion The virtual screening resulted in Isoquercitrin as a single hit. Further analyses of the Isoquercitrin-MTase complex show that Isoquercitrin can reside within both of the NS5 Methyl Transferase active sites; the AdoMet binding site and the RNA capping site. The Isoquercitrin is safe for consumption and accessible on multikilogram scale. In vitro studies showed that Isoquercitrin can inhibit Dengue virus by reducing viral RNA and viral protein synthesis with low toxicity to cells (CC50 > 20 μM). Our work provides evidence that Isoquercitrin can serve as an inhibitor of Dengue NS5 protein at the Methyl Transferase domain, further supporting its role as an anti-DENV agent.
Collapse
Affiliation(s)
- Viwan Jarerattanachat
- NSTDA Supercomputer Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ruchuta Ardkhean
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| |
Collapse
|
18
|
Bedwell E, McCarthy WJ, Coyne AG, Abell C. Development of potent inhibitors by fragment-linking strategies. Chem Biol Drug Des 2022; 100:469-486. [PMID: 35854428 DOI: 10.1111/cbdd.14120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
Fragment-based drug discovery (FBDD) is a method of identifying small molecule hits that can be elaborated rationally through fragment growing, merging, and linking, to afford high affinity ligands for biological targets. Despite the promised theoretical potential of fragment linking, examples are still surprisingly sparse and remain overshadowed by the successes of fragment growing. The aim of this review is to outline a number of key examples of fragment linking strategies and discuss their strengths and limitations. Structure-based approaches including X-ray crystallography and in silico methods fragment optimisation are discussed, as well as fragment linking guided by NMR experiments. Target-guided approaches, exploiting the biological target to assemble its own inhibitors through dynamic combinatorial chemistry (DCC) and kinetic target-guided synthesis (KTGS), are identified as alternative efficient methods for fragment linking.
Collapse
Affiliation(s)
- Elizabeth Bedwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambrdige, United Kingdom
| | - William J McCarthy
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambrdige, United Kingdom
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambrdige, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambrdige, United Kingdom
| |
Collapse
|
19
|
Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Res 2022; 50:4216-4245. [PMID: 35412633 PMCID: PMC9071492 DOI: 10.1093/nar/gkac224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.
Collapse
Affiliation(s)
- Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| |
Collapse
|
20
|
Sundar S, Piramanayagam S, Natarajan J. A review on structural genomics approach applied for drug discovery against three vector-borne viral diseases: Dengue, Chikungunya and Zika. Virus Genes 2022; 58:151-171. [PMID: 35394596 DOI: 10.1007/s11262-022-01898-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
Structural genomics involves the advent of three-dimensional structures of the genome encoded proteins through various techniques available. Numerous structural genomics research groups have been developed across the globe and they contribute enormously to the identification of three-dimensional structures of various proteins. In this review, we have discussed the applications of the structural genomics approach towards the discovery of potential lead-like molecules against the genomic drug targets of three vector-borne diseases, namely, Dengue, Chikungunya and Zika. Currently, all these three diseases are associated with the most important global public health problems and significant economic burden in tropical countries. Structural genomics has accelerated the identification of novel drug targets and inhibitors for the treatment of these diseases. We start with the current development status of the drug targets and antiviral drugs against these three diseases and conclude by describing challenges that need to be addressed to overcome the shortcomings in the process of drug discovery.
Collapse
Affiliation(s)
- Shobana Sundar
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | | | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
21
|
Shi Y, El-Deeb IM, Masic V, Hartley-Tassell L, Maggioni A, Itzstein MV, Ve T. Discovery of Cofactor Competitive Inhibitors against the Human Methyltransferase Fibrillarin. Pharmaceuticals (Basel) 2021; 15:26. [PMID: 35056083 PMCID: PMC8779173 DOI: 10.3390/ph15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Fibrillarin (FBL) is an essential and evolutionarily highly conserved S-adenosyl methionine (SAM) dependent methyltransferase. It is the catalytic component of a multiprotein complex that facilitates 2'-O-methylation of ribosomal RNAs (rRNAs), a modification essential for accurate and efficient protein synthesis in eukaryotic cells. It was recently established that human FBL (hFBL) is critical for Nipah, Hendra, and respiratory syncytial virus infections. In addition, overexpression of hFBL contributes towards tumorgenesis and is associated with poor survival in patients with breast cancer, suggesting that hFBL is a potential target for the development of both antiviral and anticancer drugs. An attractive strategy to target cofactor-dependent enzymes is the selective inhibition of cofactor binding, which has been successful for the development of inhibitors against several protein methyltransferases including PRMT5, DOT1L, and EZH2. In this work, we solved crystal structures of the methyltransferase domain of hFBL in apo form and in complex with the cofactor SAM. Screening of a fluorinated fragment library, via X-ray crystallography and 19F NMR spectroscopy, yielded seven hit compounds that competed with cofactor binding, two of which resulted in co-crystal structures. One of these structures revealed unexpected conformational variability in the cofactor binding site, which allows it to accommodate a compound significantly different from SAM. Our structural data provide critical information for the design of selective cofactor competitive inhibitors targeting hFBL, and preliminary elaboration of hit compounds has led to additional cofactor site binders.
Collapse
Affiliation(s)
- Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Andrea Maggioni
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
22
|
Fragment-to-lead tailored in silico design. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:44-57. [PMID: 34916022 DOI: 10.1016/j.ddtec.2021.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/25/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Fragment-based drug discovery (FBDD) emerged as a disruptive technology and became established during the last two decades. Its rationality and low entry costs make it appealing, and the numerous examples of approved drugs discovered through FBDD validate the approach. However, FBDD still faces numerous challenges. Perhaps the most important one is the transformation of the initial fragment hits into viable leads. Fragment-to-lead (F2L) optimization is resource-intensive and is therefore limited in the possibilities that can be actively pursued. In silico strategies play an important role in F2L, as they can perform a deeper exploration of chemical space, prioritize molecules with high probabilities of being active and generate non-obvious ideas. Here we provide a critical overview of current in silico strategies in F2L optimization and highlight their remarkable impact. While very effective, most solutions are target- or fragment- specific. We propose that fully integrated in silico strategies, capable of automatically and systematically exploring the fast-growing available chemical space can have a significant impact on accelerating the release of fragment originated drugs.
Collapse
|
23
|
Design, synthesis and molecular docking studies of some 1-(5-(2-fluoro-5-(trifluoromethoxy)phenyl)-1,2,4-oxadiazol-3-yl)piperazine derivatives as potential anti-inflammatory agents. Mol Divers 2021; 26:2893-2905. [PMID: 34817768 DOI: 10.1007/s11030-021-10340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
We herein report the facile synthesis of a series of 3,5-substituted-1,2,4-oxadiazole derivatives in good to excellent yields. The anti-inflammatory potential of the newly synthesized compounds was evaluated by anti-denaturation assay using diclofenac sodium as the reference standard. Some of the compounds exhibited profound activity profile when compared to the standard drug. The molecular docking and SAR studies were carried out at the later stage for gaining more insights about the promising activity profile of the synthesized molecules.
Collapse
|
24
|
Ali A, Hasan P, Irfan M, Uddin A, Khan A, Saraswat J, Maguire R, Kavanagh K, Patel R, Joshi MC, Azam A, Mohsin M, Haque QMR, Abid M. Development of Oxadiazole-Sulfonamide-Based Compounds as Potential Antibacterial Agents. ACS OMEGA 2021; 6:27798-27813. [PMID: 34722980 PMCID: PMC8552329 DOI: 10.1021/acsomega.1c03379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this work, substituted 1,2,4-oxadiazoles (OX1-OX27) were screened against five bacterial strains, identified to be OX7 and OX11 as growth inhibitors with minimum inhibitory concentration (MIC) values of 31.25 and 15.75 μg/mL, respectively. The growth inhibitory property of OX7 and OX11 was further validated by disk diffusion, growth curve, and time kill curve assays. Both disrupted biofilm formation with 92-100% reduction examined by the XTT assay were further visualized by scanning electron microscopy analysis. These compounds in combination with ciprofloxacin also exhibit synergy against Escherichia coli cells. With insignificant cytotoxic behavior on HEK293 cells, human red blood cells, and Galleria mellonella larvae, OX11 was tested against 28 multidrug resistant environmental isolates of bacteria and showed inhibition of Kluyvera georgiana and Citrobacter werkmanii strains with 32 and 16 μg/mL MIC values, respectively. The synergistic behavior of OX11 with ampicillin showed many fold reductions in MIC values against K. georgiana and Klebsiella pneumoniae multidrug resistant strains. Further, transmission electron microscopy analysis of OX11-treated E. coli cells showed a significantly damaged cell wall, which resulted in the loss of integrity and cytosolic oozing. OX11 showed significant changes in the secondary structure of human serum albumin (HSA) in the presence of OX11, enhancing HSA stability. Overall, the study provided a suitable core for further synthetic alterations and development as an antibacterial agent.
Collapse
Affiliation(s)
- Asghar Ali
- Microbiology
Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Phool Hasan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Irfan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Amad Uddin
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ashba Khan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Juhi Saraswat
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ronan Maguire
- Department
of Biology, Maynooth University, Maynooth, Co. Kildare ABC127 Ireland
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Maynooth, Co. Kildare ABC127 Ireland
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mukesh C. Joshi
- Motilal
Nehru College, University of Delhi, Benito Juarez Marg, South Campus, New Delhi 110021, India
| | - Amir Azam
- Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd. Mohsin
- Metabolic
Engineering Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Qazi Mohd. Rizwanul Haque
- Microbiology
Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
25
|
Current Trends and Limitations in Dengue Antiviral Research. Trop Med Infect Dis 2021; 6:tropicalmed6040180. [PMID: 34698303 PMCID: PMC8544673 DOI: 10.3390/tropicalmed6040180] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease worldwide and affects approximately 2.5 billion people living in over 100 countries. Increasing geographic expansion of Aedes aegypti mosquitoes (which transmit the virus) has made dengue a global health concern. There are currently no approved antivirals available to treat dengue, and the only approved vaccine used in some countries is limited to seropositive patients. Treatment of dengue, therefore, remains largely supportive to date; hence, research efforts are being intensified for the development of antivirals. The nonstructural proteins, 3 and 5 (NS3 and NS5), have been the major targets for dengue antiviral development due to their indispensable enzymatic and biological functions in the viral replication process. NS5 is the largest and most conserved nonstructural protein encoded by flaviviruses. Its multifunctionality makes it an attractive target for antiviral development, but research efforts have, this far, not resulted in the successful development of an antiviral targeting NS5. Increase in structural insights into the dengue NS5 protein will accelerate drug discovery efforts focused on NS5 as an antiviral target. In this review, we will give an overview of the current state of therapeutic development, with a focus on NS5 as a therapeutic target against dengue.
Collapse
|
26
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
27
|
Hoarau M, Vanichtanankul J, Srimongkolpithak N, Vitsupakorn D, Yuthavong Y, Kamchonwongpaisan S. Discovery of new non-pyrimidine scaffolds as Plasmodium falciparum DHFR inhibitors by fragment-based screening. J Enzyme Inhib Med Chem 2021; 36:198-206. [PMID: 33530764 PMCID: PMC8759724 DOI: 10.1080/14756366.2020.1854244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In various malaria-endemic regions, the appearance of resistance has precluded the use of pyrimidine-based antifolate drugs. Here, a three-step fragment screening was used to identify new non-pyrimidine Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors. Starting from a 1163-fragment commercial library, a two-step differential scanning fluorimetry screen identified 75 primary fragment hits. Subsequent enzyme inhibition assay identified 11 fragments displaying IC50 in the 28-695 μM range and selectivity for PfDHFR. In addition to the known pyrimidine, three new anti-PfDHFR chemotypes were identified. Fragments from each chemotype were successfully co-crystallized with PfDHFR, revealing a binding in the active site, in the vicinity of catalytic residues, which was confirmed by molecular docking on all fragment hits. Finally, comparison with similar non-hit fragments provides preliminary input on available growth vectors for future drug development.
Collapse
Affiliation(s)
- Marie Hoarau
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Danoo Vitsupakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
28
|
Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics. Antibiotics (Basel) 2021; 10:antibiotics10010092. [PMID: 33477901 PMCID: PMC7833385 DOI: 10.3390/antibiotics10010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobials have allowed medical advancements over several decades. However, the continuous emergence of antimicrobial resistance restricts efficacy in treating infectious diseases. In this context, the drug repositioning of already known biological active compounds to antimicrobials could represent a useful strategy. In 2002 and 2003, the SARS-CoV pandemic immobilized the Far East regions. However, the drug discovery attempts to study the virus have stopped after the crisis declined. Today’s COVID-19 pandemic could probably have been avoided if those efforts against SARS-CoV had continued. Recently, a new coronavirus variant was identified in the UK. Because of this, the search for safe and potent antimicrobials and antivirals is urgent. Apart from antiviral treatment for severe cases of COVID-19, many patients with mild disease without pneumonia or moderate disease with pneumonia have received different classes of antibiotics. Diarylureas are tyrosine kinase inhibitors well known in the art as anticancer agents, which might be useful tools for a reposition as antimicrobials. The first to come onto the market as anticancer was sorafenib, followed by some other active molecules. For this interesting class of organic compounds antimicrobial, antiviral, antithrombotic, antimalarial, and anti-inflammatory properties have been reported in the literature. These numerous properties make these compounds interesting for a new possible pandemic considering that, as well as for other viral infections also for CoVID-19, a multitarget therapeutic strategy could be favorable. This review is meant to be an overview on diarylureas, focusing on their biological activities, not dwelling on the already known antitumor activity. Quite a lot of papers present in the literature underline and highlight the importance of these molecules as versatile scaffolds for the development of new and promising antimicrobials and multitarget agents against new pandemic events.
Collapse
|
29
|
Ruggieri A, Helm M, Chatel-Chaix L. An epigenetic 'extreme makeover': the methylation of flaviviral RNA (and beyond). RNA Biol 2021; 18:696-708. [PMID: 33356825 DOI: 10.1080/15476286.2020.1868150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Beyond their high clinical relevance worldwide, flaviviruses (comprising dengue and Zika viruses) are of particular interest to understand the spatiotemporal control of RNA metabolism. Indeed, their positive single-stranded viral RNA genome (vRNA) undergoes in the cytoplasm replication, translation and encapsidation, three steps of the flavivirus life cycle that are coordinated through a fine-tuned equilibrium. Over the last years, RNA methylation has emerged as a powerful mechanism to regulate messenger RNA metabolism at the posttranscriptional level. Not surprisingly, flaviviruses exploit RNA epigenetic strategies to control crucial steps of their replication cycle as well as to evade sensing by the innate immune system. This review summarizes the current knowledge about vRNA methylation events and their impacts on flavivirus replication and pathogenesis. We also address the important challenges that the field of epitranscriptomics faces in reliably and accurately identifying RNA methylation sites, which should be considered in future studies on viral RNA modifications.
Collapse
Affiliation(s)
- Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research University of Heidelberg, Heidelberg, Germany
| | - Mark Helm
- Johannes Gutenberg-Universität Mainz, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
30
|
Choubey SK, Nachiappan M, Richard M, Chitra JP, Jeyakanthan J. Structural and functional insights of STAT2-NS5 interaction for the identification of NS5 antagonist – An approach for restoring interferon signaling. Comput Biol Chem 2020; 88:107332. [DOI: 10.1016/j.compbiolchem.2020.107332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
|
31
|
Chagas M, Rocha W, Moraes A. Dynamics and allostery of Zika virus non-structural protein 5 methyltransferase. J Biomol Struct Dyn 2020; 39:5526-5538. [DOI: 10.1080/07391102.2020.1792343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marcelo Chagas
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Willian Rocha
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adolfo Moraes
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
32
|
Bancet A, Raingeval C, Lomberget T, Le Borgne M, Guichou JF, Krimm I. Fragment Linking Strategies for Structure-Based Drug Design. J Med Chem 2020; 63:11420-11435. [DOI: 10.1021/acs.jmedchem.0c00242] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexandre Bancet
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Claire Raingeval
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Thierry Lomberget
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
| | | | - Isabelle Krimm
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
33
|
de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Andrade CH, Silva FP. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front Chem 2020; 8:93. [PMID: 32133344 PMCID: PMC7040036 DOI: 10.3389/fchem.2020.00093] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Fragment-based drug (or lead) discovery (FBDD or FBLD) has developed in the last two decades to become a successful key technology in the pharmaceutical industry for early stage drug discovery and development. The FBDD strategy consists of screening low molecular weight compounds against macromolecular targets (usually proteins) of clinical relevance. These small molecular fragments can bind at one or more sites on the target and act as starting points for the development of lead compounds. In developing the fragments attractive features that can translate into compounds with favorable physical, pharmacokinetics and toxicity (ADMET-absorption, distribution, metabolism, excretion, and toxicity) properties can be integrated. Structure-enabled fragment screening campaigns use a combination of screening by a range of biophysical techniques, such as differential scanning fluorimetry, surface plasmon resonance, and thermophoresis, followed by structural characterization of fragment binding using NMR or X-ray crystallography. Structural characterization is also used in subsequent analysis for growing fragments of selected screening hits. The latest iteration of the FBDD workflow employs a high-throughput methodology of massively parallel screening by X-ray crystallography of individually soaked fragments. In this review we will outline the FBDD strategies and explore a variety of in silico approaches to support the follow-up fragment-to-lead optimization of either: growing, linking, and merging. These fragment expansion strategies include hot spot analysis, druggability prediction, SAR (structure-activity relationships) by catalog methods, application of machine learning/deep learning models for virtual screening and several de novo design methods for proposing synthesizable new compounds. Finally, we will highlight recent case studies in fragment-based drug discovery where in silico methods have successfully contributed to the development of lead compounds.
Collapse
Affiliation(s)
- Lauro Ribeiro de Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - José Teófilo Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno Junior Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
- Laboratory of Cheminformatics, Centro Universitário de Anápolis – UniEVANGÉLICA, Anápolis, Brazil
| | - Rocío Lucía Beatriz Riveros Maidana
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Floriano Paes Silva
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Spizzichino S, Mattedi G, Lauder K, Valle C, Aouadi W, Canard B, Decroly E, Kaptein SJF, Neyts J, Graham C, Sule Z, Barlow DJ, Silvestri R, Castagnolo D. Design, Synthesis and Discovery of N,N'-Carbazoyl-aryl-urea Inhibitors of Zika NS5 Methyltransferase and Virus Replication. ChemMedChem 2020; 15:385-390. [PMID: 31805205 PMCID: PMC7106487 DOI: 10.1002/cmdc.201900533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Indexed: 12/18/2022]
Abstract
The recent outbreaks of Zika virus (ZIKV) infection worldwide make the discovery of novel antivirals against flaviviruses a research priority. This work describes the identification of novel inhibitors of ZIKV through a structure-based virtual screening approach using the ZIKV NS5-MTase. A novel series of molecules with a carbazoyl-aryl-urea structure has been discovered and a library of analogues has been synthesized. The new compounds inhibit ZIKV MTase with IC50 between 23-48 μM. In addition, carbazoyl-aryl-ureas also proved to inhibit ZIKV replication activity at micromolar concentration.
Collapse
Affiliation(s)
- Sharon Spizzichino
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonSE1 9NHUK
- Department of Drug Chemistry and TechnologiesSapienza University of RomeLaboratory Affiliated to Instituto Pasteur Italia – Fondazione Cenci BolognettiPiazzale Aldo Moro 500185RomaItaly
| | - Giulio Mattedi
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonSE1 9NHUK
| | - Kate Lauder
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonSE1 9NHUK
| | - Coralie Valle
- AFMB, CNRSAix-Marseille University UMR 7257, Case 925163 Avenue de Luminy13288Marseille Cedex 09France
| | - Wahiba Aouadi
- AFMB, CNRSAix-Marseille University UMR 7257, Case 925163 Avenue de Luminy13288Marseille Cedex 09France
| | - Bruno Canard
- AFMB, CNRSAix-Marseille University UMR 7257, Case 925163 Avenue de Luminy13288Marseille Cedex 09France
| | - Etienne Decroly
- AFMB, CNRSAix-Marseille University UMR 7257, Case 925163 Avenue de Luminy13288Marseille Cedex 09France
| | - Suzanne J. F. Kaptein
- Department of Microbiology, Immunology and Transplantation Rega Institute for Medical Research Laboratory of Virology and ChemotherapyKU LeuvenMinderbroedersstraat 103000LeuvenBelgium
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation Rega Institute for Medical Research Laboratory of Virology and ChemotherapyKU LeuvenMinderbroedersstraat 103000LeuvenBelgium
| | - Carl Graham
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonSE1 9NHUK
| | - Zakary Sule
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonSE1 9NHUK
| | - David J. Barlow
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonSE1 9NHUK
| | - Romano Silvestri
- Department of Drug Chemistry and TechnologiesSapienza University of RomeLaboratory Affiliated to Instituto Pasteur Italia – Fondazione Cenci BolognettiPiazzale Aldo Moro 500185RomaItaly
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonSE1 9NHUK
| |
Collapse
|
35
|
Applications of X-ray Powder Diffraction in Protein Crystallography and Drug Screening. CRYSTALS 2020. [DOI: 10.3390/cryst10020054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Providing fundamental information on intra/intermolecular interactions and physicochemical properties, the three-dimensional structural characterization of biological macromolecules is of extreme importance towards understanding their mechanism of action. Among other methods, X-ray powder diffraction (XRPD) has proved its applicability and efficiency in numerous studies of different materials. Owing to recent methodological advances, this method is now considered a respectable tool for identifying macromolecular phase transitions, quantitative analysis, and determining structural modifications of samples ranging from small organics to full-length proteins. An overview of the XRPD applications and recent improvements related to the study of challenging macromolecules and peptides toward structure-based drug design is discussed. This review congregates recent studies in the field of drug formulation and delivery processes, as well as in polymorph identification and the effect of ligands and environmental conditions upon crystal characteristics. These studies further manifest the efficiency of protein XRPD for quick and accurate preliminary structural characterization.
Collapse
|
36
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Liu M, Quinn RJ. Fragment-based screening with natural products for novel anti-parasitic disease drug discovery. Expert Opin Drug Discov 2019; 14:1283-1295. [PMID: 31512943 PMCID: PMC6816479 DOI: 10.1080/17460441.2019.1653849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022]
Abstract
Introduction: Fragment-based drug discovery can identify relatively simple compounds with low binding affinity due to fewer binding interactions with protein targets. FBDD reduces the library size and provides simpler starting points for subsequent chemical optimization of initial hits. A much greater proportion of chemical space can be sampled in fragment-based screening compared to larger molecules with typical molecular weights (MWs) of 250-500 g mol-1 used in high-throughput screening (HTS) libraries. Areas covered: The authors cover the role of natural products in fragment-based drug discovery against parasitic disease targets. They review the approaches to develop fragment-based libraries either using natural products or natural product-like compounds. The authors present approaches to fragment-based drug discovery against parasitic diseases and compare these libraries with the 3D attributes of natural products. Expert opinion: To effectively use the three-dimensional properties and the chemical diversity of natural products in fragment-based drug discovery against parasitic diseases, there needs to be a mind-shift. Library design, in the medicinal chemistry area, has acknowledged that escaping flat-land is very important to increase the chances of clinical success. Attempts to increase sp3 richness in fragment libraries are acknowledged. Sufficient low molecular weight natural products are known to create true natural product fragment libraries.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| |
Collapse
|
38
|
Liu X, Zhao Y, Zhang JZ. Molecular mechanism of ligand bindings to Zika virus at SAM site. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R. Drugs for the Treatment of Zika Virus Infection. J Med Chem 2019; 63:470-489. [PMID: 31549836 DOI: 10.1021/acs.jmedchem.9b00775] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zika virus is an emerging flavivirus that causes the neurodevelopmental congenital Zika syndrome and that has been linked to the neuroinflammatory Guillain-Barré syndrome. The absence of a vaccine or a clinically approved drug to treat the disease combined with the likelihood that another outbreak will occur in the future defines an unmet medical need. Several promising drug candidate molecules have been reported via repurposing studies, high-throughput compound library screening, and de novo design in the short span of a few years. Intense research activity in this area has occurred in response to the World Health Organization declaration of a Public Health Emergency of International Concern on February 1, 2016. In this Perspective, the authors review the emergence of Zika virus, the biology of its replication, targets for therapeutic intervention, target product profile, and current drug development initiatives.
Collapse
Affiliation(s)
| | - Lana T Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China
| | | | - Rongshi Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China.,UNMC Center for Drug Discovery, Department of Pharmaceutical Sciences, College of Pharmacy, Fred and Pamela Buffett Cancer Center, and Center for Staphylococcal Research , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
40
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
41
|
Valente AP, Moraes AH. Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190013. [PMID: 31523227 PMCID: PMC6727858 DOI: 10.1590/1678-9199-jvatitd-2019-0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In Brazil and in other tropical areas Zika virus infection was directly associated with clinical complications as microcephaly in newborn children whose mothers were infected during pregnancy and the Guillain-Barré syndrome in adults. Recently, research has been focused on developing new vaccines and drug candidates against Zika virus infection since none of those are available. In order to contribute to vaccine and drug development efforts, it becomes important the understanding of the molecular basis of the Zika virus recognition, infection and blockade. To this purpose, it is essential the structural determination of the Zika virus proteins. The genome sequencing of the Zika virus identified ten proteins, being three structural (protein E, protein C and protein prM) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5). Together, these proteins are the main targets for drugs and antibody recognition. Here we examine new discoveries on high-resolution structural biology of Zika virus, observing the interactions and functions of its proteins identified via state-of-art structural methodologies as X-ray crystallography, nuclear magnetic resonance spectroscopy and cryogenic electronic microscopy. The aim of the present study is to contribute to the understanding of the structural basis of Zika virus infection at an atomic level and to point out similarities and differences to others flaviviruses.
Collapse
Affiliation(s)
- Ana Paula Valente
- National Center of Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Adolfo Henrique Moraes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
42
|
Chandani SR, Lokhande KB, Swamy KV, Nanda RK, Chitlange SS. Data on docking of phytoconstituents of Actinidia deliciosa on dengue viral targets. Data Brief 2019; 25:103996. [PMID: 31338396 PMCID: PMC6626881 DOI: 10.1016/j.dib.2019.103996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Major Phytoconstituents of Actinidia deliciosa were explored for their anti-viral potential against dengue virus (DENV). The docking of these phytoconstituents was performed on 7 viral targets- 4 DENV non structural protein (NS5-SAM binding domain, NS5 RdRp domain, NS3 helicase & NS2B-NS3 protease) and 3 DENV structural proteins (Envelope protein-β-OD domain, stem domain & Domain III). The analysis was done on the basis of binding affinity, type of interactions (bond type and distance) and interaction with amino acids significant in viral replication. The top 5 phytoconstituents with best docking score have been reported.
Collapse
Affiliation(s)
- Sneha R Chandani
- Dr. D. Y. Patil Unitech Society's, Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Pimpri, Pune 411018, India
| | - Kiran B Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, India
| | - Rabindra K Nanda
- Dr. D. Y. Patil Unitech Society's, Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Pimpri, Pune 411018, India
| | - Sohan S Chitlange
- Dr. D. Y. Patil Unitech Society's, Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Pimpri, Pune 411018, India
| |
Collapse
|
43
|
Sobhia ME, Ghosh K, Singh A, Sul K, Singh M, Kumar R, Sandeep, Merugu S, Donempudi S. A Multi-Perspective Review on Dengue Research. Curr Drug Targets 2019; 20:1550-1562. [PMID: 31339068 DOI: 10.2174/1389450120666190724145937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022]
Abstract
Dengue fever is a disease which is caused by a family of viruses named Flaviviridae which are transmitted by female Aedes mosquitoes. Today, this is endemic in more than 100 nations in the World Health Organization's African, Americas, Eastern Mediterranean, South-East Asia and Western Pacific locales. The treatment of typical dengue is focused on relieving the symptoms and signs. Carica papaya is a very common plant whose leaf extract is used in the treatment of this disease. Despite extensive research on Dengue, not a single vaccine or anti-viral drug was available until 2016 (a partially effective Chimeric Yellow fever virus treated by DENV-Tetravalent Dengue Vaccine for dengue fever made by Sanofi Pasteur). This review highlights dengue fever's current situation and explains the importance of Natural chemical moieties like methionine-proline anilides, tetrapeptide aldehyde uncovered via Structure Activity Relationship studies. Also, we have reviewed the drug candidates currently in the clinical trials that have the potential to solve these issues. Important patents in the past 20 years have been outlined in this review. An in depth Protein Data Bank analysis of the different possible target proteins that can potentially have a major role in curing Dengue fever has been conducted.
Collapse
Affiliation(s)
- M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Ketan Ghosh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Ajeet Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Komal Sul
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Monica Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Ravi Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sandeep
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Satti Merugu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sunilchand Donempudi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, India
| |
Collapse
|
44
|
Mining large databases to find new leads with low similarity to known actives: application to find new DPP-IV inhibitors. Future Med Chem 2019; 11:1387-1401. [PMID: 31298576 DOI: 10.4155/fmc-2018-0597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Fragment-based drug design or bioisosteric replacement is used to find new actives with low (or no) similarity to existing ones but requires the synthesis of nonexisting compounds to prove their predicted bioactivity. Protein-ligand docking or pharmacophore screening are alternatives but they can become computationally expensive when applied to very large databases such as ZINC. Therefore, fast strategies are necessary to find new leads in such databases. Materials & methods: We designed a computational strategy to find lead molecules with very low (or no) similarity to existing actives and applied it to DPP-IV. Results: The bioactivity assays confirm that this strategy finds new leads for DPP-IV inhibitors. Conclusion: This computational strategy reduces the time of finding new lead molecules.
Collapse
|
45
|
Ng IHW, Chan KWK, Tan MJA, Gwee CP, Smith KM, Jeffress SJ, Saw WG, Swarbrick CMD, Watanabe S, Jans DA, Grüber G, Forwood JK, Vasudevan SG. Zika Virus NS5 Forms Supramolecular Nuclear Bodies That Sequester Importin-α and Modulate the Host Immune and Pro-Inflammatory Response in Neuronal Cells. ACS Infect Dis 2019; 5:932-948. [PMID: 30848123 DOI: 10.1021/acsinfecdis.8b00373] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Zika virus (ZIKV) epidemic in the Americas was alarming because of its link with microcephaly in neonates and Guillain-Barré syndrome in adults. The unusual pathologies induced by ZIKV infection and the knowledge that the flaviviral nonstructural protein 5 (NS5), the most conserved protein in the flavivirus proteome, can modulate the host immune response during ZIKV infection prompted us to investigate the subcellular localization of NS5 during ZIKV infection and explore its functional significance. A monopartite nuclear localization signal (NLS) sequence within ZIKV NS5 was predicted by the cNLS Mapper program, and we observed localization of ZIKV NS5 in the nucleus of infected cells by immunostaining with specific antibodies. Strikingly, ZIKV NS5 forms spherical shell-like nuclear bodies that exclude DNA. The putative monopartite NLS 390KRPR393 is necessary to direct FLAG-tagged NS5 to the nucleus as the NS5 390ARPA393 mutant protein accumulates in the cytoplasm. Furthermore, coimmunostaining experiments reveal that NS5 localizes with and sequesters importin-α, but not importin-β, in the observed nuclear bodies during virus infection. Structural and biochemical data demonstrate binding of ZIKV NS5 with importin-α and reveal important binding determinants required for their interaction and formation of complexes that give rise to the supramolecular nuclear bodies. Significantly, we demonstrate a neuronal-specific activation of the host immune response to ZIKV infection and a possible role of ZIKV NS5's nuclear localization toward this activation. This suggests that ZIKV pathogenesis may arise from a tissue-specific host response to ZIKV infection.
Collapse
Affiliation(s)
- Ivan H. W. Ng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Genome Institute of Singapore, Agency for Science & Technology Research (A*STAR), 60 Biopolis Street, Singapore 138672
| | - Chin Piaw Gwee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Kate M. Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Sarah J. Jeffress
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Wuan-Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Crystall M. D. Swarbrick
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
46
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
47
|
Cross ST, Michalski D, Miller MR, Wilusz J. RNA regulatory processes in RNA virus biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1536. [PMID: 31034160 PMCID: PMC6697219 DOI: 10.1002/wrna.1536] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Numerous post‐transcriptional RNA processes play a major role in regulating the quantity, quality and diversity of gene expression in the cell. These include RNA processing events such as capping, splicing, polyadenylation and modification, but also aspects such as RNA localization, decay, translation, and non‐coding RNA‐associated regulation. The interface between the transcripts of RNA viruses and the various RNA regulatory processes in the cell, therefore, has high potential to significantly impact virus gene expression, regulation, cytopathology and pathogenesis. Furthermore, understanding RNA biology from the perspective of an RNA virus can shed considerable light on the broad impact of these post‐transcriptional processes in cell biology. Thus the goal of this article is to provide an overview of the richness of cellular RNA biology and how RNA viruses use, usurp and/or avoid the associated machinery to impact the outcome of infection. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Shaun T Cross
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Megan R Miller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
48
|
Analysis of solvent-exposed and buried co-crystallized ligands: a case study to support the design of novel protein–protein interaction inhibitors. Drug Discov Today 2019; 24:551-559. [DOI: 10.1016/j.drudis.2018.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
|
49
|
Optimization of a fragment linking hit toward Dengue and Zika virus NS5 methyltransferases inhibitors. Eur J Med Chem 2019; 161:323-333. [DOI: 10.1016/j.ejmech.2018.09.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/15/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022]
|
50
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|