1
|
Mir MA, Banik BK. Heterocyclic Phytochemicals as Anticancer Agents. Curr Top Med Chem 2025; 25:533-553. [PMID: 39350414 DOI: 10.2174/0115680266314693240914070250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 04/25/2025]
Abstract
Cancer continues to be a major global health challenge, driving the need for the discovery of novel therapeutic agents. Among these, heterocyclic phytochemicals have gained significant attention for their potential as anticancer agents. This review offers a detailed analysis of various classes of heterocyclic compounds with proven anticancer properties, shedding light on their mechanisms of action. The study draws from a diverse array of natural product sources, detailing the chemical structures and bioactivities of these compounds. Key heterocyclic classes such as alkaloids, flavonoids, coumarins, and terpenoids are emphasized due to their potent anticancer effects. Heterocyclic phytochemicals exhibit diverse anticancer mechanisms, including the modulation of cellular pathways like apoptosis, angiogenesis, and cell cycle progression. The combination of heterocyclic phytochemicals with conventional cancer therapies has shown promising synergistic effects, enhanced treatment efficacy and reducing side effects. The review systematically evaluates both preclinical and clinical studies, revealing the efficacy, safety profiles, and pharmacokinetics of selected heterocyclic compounds. The promising outcomes highlighted in this review underscore the critical need for ongoing research to fully realize the therapeutic potential of heterocyclic phytochemicals in cancer treatment.
Collapse
Affiliation(s)
- M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| | - Bimal Krishna Banik
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
3
|
许 威, 邓 昭, 王 辛, 姜 昊. [Network Pharmacology Study of Compound Ligustrazine in Gastric Cancer Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1114-1122. [PMID: 39507986 PMCID: PMC11536253 DOI: 10.12182/20240960503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 11/08/2024]
Abstract
Objective To explore the potential role and mechanism of compound tetramethylpyrazine in gastric cancer therapy by using network pharmacology analysis combined with gene function annotation and clinical data analysis. Methods SwissTargetPrediction database was used to screen the potential drug action sites of compound tetramethylpyrazine, and the OMIM and Genecard databases were used in combination to obtain gastric cancer-related targets. Intersection analysis was performed to identify potential therapeutic targets. Subsequently, the method of ClusterProfiler was used to perform functional annotation of the downstream targets of intersection. In addition, The Cancer Genome Atlas (TCGA) database was used to obtain the original data of gastric cancer patients, and the immune infiltration analysis, miRNA analysis, transcriptional regulation analysis of key genes, gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), nomogram model construction, and genome-wide association studies (GWAS) were performed. Results Through network pharmacological screening, we found 14 potential therapeutic targets through which tetramethylpyrazine acted on gastric cancer. Functional annotation showed that these targets were mainly involved in the pathways for hormone metabolism, drug metabolism, and signal transduction. Based on log rank test, the expression of the key genes, ELANE and MPO, showed significant difference in the comparison of gastric cancer survival curves (P<0.05), and were closely associated with immune cell infiltration. In addition, GSEA and GSVA results suggested that ELANE and MPO might influence the development of gastric cancer through multiple signaling pathways. Conclusion In this study, by using multiple analysis methods in an integrated way, we found that ligustrazine may have therapeutic effects on gastric cancer by regulating the potential targets of ELANE and MPO, as well as the relevant signaling pathways.
Collapse
Affiliation(s)
- 威 许
- 四川大学华西医院 消化肝病科 衰老与肿瘤研究室 疾病分子网络前沿科学中心 国家老年疾病临床医学研究中心 呼吸和共病全国重点实验室(成都 610041)Department of Gastroenterology and Hepatology, Laboratory for Aging and Cancer Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics ,State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 昭敏 邓
- 四川大学华西医院 消化肝病科 衰老与肿瘤研究室 疾病分子网络前沿科学中心 国家老年疾病临床医学研究中心 呼吸和共病全国重点实验室(成都 610041)Department of Gastroenterology and Hepatology, Laboratory for Aging and Cancer Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics ,State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 辛 王
- 四川大学华西医院 消化肝病科 衰老与肿瘤研究室 疾病分子网络前沿科学中心 国家老年疾病临床医学研究中心 呼吸和共病全国重点实验室(成都 610041)Department of Gastroenterology and Hepatology, Laboratory for Aging and Cancer Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics ,State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 昊 姜
- 四川大学华西医院 消化肝病科 衰老与肿瘤研究室 疾病分子网络前沿科学中心 国家老年疾病临床医学研究中心 呼吸和共病全国重点实验室(成都 610041)Department of Gastroenterology and Hepatology, Laboratory for Aging and Cancer Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics ,State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Başaran E, Tür G, Akkoc S, Taskin-Tok T. Design, Synthesis, and In Silico and In Vitro Cytotoxic Activities of Novel Isoniazid-Hydrazone Analogues Linked to Fluorinated Sulfonate Esters. ACS OMEGA 2024; 9:17551-17562. [PMID: 38645328 PMCID: PMC11025081 DOI: 10.1021/acsomega.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
Cancer is a life-threatening disease, and significant efforts are still being made to treat it. In this study, we synthesized and characterized novel hybrid molecules (10-18) containing hydrazone and sulfonate moieties and tested their cell growth inhibitory effect on human colon cancer cells (DLD-1), human prostate cancer cells (PC3), and human embryonic kidney cells (HEK-293T) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method for 72 h. In cell culture studies, all tested hybrid molecules except for 12 and 13 showed significant cytotoxic activities at a micromolar level with IC50 values in the range of 10.28-214.0 μM for the PC3 cell line and 13.49-144.30 μM for the DLD-1 cell line. Compounds 4 (10.28 μM) and 5 (11.22 μM) demonstrated the highest cytotoxicity against the PC3 cell line. Against the DLD-1 cell line, compounds 1 (22.53 μM), 4 (13.49 μM), 5 (19.33 μM), 6 (17.82 μM), 8 (24.71 μM), 9 (17.56 μM), and 10 (17.90 μM) in the series showed anticancer activity at lower micromolar levels compared to cisplatin (26.70 μM). Moreover, the study was handled computationally, and molecular docking studies were performed for compounds 1, 4, and 5 for PC3-FAK and PC3-Scr and compounds 4, 6, and 9 for the DLD-1-TNKS target. In this study, compound 4 was found to be the most effective and promising molecule for both targets.
Collapse
Affiliation(s)
- Eyüp Başaran
- Department
of Chemistry and Chemical Processing Technologies, Vocational School
of Technical Sciences, Batman University, Batman 72060, Turkey
| | - Gulal Tür
- Department
of Chemistry, Graduate Education Institute, Batman University, Batman 72100, Turkey
| | - Senem Akkoc
- Faculty
of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta 32260, Turkey
- Faculty
of Engineering and Natural Sciences, Bahçeşehir
University, Istanbul 34353, Turkey
| | - Tugba Taskin-Tok
- Department
of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep 27310, Turkey
- Department
of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey
| |
Collapse
|
5
|
Yang T, Gou H, Lin T, Yang Y, Jin X, Dong T, Zhang Y, Chen X. Fisetin nanoparticles based on cells cycle and apoptosis intervention for the treatment of lymphoma and leukemia. Int J Pharm 2024; 654:123971. [PMID: 38452832 DOI: 10.1016/j.ijpharm.2024.123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lymphoma and leukemia are both hematological system tumors with complex etiology, and mainly treated with chemotherapeutic drugs. However, therapeutic drugs can interrupt curative effect due to different side effects. Therefore, it is worthwhile to develop a novel therapeutic for providing insights for clinical tumor treatment. In this study, we developed a fisetin nanoparticles (Fisetin NPs) through a self-assembled method, and investigated the activity and potential mechanism of Fisetin NPs against lymphoma and leukemia. The spherical and uniformly distributed Fisetin NPs effectively inhibited both tumor cells proliferation, arrested EL4 cells G0/G1 phase and K562 cells G2/M phase, and induced apoptosis in vitro. In vivo, Fisetin NPs exhibited excellent tumor growth inhibition, effective inhibition of cell proliferation and angiogenesis, significant induction of apoptosis and ideal safety. Mechanically, fisetin upregulated genes (Fas, Pidd, Puma, Apaf1, and p21) in the p53 signaling pathway and bound to N-acetyltransferase 10 (NAT10), ribosomal protein L34 (RPL34) and GTP binding protein 4 (GTPBP4). Collectively, Fisetin NPs have promising therapeutic effects on lymphoma and leukemia, which are of great significant for clinical implications.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Hematology, Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongfeng Gou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Lin
- Department of Hematology, Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunfan Yang
- Department of Hematology, Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelian Jin
- Department of Hematology, Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Dong
- Department of Hematology, Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xinchuan Chen
- Department of Hematology, Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Aboshouk DR, Youssef MA, Bekheit MS, Hamed AR, Girgis AS. Antineoplastic indole-containing compounds with potential VEGFR inhibitory properties. RSC Adv 2024; 14:5690-5728. [PMID: 38362086 PMCID: PMC10866129 DOI: 10.1039/d3ra08962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Cancer is one of the most significant health challenges worldwide. Various techniques, tools and therapeutics/materials have been developed in the last few decades for the treatment of cancer, together with great interest, funding and efforts from the scientific society. However, all the reported studies and efforts seem insufficient to combat the various types of cancer, especially the advanced ones. The overexpression of tyrosine kinases is associated with cancer proliferation and/or metastasis. VEGF, an important category of tyrosine kinases, and its receptors (VEGFR) are hyper-activated in different cancers. Accordingly, they are known as important factors in the angiogenesis of different tumors and are considered in the development of effective therapeutic approaches for controlling many types of cancer. In this case, targeted therapeutic approaches are preferable to the traditional non-selective approaches to minimize the side effects and drawbacks associated with treatment. Several indole-containing compounds have been identified as effective agents against VEGFR. Herein, we present a summary of the recent indolyl analogs reported within the last decade (2012-2023) with potential antineoplastic and VEGFR inhibitory properties. The most important drugs, natural products, synthesized potent compounds and promising hits/leads are highlighted. Indoles functionalized and conjugated with various heterocycles beside spiroindoles are also considered.
Collapse
Affiliation(s)
- Dalia R Aboshouk
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| | - M Adel Youssef
- Department of Chemistry, Faculty of Science, Helwan University Helwan Egypt
| | - Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department, National Research Centre Dokki Giza 12622 Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
7
|
Frejat FOA, Zhao B, Furaijit N, Wang L, Abou-Zied HA, Fathy HM, Mohamed FAM, Youssif BGM, Wu C. New pyrrolidine-carboxamide derivatives as dual antiproliferative EGFR/CDK2 inhibitors. Chem Biol Drug Des 2024; 103:e14422. [PMID: 38230772 DOI: 10.1111/cbdd.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 μM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 μM compared to IC50 of 1.10 μM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.
Collapse
Affiliation(s)
- Frias Obaid Arhema Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
| | - Bingbing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | | | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Hazem M Fathy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
- Henan Qunbo Pharmaceutical Research Institute Co. LTD., Zhengzhou, PR China
| |
Collapse
|
8
|
Al-Wahaibi LH, Mahmoud MA, Mostafa YA, Raslan AE, Youssif BGM. Novel piperine-carboximidamide hybrids: design, synthesis, and antiproliferative activity via a multi-targeted inhibitory pathway. J Enzyme Inhib Med Chem 2023; 38:376-386. [DOI: 10.1080/14756366.2022.2151593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ali E. Raslan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|
11
|
El-Kalyoubi SA, Gomaa HAM, Abdelhafez EMN, Ramadan M, Agili F, Youssif BGM. Design, Synthesis, and Anti-Proliferative Action of Purine/Pteridine-Based Derivatives as Dual Inhibitors of EGFR and BRAF V600E. Pharmaceuticals (Basel) 2023; 16:716. [PMID: 37242499 PMCID: PMC10223936 DOI: 10.3390/ph16050716] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The investigation of novel EGFR and BRAFV600E dual inhibitors is intended to serve as targeted cancer treatment. Two sets of purine/pteridine-based derivatives were designed and synthesized as EGFR/BRAFV600E dual inhibitors. The majority of the compounds exhibited promising antiproliferative activity on the cancer cell lines tested. Compounds 5a, 5e, and 7e of purine-based and pteridine-based scaffolds were identified as the most potent hits in anti-proliferative screening, with GI50 values of 38 nM, 46 nM, and 44 nM, respectively. Compounds 5a, 5e, and 7e demonstrated promising EGFR inhibitory activity, with IC50 values of 87 nM, 98 nM, and 92 nM, respectively, when compared to erlotinib's IC50 value of 80 nM. According to the results of the BRAFV600E inhibitory assay, BRAFV600E may not be a viable target for this class of organic compounds. Finally, molecular docking studies were carried out at the EGFR and BRAFV600E active sites to suggest possible binding modes.
Collapse
Affiliation(s)
- Samar A. El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | | | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 11651, Egypt
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Jazan, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
12
|
Maghraby MTE, Salem OIA, Youssif BGM, Sheha MM. Design, synthesis, and modelling study of new 1,2,3-triazole/chalcone hybrids with antiproliferative action as epidermal growth factor receptor inhibitors. Chem Biol Drug Des 2023; 101:749-759. [PMID: 36366966 DOI: 10.1111/cbdd.14178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
A novel series of 1,2,3-triazole/chalcone hybrids 6a-n was designed and synthesized using a molecular hybridization approach to develop a new cytotoxic agent capable of targeting epidermal growth factor receptor (EGFR) and/or BRAF. The antiproliferative effect of the novel hybrids was investigated against four cancer cells using doxorubicin as a reference. Hybrids 6a, 6d, 6f-h, and 6n have the highest antiproliferative activity (IC50 values 0.95-1.80 μM) compared to doxorubicin (IC50 1.14 μM). The most potent antiproliferative derivative, compound 6d, was also the most potent EGFR inhibitor with an IC50 of 0.09 ± 0.05 μM, which is comparable to the reference Erlotinib (IC50 = 0.05 ± 0.03 μM). 6d has modest BRAF inhibitory action with an IC50 of 0.90 ± 0.10 μM. The findings were also related to molecular docking studies, which provided models of strong interactions with the EGFR-TK domain for the inhibitors. In cell cycle analysis, hybrid 6d caused a cell cycle arrest at the G1 transition phase.
Collapse
Affiliation(s)
- Mohamed T-E Maghraby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, New Valley University, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Sheha
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| |
Collapse
|
13
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4- b]indol-3-one Derivatives as Potent Inhibitors of EGFR T790M/BRAF V600E Pathways. Molecules 2023; 28:1269. [PMID: 36770936 PMCID: PMC9921301 DOI: 10.3390/molecules28031269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a-e, 4a-c and pyrrolo[3,4-b]indol-3-ones 5a-c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a-e, 4a-c, and 5a-c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a-e, 4a-c, and 5a-c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a-e outperforming 4a-c and 5a-c in their inhibitory actions against the tested cancer cell lines. Compounds 3a-e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a-e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a-e revealed safety and good pharmacokinetic profile.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
14
|
Design, Synthesis, Docking Study, and Antiproliferative Evaluation of Novel Schiff Base-Benzimidazole Hybrids with VEGFR-2 Inhibitory Activity. Molecules 2023; 28:molecules28020481. [PMID: 36677536 PMCID: PMC9862622 DOI: 10.3390/molecules28020481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
A new series of Schiff-benzimidazole hybrids 3a-o has been designed and synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analysis tools. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI single- and five-dose protocols. Consequently, four compounds were further examined against the most sensitive lung cancer A549 and NCI-H460 cell lines. Compounds 3e and 3g were the most active, achieving 3.58 ± 0.53, 1.71 ± 0.17 and 1.88 ± 0.35, 0.85 ± 0.24 against A549 and NCI-H460 cell lines, respectively. Moreover, they showed remarkable inhibitory activity on the VEGFR-2 TK with 86.23 and 89.89%, respectively, as compared with Sorafenib (88.17%). Moreover, cell cycle analysis of NCI-H460 cells treated with 3e and 3g showed cellular cycle arrest at both G1 and S phases (supported by caspases-9 study) with significant pro-apoptotic activity, as indicated by annexin V-FITC staining. The binding interactions of these compounds were confirmed through molecular docking studies; the most active compounds displayed complete overlay with, and a similar binding mode and pose to, Sorafenib, a reference VEGFR-2 inhibitor.
Collapse
|
15
|
Aly AA, Alshammari MB, Ahmad A, A. M. Gomaa H, G. M. Youssif B, Bräse S, A. A. Ibrahim M, Mohamed AH. Design, synthesis, docking, and mechanistic studies of new thiazolyl/thiazolidinylpyrimidine-2,4-dione antiproliferative agents. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
16
|
Abou‐Zied HA, Beshr EAM, Gomaa HAM, Mostafa YA, Youssif BGM, Hayallah AM, Abdel‐Aziz M. Discovery of new cyanopyridine/chalcone hybrids as dual inhibitors of EGFR/BRAF
V600E
with promising antiproliferative properties. Arch Pharm (Weinheim) 2022; 356:e2200464. [PMID: 36526595 DOI: 10.1002/ardp.202200464] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
As dual EGFR and BRAFV600E inhibitors, 2-(3-cyano-4,6-bis(aryl)-2-oxo-1,2-dihydropyridine-1-yl)-N-(4-cinnamoylphenyl) acetamide derivatives 8-20 were developed. Compounds 8, 12, and 13 showed strong antiproliferative activity when the target compounds were synthesized and tested in vitro against four cancer cell lines. These hybrids have a dual inhibition activity on EGFR and BRAFV600E , according to in vitro studies. The EGFR was inhibited by compounds 8, 12, and 13 with IC50 values between 89 and 110 nM, which were equivalent to those of erlotinib (IC50 = 80 nm). Compound 13 was found to be an effective inhibitor of the proliferation of cancer cells (GI50 = 0.72 µM) and demonstrated hopeful inhibitory activity of BRAFV600E (IC50 = 58 nm), which is superior to erlotinib (IC50 = 65 nm). Compound 13 caused apoptosis and showed cell cycle arrest in the G0/G1phase in a study on the MCF-7 cell line. The new compounds can fit tightly into the active sites of EGFR and BRAFV600E kinases, according to molecular docking analyses.
Collapse
Affiliation(s)
- Hesham A. Abou‐Zied
- Medicinal Chemistry Department, Faculty of Pharmacy Deraya University Minia Egypt
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy Minia University Minia Egypt
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy Jouf University Sakaka Saudi Arabia
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Sphinx University Assiut Egypt
| | - Mohamed Abdel‐Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy Minia University Minia Egypt
| |
Collapse
|
17
|
El-Sheref EM, Ameen MA, El-Shaieb KM, Abdel-Latif FF, Abdel-naser AI, Brown AB, Bräse S, Fathy HM, Ahmad I, Patel H, Gomaa HAM, Youssif BGM, Mohamed AH. Design, Synthesis and Biological Evaluation of Syn and Anti-like Double Warhead Quinolinones Bearing Dihydroxy Naphthalene Moiety as Epidermal Growth Factor Receptor Inhibitors with Potential Apoptotic Antiproliferative Action. Molecules 2022; 27:molecules27248765. [PMID: 36557897 PMCID: PMC9788418 DOI: 10.3390/molecules27248765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Our investigation includes the synthesis of new naphthalene-bis-triazole-bis-quinolin-2(1H)-ones 4a−e and 7a−e via Cu-catalyzed [3 + 2] cycloadditions of 4-azidoquinolin-2(1H)-ones 3a−e with 1,5-/or 1,8-bis(prop-2-yn-1-yloxy)naphthalene (2) or (6). All structures of the obtained products have been confirmed with different spectroscopic analyses. Additionally, a mild and versatile method based on copper-catalyzed [3 + 2] cycloaddition (Meldal−Sharpless reaction) was developed to tether quinolinones to O-atoms of 1,5- or 1,8-dinaphthols. The triazolo linkers could be considered as anti and syn products, which are interesting precursors for functionalized epidermal growth factor receptor (EGFR) inhibitors with potential apoptotic antiproliferative action. The antiproliferative activities of the 4a−e and 7a−e were evaluated. Compounds 4a−e and 7a−e demonstrated strong antiproliferative activity against the four tested cancer cell lines, with mean GI50 ranging from 34 nM to 134 nM compared to the reference erlotinib, which had a GI50 of 33 nM. The most potent derivatives as antiproliferative agents, compounds 4a, 4b, and 7d, were investigated for their efficacy as EGFR inhibitors, with IC50 values ranging from 64 nM to 97 nM. Compounds 4a, 4b, and 7d demonstrated potent apoptotic effects via their effects on caspases 3, 8, 9, Cytochrome C, Bax, and Bcl2. Finally, docking studies show the relevance of the free amino group of the quinoline moiety for antiproliferative action via hydrogen bond formation with essential amino acids.
Collapse
Affiliation(s)
- Essmat M. El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- Correspondence: (E.M.E.-S.); (M.A.A.); (S.B.); (B.G.M.Y.)
| | - Mohamed A. Ameen
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- Correspondence: (E.M.E.-S.); (M.A.A.); (S.B.); (B.G.M.Y.)
| | - Kamal M. El-Shaieb
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Fathy F. Abdel-Latif
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Asmaa I. Abdel-naser
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Alan B. Brown
- Chemistry Department, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Correspondence: (E.M.E.-S.); (M.A.A.); (S.B.); (B.G.M.Y.)
| | - Hazem M. Fathy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka 72314, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (E.M.E.-S.); (M.A.A.); (S.B.); (B.G.M.Y.)
| | - Asmaa H. Mohamed
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| |
Collapse
|
18
|
Liang ST, Chen C, Chen RX, Li R, Chen WL, Jiang GH, Du LL. Michael acceptor molecules in natural products and their mechanism of action. Front Pharmacol 2022; 13:1033003. [PMID: 36408214 PMCID: PMC9666775 DOI: 10.3389/fphar.2022.1033003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: Michael receptor molecules derived from plants are biologically active due to electrophilic groups in their structure. They can target nucleophilic residues on disease-related proteins, with significant therapeutic effects and low toxicity for many diseases. They provide a good option for relevant disease treatment. The aim of this study is to summarize the existing MAMs and their applications, and lay a foundation for the application of Michael receptor molecules in life science in the future. Methods: This review summarizes the published studies on Michael receptor molecules isolated from plants in literature databases such as CNKI, Wanfang Data, PubMed, Web of Science, ScienceDirect, and Wiley. Latin names of plants were verified through https://www.iplant.cn/. All relevant compound structures were verified through PubChem and literature, and illustrated with ChemDraw 20.0. Result: A total of 50 Michael receptor molecules derived from various plants were discussed. It was found that these compounds have similar pharmacological potential, most of them play a role through the Keap1-Nrf2-ARE pathway and the NF-κB pathway, and have biological activities such as antioxidant and anti-inflammatory. They can be used to treat inflammatory diseases and tumors. Conclusion: The Michael receptor molecule has electrophilicity due to its unsaturated aldehyde ketone structure, which can combine with nucleophilic residues on the protein to form complexes and activate or inhibit the protein pathway to play a physiological role. Michael receptor molecules can regulate the Keap1-Nrf2-ARE pathway and the NF-κB pathway. Michael receptor molecules can be used to treat diseases such as inflammation, cancer, oxidative stress, etc.
Collapse
Affiliation(s)
- Song-Ting Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Rui-Xin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gui-Hua Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei-Lei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Novel indazole derivatives as potent apoptotic antiproliferative agents by multi-targeted mechanism: Synthesis and biological evaluation. Bioorg Chem 2022; 126:105922. [DOI: 10.1016/j.bioorg.2022.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022]
|
20
|
Veena K, Raghu M, Yogesh Kumar K, Dahlous KA, Bahajjaj AAA, Mani G, Jeon BH, Prashanth M. Development of penipanoid C-inspired 2-benzoyl-1-methyl-2,3-dihydroquinazolin-4(1H)-one derivatives as potential EGFR inhibitors: Synthesis, anticancer evaluation and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Al-Janabi IAS, Yavuz SÇ, Köprü S, Tapera M, Kekeçmuhammed H, Akkoç S, Tüzün B, Patat Ş, Sarıpınar E. Antiproliferative activity and molecular docking studies of new 4-oxothiazolidin-5-ylidene acetate derivatives containing guanylhydrazone moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
23
|
Bukhari SNA. Synthesis and evaluation of new chalcones and oximes as anticancer agents. RSC Adv 2022; 12:10307-10320. [PMID: 35424971 PMCID: PMC8973297 DOI: 10.1039/d2ra01198k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Complex illnesses, such as cancer, are often caused by many disorders, gene mutations, or pathways. Biological pathways play a significant part in the development of these diseases. Multi-target directed ligands (MTDLs) have been used by medicinal chemists recently in an effort to find single molecules that can affect many targets concurrently. In this work, several chalcones containing the ligustrazine moiety were synthesized and tested for their in vitro anticancer activity and several cancer markers, including EGFR, BRAFV600E, c-Met, and tubulin polymerization, in order to uncover multitarget bioactive compounds. In assays using multiple cancer cell lines, the majority of the compounds examined showed strong anticancer activity against them. To synthesize oximes, all of the chalcones were used as precursors. The IC50 values of two compounds (11g and 11e) were found to be 0.87, 0.28, 2.43, 1.04 μM and 11d, 1.47, 0.79, 3.8, 1.63 μM respectively, against A-375, MCF-7, HT-29 and H-460 cell lines. These IC50 values revealed an excellent antiproliferative activity compared to those of the positive control foretinib, (IC50 = 1.9, 1.15, 3.97, and 2.86 μM). Careful examination of their structure and configuration revealed that both compounds had an oxime functional group with z configuration, in place of carbonyl functional group, along with a 2-phenyl thiophenyl moiety with or without a bromo group at position-5. The possible binding pattern was implied by docking simulation, inferring the possibility of introducing interactions with the nearby tubulin chain. Since the novel structural trial has been conducted with a detailed structure activity relationship discussion, this work might stimulate new ideas in further modification of multitarget anti-cancer agents and therapeutic approaches. Discovery of multitarget anticancer agents by modifications of natural compound.![]()
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka Aljouf 72388 Saudi Arabia +96 6565738896
| |
Collapse
|
24
|
Valipour M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action. Eur J Med Chem 2022; 235:114314. [DOI: 10.1016/j.ejmech.2022.114314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
|
25
|
Elimam DM, Eldehna WM, Salem R, Bonardi A, Nocentini A, Al-Rashood ST, Elaasser MM, Gratteri P, Supuran CT, Allam HA. Natural inspired ligustrazine-based SLC-0111 analogues as novel carbonic anhydrase inhibitors. Eur J Med Chem 2022; 228:114008. [PMID: 34871842 DOI: 10.1016/j.ejmech.2021.114008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022]
Abstract
Ligustrazine is the principle bioactive alkaloid in the widely-used Chinese herb Chuan Xiong rhizome. Herein, a series of novel derivatives has been designed as human carbonic anhydrases inhibitors (hCAIs) starting from the natural product Ligustrazine inserted as a tail instead of the 4-fluorophenyl tail of SLC-0111, a front-runner selective hCA IX inhibitor currently in clinical trials as antitumor/antimetastatic agent. Other derivatives were designed via incorporation of different linkers, of amide and ester type, or incorporation of different zinc anchoring groups such as secondary sulfamoyl and carboxylic acid functionalities. The newly designed molecules were prepared following different synthetic pathways, and were assessed for their inhibitory actions against four isoforms: the widespread cytosolic (hCA I and II), and the transmembrane tumor-related (hCA IX and XII). The primary sulfonamides efficiently inhibited the target hCA IX and hCA XII in the nanomolar range (KIs: 6.2-951.5 nM and 3.3-869.3 nM, respectively). The most selective hCA IX inhibitors 6c and 18 were assessed for their potential anticancer effects, and displayed anti-proliferative activity against MCF-7 cancer cell line with IC50s of 11.9 and 36.7 μM, respectively. Molecular modelling studies unveiled the relationship between structural features and inhibitory profiles against the off-target hCA II and the target, tumor-related isoforms hCA IX and XII.
Collapse
Affiliation(s)
- Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
26
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
27
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
28
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
29
|
Tantawy AH, Meng XG, Marzouk AA, Fouad A, Abdelazeem AH, Youssif BGM, Jiang H, Wang MQ. Structure-based design, synthesis, and biological evaluation of novel piperine-resveratrol hybrids as antiproliferative agents targeting SIRT-2. RSC Adv 2021; 11:25738-25751. [PMID: 35478872 PMCID: PMC9037111 DOI: 10.1039/d1ra04061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR. Antiproliferative activities of 5a–h were evaluated by NCI against sixty cancer cell lines. Compound 5b, possessing resveratrol pharmacophoric phenolic moieties, showed a complete cell death against leukemia HL-60 (TB) and Breast cancer MDA-MB-468 with growth inhibition percentage of −0.49 and −2.83, respectively. In addition, 5b recorded significant activity against the other cancer cell lines with growth inhibition percentage between 80 to 95. New 5a–h hybrids were evaluated for their inhibitory activities against Sirt-1 and Sirt-2 as molecular targets for their antiproliferative action. Results showed that compounds 5a–h were more potent inhibitors of Sirt-2 than Sirt-1 at 5 μm and 50 μm. Compound 5b showed the strongest inhibition of Sirt-2 (78 ± 3% and 26 ± 3% inhibition at 50 μM and 5 μM, respectively). Investigation of intermolecular interaction via Hirschfeld surface analysis indicates that these close contacts are mainly ascribed to the O–H⋯O hydrogen bonding. To get insights into the Sirt-2 inhibitory mechanism, a docking study was performed where 5b was found to fit nicely inside both extended C-pocket and selectivity pocket and could compete with the substrate acyl-Lys. Another possible binding pattern showed that 5b could act by partial occlusion of the NAD+ C-pocket. Collectively, these findings would contribute significantly to better understanding the Sirt-2 inhibitory mechanism in order to develop a new generation of refined and selective Sirt-2 inhibitors. A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR.![]()
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China .,Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China .,Department of Chemistry, College of Science, Benha University Benha 13518 Egypt
| | - Xiang-Gao Meng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University Wuhan 430079 China
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ali Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University Riyadh 11681 Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China
| |
Collapse
|
30
|
Synthesis and anticancer evaluation of some coumarin and azacoumarin derivatives. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2021. [DOI: 10.2478/pjct-2021-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Coumarin and its nitrogen analogue 1-aza coumarin are a class of lactones and lactams, respectively, which are indispensable heterocyclic units to both chemists and biochemists. 1-Aza coumarin derivatives, which ultimately metabolize as the corresponding 8-hydroxy coumarins in the biological system are therefore found to be very good anti-inflammatory, anti-cancer, and analgesic agents. A series of hybrid substituted coumarin and azacoumarin-3-carboxylic acid derivatives (8-methoxycoumarin-3-carboxylic acid (4a), 8-methoxyazacoumarin-3-carboxylic acid (4b), 5-bromo-8-methoxycoumarin-3-carboxylic acid (5a), 5-bromo-8-methoxyazacoumarin-3-carboxylic acid (5b), 2-acetoxy-5-bromo-8-methoxyquinoline-3-carboxylic acid (6), and 5,7-di(phenylazo)-8-methoxycoumarin-3-carboxylic acid (7) were synthesized and structurally proved using spectral and elemental analysis data. Substituted coumarin-3-carboxylic acid (4a and 5a) and Substituted azacoumarin-3-carboxylic acid (4b, 5b and 6) were tested for their in vitro cytotoxic activity against MCF-7 and HepG-2 cell lines.
Collapse
|
31
|
Zhang H, Ding S, Xia L. Ligustrazine inhibits the proliferation and migration of ovarian cancer cells via regulating miR-211. Biosci Rep 2021; 41:BSR20200199. [PMID: 33245099 PMCID: PMC7786329 DOI: 10.1042/bsr20200199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer (OC) is a commonly diagnosed female cancer. Ligustrazine (LSZ), a natural compound, has been reported to exert anti-cancer activity, although the mechanisms underlying the anti-cancer effects are not clear. The present study investigated the impact of LSZ on cell proliferation and migration by regulating microRNA-211 (miR-211) expression using the human ovarian cancer SK-OV-3 and OVCAR-3 cell lines. OC cells were treated with 0, 0.5, 1, and 2 mM LSZ, and quantitative real-time PCR was utilized to measure miR-211 levels in SK-OV-3 and OVCAR-3 cells with different treatment. Moreover, to further confirm the roles of miR-211 in LSZ induced anti-tumor effects, miR-211 expression was inhibited by transfection of miR-211 inhibitors in SK-OV-3 cells. Cell proliferation of transfected cells was evaluated using the CCK-8 and colony formation assay. The scratch assay was employed to assess cell migration and transwell assay was performed for evaluating the cell invasion. Protein levels of epithelial-mesenchymal transition (EMT) markers were determined by Western blotting. We found that LSZ inhibited the viability, proliferation, migration and invasion ability of SK-OV-3 and OVCAR-3 cells in a dose-dependent manner; moreover, LSZ could significantly increase the expression of miR-211 in both SK-OV-3 and OVCAR-3, and knockdown of miR-211 in SK-OV-3 cells partially abrogated the anti-tumor behavior of LSZ by promoting the viability, proliferation, migration, invasion and EMT of SK-OV-3 cells. Thus, we found that LSZ can inhibit the proliferation and migration of OC cells via regulating miR-211. Our study suggests that LSZ might be a potential and effective treatment for OC.
Collapse
Affiliation(s)
- Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Shichao Ding
- Department of Internal Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, China
- Department of Internal Medicine, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan 250031, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
32
|
Alkhaldi AAM, Koning HPD, Bukhari SNA. Synthetic ligustrazine based cyclohexanone and oxime analogs as Anti-Trypanosoma and Anti-Leishmanial agentes. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000418997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Design, synthesis, and biological evaluation of new series of pyrrol-2(3H)-one and pyridazin-3(2H)-one derivatives as tubulin polymerization inhibitors. Bioorg Chem 2020; 107:104522. [PMID: 33317838 DOI: 10.1016/j.bioorg.2020.104522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
A potential microtubule destabilizing series of new thirty-five Pyrrol-2-one, Pyridazin-3(2H)-one and Pyridazin-3(2H)-one/oxime derivatives has been synthesized and tested for their antiproliferative activity against a panel of 60 human cancer cell lines. Compounds IVc, IVg and IVf showed a broad spectrum of growth inhibitory activity against cancer cell lines representing renal, cancer of lung, colon, central nervous system, ovary, and kidney. Among them, compound IVg was found to have broad spectrum anti-tumor activity against the tested nine tumor subpanels with selectivity ratios ranging between 0.21 and 3.77 at the GI50 level. In vitro assaying revealed tubulin polymerization inhibition by all active compounds IVc, IVg and IVf. The results of the docking study revealed nice fitting of compounds IVc, IVf, and IVg into CA-4 binding site in tubulin. The three compounds exhibited high binding affinities (ΔGb = -12.49 to -12.99 kcal/mol) toward tubulin compared to CA-4 (-8.87 kcal/mol). Investigation of the binding modes of the three compounds IVc, IVf, and IVg revealed that they interacted mainly hydrophobically with tubulin and similar binding orientations to that of CA-4. These observations suggest that tubulin is a possible target for these compounds.
Collapse
|
34
|
Guo T, Ma S. Recent Advances in the Discovery of Multitargeted Tyrosine Kinase Inhibitors as Anticancer Agents. ChemMedChem 2020; 16:600-620. [PMID: 33179854 DOI: 10.1002/cmdc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Indexed: 12/18/2022]
Abstract
The treatment of cancer has been one of the most significant challenges for the medical field. Further research on the signal transduction pathway of tumor cells is driving the rapid development of antitumor agents targeting tyrosine kinases. However, most of the currently approved tyrosine kinase inhibitors based on the "single target/single drug" design are becoming less and less effective in the treatment of complex, heterogeneous, and multigenic cancers; this also results in resistance to chemotherapy. In contrast, multitargeted tyrosine kinase inhibitors (MT-TKIs) can effectively block multiple pathways of intracellular signal transduction. Therefore, they have therapeutic advantages over single-targeted inhibitors and have become a hotspot in antitumor drug research in recent years. This minireview summarizes recent advances in the discovery of MT-TKIs based on their chemical structures. In particular, we describe the kinase inhibitory and antitumor activity of promising compounds, as well as their structure - activity relationships (SARs).
Collapse
Affiliation(s)
- Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| |
Collapse
|
35
|
Novel 1,2,4-triazole derivatives as apoptotic inducers targeting p53: Synthesis and antiproliferative activity. Bioorg Chem 2020; 105:104369. [PMID: 33091670 DOI: 10.1016/j.bioorg.2020.104369] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/12/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
A series of novel thiazolo[3,2-b][1,2,4]-triazoles 3a-n has been synthesized and evaluated in vitro as potential antiproliferative. Compounds 3b-d exhibited significant antiproliferative activity. Compound 3b was the most potent with Mean GI50 1.37 µM comparing to doxorubicin (GI50 1.13 µM). The transcription effects of 3b, 3c and 3d on the p53 were assessed and compared with the reference doxorubicin. The results revealed an increase of 15-27 in p53 level compared to the test cells and that p53 protein level of 3b, 3c and 3d was significantly inductive (1419, 571 and 787 pg/mL, respectively) in relation to doxorubicin (1263 pg/mL). The docking study of the new compounds 3a-n revealed high binding scores for the new compounds toward p53 binding domain in MDM2. The docking analyses revealed the highest affinities for compounds 3b-d which induced p53 activity in MCF-7 cancer cells. Compound 3b which exhibited the highest antiproliferative activity and induced the highest increase in p53 level in MCF-7 cells showed also the highest affinity to MDM2.
Collapse
|
36
|
Al-Wahaibi LH, Gouda AM, Abou-Ghadir OF, Salem OIA, Ali AT, Farghaly HS, Abdelrahman MH, Trembleau L, Abdu-Allah HHM, Youssif BGM. Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAF V600E dual inhibitors. Bioorg Chem 2020; 104:104260. [PMID: 32920363 DOI: 10.1016/j.bioorg.2020.104260] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Recent studies have shown additive and synergistic effects associated with the combination of kinase inhibitors. BRAFV600E and EGFR are attractive targets for many diseases treatments and have been studied extensively. In keeping with our interest in developing anticancer targeting EGFR and BRAFV600E, a novel series of 2,3-dihydropyrazino[1,2-a]indole-1,4-dione has been rationally designed, synthesized and evaluated for their antiproliferative activity against a panel of four human cancer cell lines. Compounds 20-23, 28-31, and 33 showed promising antiproliferative activities. These compounds were further tested for their inhibitory potencies against EGFR and BRAFV600E kinases with erlotinib as a reference drug. Compounds 23 and 33 exhibited equipotency to doxorubicin against the four cell lines and efficiently inhibited both EGFR (IC50 = 0.08 and 0.09 µM, respectively) and BRAFV600E (IC50 = 0.1 and 0.29 µM, respectively). In cell cycle study of MCF-7 cell line, compounds 23 and 33 induced apoptosis and exhibited cell cycle arrest in both Pre-G1 and G2/M phases. Molecular docking analyses revealed that the new compounds can fit snugly into the active sites of EGFR, and BRAFV600E kinases. Compound 23, 31 and 33 adopted similar binding orientations and interactions to those of erlotinib and vemurafenib.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola I A Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Asmaa T Ali
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hatem S Farghaly
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB243UE, United Kingdom
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
37
|
Mehfooz H, Saeed A, Faisal M, Larik FA, Muqadar U, Khatoon S, Channar PA, Ismail H, Bilquees S, Rashid S, Shafique S, Mirza B, Dilshad E, Ahmad F. Facile one-pot synthesis, butyrylcholinesterase and α-glucosidase inhibitory activities, structure–activity relationship, molecular docking and DNA–drug binding analysis of Meldrum’s acid derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2020; 46:2437-2456. [DOI: 10.1007/s11164-020-04100-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/07/2020] [Indexed: 11/25/2022]
|
38
|
Alotaibi NH, Alharbi KS, Alzarea AI, Alruwaili NK, Alotaibi MR, Alotaibi NM, Alotaibi BS, Bukhari SNA. Pharmacological appraisal of ligustrazine based cyclohexanone analogs as inhibitors of inflammatory markers. Eur J Pharm Sci 2020; 147:105299. [PMID: 32165315 DOI: 10.1016/j.ejps.2020.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
Abstract
The targeting of pro-inflammatory enzymes becomes a therapeutic intervention when acute inflammation is proliferating in pathological conditions. This research is intended to carry out an evaluation of inhibiting and inducing enzymes with inflammatory associations with 28 cyclohexanone analogs based on the ligustrazine. Tests were undertaken with inhibitor screening assay kits using a range of synthetic compounds to investigate how they could inhibit the activity of cyclooxygenase (COX) enzymes, secretory phospholipase A2 (sPLA2), and lipoxygenase (LOX) enzyme. Significant and similar inhibitory activities against sPLA2 with were noted with synthetic compounds which included 1f and 1g (IC50 = 2.2 μM). The optimal inhibitory activity regarding LOX enzyme was shown with compounds 1d (IC50 = 8.1 μM) and 1e (IC50 = 7.5 μM). Additionally, the compounds 1b, 1d, 1e, 2n, and 2o were shown to be significant inhibitors of COX-1 activity with IC50 values 0.09 to 0.7 μM. The outcomes of assays for COX inhibition demonstrated that the same compounds had a further strong inhibitive influence on the COX-2 enzyme, and certain compounds such as 1d, 1e, and 2n demonstrated enhanced potency compared with positive controls.
Collapse
Affiliation(s)
| | | | | | - Nabil K Alruwaili
- College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | | | - Nawaf M Alotaibi
- College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Badriyah S Alotaibi
- College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | | |
Collapse
|
39
|
Abstract
Oximes, which are highly bioactive molecules, have versatile uses in the medical sector and have been indicated to possess biological activity. Certain oximes exist in nature in plants and animals, but they are also obtained by chemical synthesis. Oximes are known for their anti-inflammatory, antimicrobial, antioxidant and anticancer activities. Moreover, they are therapeutic agents against organophosphate (OP) poisoning. Two oximes are already commonly used in therapy. Due to these abilities, new oxime compounds have been synthesized, and their biological activity has been verified. Often, modification of carbonyl compounds into oximes leads to increased activity. Nevertheless, in some cases, oxime activity is connected to the activity of the substrate. Recent works have revealed that new oxime compounds can demonstrate such functions and thus are considered to be potential drugs for pathogenic diseases, as adjuvant therapy in various types of cancer and inflammation and as potential next-generation drugs against OP poisoning.
Collapse
|
40
|
Wang J, Hong G, Li G, Wang W, Liu T. Novel Homo-Bivalent and Polyvalent Compounds Based on Ligustrazine and Heterocyclic Ring as Anticancer Agents. Molecules 2019; 24:E4505. [PMID: 31835359 PMCID: PMC6943434 DOI: 10.3390/molecules24244505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/12/2023] Open
Abstract
Bivalent and polyvalent inhibitors can be used as antitumor agents. In this experiment, eight ligustrazine dimers and seven ligustrazine tetramers linked by alkane diamine with different lengths of carbon chain lengths were synthesized. After screening their antiproliferation activities against five cancer cell lines, most ligustrazine derivatives showed better cytotoxicity than the ligustrazine monomer. In particular, ligustrazine dimer 8e linked with decane-1,10-diamine exhibited the highest cytotoxicity in FaDu cells with an IC50 (50% inhibiting concentration) value of 1.36 nM. Further mechanism studies suggested that 8e could induce apoptosis of FaDu cells through the depolarization of mitochondrial membrane potential and S-phase cell cycle arrest. Inspired by these results, twenty-seven additional small molecule heterocyclic dimers linked with decane-1,10-diamine and nine cinnamic acid dimers bearing ether chain were synthesized and screened. Most monocyclic and bicyclic aromatic systems showed highly selective anti-proliferation activity to FaDu cells and low toxicity to normal MCF 10A cells. The structure-activity relationship revealed that the two terminal amide bonds and the alkyl linker with a chain length of 8-12 carbon were two important factors to maintain its antitumor activity. In addition, the ADMET calculation predicted that most of the potent compounds had good oral bioavailability.
Collapse
Affiliation(s)
- Jiawen Wang
- Graduate Institute, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; (G.H.); (G.L.); (W.W.)
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guoliang Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; (G.H.); (G.L.); (W.W.)
| | - Wenzhi Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; (G.H.); (G.L.); (W.W.)
| | - Tianjun Liu
- Graduate Institute, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; (G.H.); (G.L.); (W.W.)
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
41
|
Jubeen F, Liaqat A, Sultan M, Zafar Iqbal S, Sajid I, Sher F. Green synthesis and biological evaluation of novel 5-fluorouracil derivatives as potent anticancer agents. Saudi Pharm J 2019; 27:1164-1173. [PMID: 31885476 PMCID: PMC6921177 DOI: 10.1016/j.jsps.2019.09.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022] Open
Abstract
This study reports the formation of 5-FU co-crystals with four different pharmacologically safe co-formers; Urea, Thiourea, Acetanilide and Aspirin using methanol as a solvent. Two fabrication schemes were followed i.e., solid-state grinding protocol, in which API and co-formers were mixed through vigorous grinding while in the other method separate solutions of both the components were made and mixed together. The adopted approaches offer easy fabrication protocols, no temperature maintenance requirements, no need of expensive solvents, hardly available apparatus, isolation and purification of the desired products. In addition, there is no byproducts formation, In fact, a phenomenon embracing the requirements of green synthesis. Through FTIR analysis; for API the N-H absorption frequency was recorded at 3409.02 cm-1 and that of -C[bond, double bond]O was observed at 1647.77 cm-1. These characteristics peaks of 5-FU were significantly shifted and recorded at 3499.40 cm-1 and 1649.62 cm-1 for 5-FU-Ac (3B) and 3496.39 cm-1 and 1659.30 cm-1 for 5-FU-As (4B) co-crystals for N-H and -C[bond, double bond]O groups respectively. The structural differences between API and co-crystals were further confirmed through PXRD analysis. The characteristic peak of 5-FU at 2θ = 28.79918o was significantly shifted in the graphs of co-crystals not only in position but also with respect to intensity and FWHM values. In addition, new peaks were also recorded in all the spectra of co-formers confirming the structural differences between API and co-formers. In addition, percent growth inhibition was also observed by all the co-crystals through MTT assay against HCT 116 colorectal cell lines in vitro. At four different concentrations; 25, 50, 100 and 200 µg/mL, slightly different trends of the effectiveness of API and co-crystals were observed. However; among all the co-crystal forms, 5-FU-thiourea co-crystals obtained through solution method (2B) proved to be the most effective growth inhibitor at all the four above mentioned concentrations.
Collapse
Affiliation(s)
- Farhat Jubeen
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Aisha Liaqat
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Misbah Sultan
- Department of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Sania Zafar Iqbal
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Imran Sajid
- Department of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Farooq Sher
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
42
|
Discovery and synthesis of 3- and 21-substituted fusidic acid derivatives as reversal agents of P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2019; 182:111668. [DOI: 10.1016/j.ejmech.2019.111668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022]
|
43
|
Hassan AH, Yoo SY, Lee KW, Yoon YM, Ryu HW, Jeong Y, Shin JS, Kang SY, Kim SY, Lee HH, Park BY, Lee KT, Lee YS. Repurposing mosloflavone/5,6,7-trimethoxyflavone-resveratrol hybrids: Discovery of novel p38-α MAPK inhibitors as potent interceptors of macrophage-dependent production of proinflammatory mediators. Eur J Med Chem 2019; 180:253-267. [DOI: 10.1016/j.ejmech.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
|
44
|
Singh H, Singh JV, Bhagat K, Gulati HK, Sanduja M, Kumar N, Kinarivala N, Sharma S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg Med Chem 2019; 27:3477-3510. [PMID: 31255497 PMCID: PMC7970831 DOI: 10.1016/j.bmc.2019.06.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Hybrid molecules, furnished by combining two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery that has attracted substantial traction in the past few years. Naturally occurring scaffolds such as coumarins display a wide spectrum of pharmacological activities including anticancer, antibiotic, antidiabetic and others, by acting on multiple targets. In this view, various coumarin-based hybrids possessing diverse medicinal attributes were synthesized in the last five years by conjugating coumarin moiety with other therapeutic pharmacophores. The current review summarizes the recent development (2014 and onwards) of these pharmacologically active coumarin hybrids and demonstrates rationale behind their design, structure-activity relationships (SAR) and mechanistic studies performed on these hybrid molecules. This review will be beneficial for medicinal chemist and chemical biologist, and in general to the drug discovery community and will facilitate the synthesis and development of novel, potent coumarin hybrid molecules serving as lead molecules for the treatment of complex disorders.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, Haryana, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
45
|
El-Sherief HA, Youssif BG, Abdelazeem AH, Abdel-Aziz M, Abdel-Rahman HM. Design, Synthesis and Antiproliferative Evaluation of Novel 1,2,4-Triazole/Schiff Base Hybrids with EGFR and B-RAF Inhibitory Activities. Anticancer Agents Med Chem 2019; 19:697-706. [DOI: 10.2174/1871520619666181224115346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022]
Abstract
Background:
1,2,4-triazoles possess a broad spectrum of biological activities such as analgesic,
antimicrobial, antitubercular, anti-inflammatory and antineoplastic activities. This heterocycle and their derivatives
were included into a wide variety of therapeutically interesting drugs. Hence, it is of great interest to explore
new 1,2,4-triazoles as cytotoxic agents targeting EGFR, B-Raf kinases.
Methods:
The final compounds 9a-b, 10a-b, 11a-b, 12a-b, 13a-b and 14a-f were prepared by refluxing a mixture
of triazole 3a-b and 7a-d with the corresponding benzaldehyde derivatives 8a-d in absolute ethanol to afford
the target final compounds in good yields. The newly synthesized triazole-containing compounds were
assessed according to standard protocols for their in vitro antiproliferative activity against four human cancer
cell lines including human pancreas cancer cell line (Panc-1), pancreatic carcinoma cells (PaCa-2), colon cancer
cells (HT-29) and lung cancer cells (H-460) using the propidium iodide (PI) fluorescence assay. Compounds 9a
and 13a were evaluated against EGFR, B-Raf and Tubulin anticancer targets.
Results:
Compounds 9a, 9b, 10a, 11a, 12a, 13a and 13b showed remarkable antiproliferative activity against
the tested cell lines with IC50 range of 1.3-5.9µM. Compounds 9a and 13a with the least IC50 values in the anticancer
screening assay were tested against three known anticancer targets including EGFR, B-Raf kinase and
Tubulin. The results revealed that compound 13a showed the highest potency against B-Raf and EGFR kinases
with IC50 = 0.7 and 1.9 µM, respectively.
Conclusion:
1,2,4-triazoles reported herein are potent EGFR, B-Raf inhibitors. These lead compounds will be
subjected to more detailed mechanistic studies.
Collapse
Affiliation(s)
- Hany A.M. El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt
| | - Bahaa G.M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed H. Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Minia, Egypt
| | - Hamdy M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt
| |
Collapse
|
46
|
Wang Q, Chen Y, Li G, Liu Z, Ma J, Liu M, Li D, Han J, Wang B. Synthesis and evaluation of bi-functional 7-hydroxycoumarin platinum(IV) complexes as antitumor agents. Bioorg Med Chem 2019; 27:2112-2121. [PMID: 30981607 DOI: 10.1016/j.bmc.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/28/2022]
Abstract
A series of bi-functional 7-hydroxycoumarin platinum(IV) complexes were synthesized, characterized, and evaluated for antitumor activities. The 7-hydroxycoumarin platinum(IV) complexes display moderate to effective antitumor activities toward the tested cell lines and show much potential in overcoming drug resistance of platinum(II) drugs. In reducing microenvironment, the title compounds could be reduced to platinum(II) complex accompanied with two equivalents of coumarin units. By a unique mechanism, the 7-hydroxycoumarin platinum(IV) complex attacks DNA via the released platinum(II) compound, meanwhile it also inhibits the activities of cyclooxygenase by coumarin fragment. This action mechanism might be of much benefit for reducing tumor-related inflammation in the progress of inhibiting tumor proliferation and overcoming cisplatin resistance. The incorporation of 7-hydroxycoumarin leads to significantly enhanced platinum accumulation in both whole tumor cells and DNA. The HSA interaction investigation reveals that the tested coumarin platinum(IV) compound could effectively combine with HSA via van der Waals force and hydrogen bond.
Collapse
Affiliation(s)
- Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Guoshuai Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jing Ma
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng 475004, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Dacheng Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Bingquan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
47
|
Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking. Bioorg Chem 2019; 87:252-264. [PMID: 30908968 DOI: 10.1016/j.bioorg.2019.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
Abstract
A novel series of amino acids conjugated quinazolinone-Schiff's bases were synthesized and screened for their in vitro anticancer activity and validated by molecular docking and DNA binding studies. In the present investigations, compounds 32, 33, 34, 41, 42 and 43 showed most potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to doxorubicin and ethidium bromide as a positive control respectively. The structure-activity relationship (SAR) revealed that the tryptophan and phenylalanine derived electron donating groups (OH and OCH3) favored DNA binding studies and anticancer activity whereas; electron withdrawing groups (Cl, NO2, and F) showed least anticancer activity. The molecular docking study, binding interactions of the most active compounds 33, 34, 42 and 43 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed.
Collapse
|
48
|
Discovery and synthesis of sulfur-containing 6-substituted 5,8-dimethoxy-1,4-naphthoquinone oxime derivatives as new and potential anti-MDR cancer agents. Eur J Med Chem 2019; 165:160-171. [DOI: 10.1016/j.ejmech.2019.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
|
49
|
Bakherad Z, Safavi M, Fassihi A, Sadeghi-Aliabadi H, Bakherad M, Rastegar H, Ghasemi JB, Sepehri S, Saghaie L, Mahdavi M. Anti-cancer, anti-oxidant and molecular docking studies of thiosemicarbazone indole-based derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03765-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur J Med Chem 2019; 162:364-377. [DOI: 10.1016/j.ejmech.2018.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022]
|