1
|
Kumar S, Kohal R, Mondal D, Kumari S, Kumari P, Bisht P, Gupta GD, Verma SK. Unveiling the research directions for pyrrolidine-based small molecules as versatile antidiabetic and anticancer agents. Future Med Chem 2025; 17:1039-1053. [PMID: 40351281 PMCID: PMC12097281 DOI: 10.1080/17568919.2025.2501923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
The pyrrolidine moiety, a five-membered saturated nitrogen-containing heterocycle, emerged as a crucial pharmacophore in medicinal chemistry due to its distinctive physicochemical properties, including hydrophilicity, basicity, and structural rigidity. Extensive modifications of pyrrolidine derivatives yielded novel compounds with pronounced antidiabetic and anticancer activities. The structural investigation of pyrrolidine-based molecules demonstrated that substitutions at the N1, 3rd, and 5th positions offer significant opportunities for optimizing biological activity and enhancing target-specific interactions. The synthesis of pyrrolidine-based molecules has been explored in literature; however, structural, target interaction analysis, and pharmacological aspects warranted for the development of targeted small molecule versatile antidiabetic and anticancer agents are lacking. The review addresses this gap by emphasizing the developments in pyrrolidine-based small molecules via structural and target interaction analysis, highlighting their antidiabetic and anticancer activities, and offering a comprehensive perspective on the development of targeted therapeutics. The investigated structural features and pharmacological developments underscore the dual functionality of pyrrolidine-based drugs in managing disorders, such as diabetes and cancer, that share common pathological mechanisms, such as inflammation, oxidative stress, and metabolic dysregulation. This overlap has catalyzed the development of multifunctional pyrrolidine derivatives capable of targeting pathways integral to both conditions, providing a promising avenue for therapeutic innovation.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rupali Kohal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Debarshi Mondal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Shreya Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Preety Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Priya Bisht
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| |
Collapse
|
2
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
3
|
Nosalova N, Majirska M, Keselakova A, Martinkova M, Fabianova D, Mirossay A, Pilatova MB, Kello M. Pyrrolidine SS13 induces oxidative stress and autophagy-mediated cell death in colorectal cancer cells. Eur J Pharm Sci 2025; 205:106982. [PMID: 39644983 DOI: 10.1016/j.ejps.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Pyrrolidines, nitrogenous organic compounds, are among the most intensively studied agents because of their antibacterial, antiviral, neurological, and promising antitumor effects. Moreover, many medicinal drugs contain pyrrolidine moiety such as sunitinib (anticancer drug), telaprevir and ombitasvir (antiviral drugs) or ramipril (antihypertensive drug). RATIONALE OF THE STUDY Based on the pro-apoptotic effect of pyrrolidine SS13, this study focuses on the pro-oxidative properties of the tested pyrrolidine SS13 on colorectal cancer cells to deepen the understanding of its mechanisms of action. RESEARCH HYPOTHESIS We hypothesize that SS13 induces oxidative stress and autophagy activation in HCT116 and Caco-2 cell lines, thus contributing to antiproliferative effects. METHODS Flow cytometry, western blot, fluorescence microscopy and qRT-PCR were used to evaluate the effect of pyrrolidine SS13. CONCLUSION AND FUTURE DIRECTIONS Pyrrolidine SS13 induced oxidative stress through the accumulation of reactive oxygen and nitrogen species in both cell lines and the modulation of both superoxide dismutase isoenzymes (SOD1, SOD2). Oxidative stress was also associated with the activation of DNA damage response system and modulation of stress/survival pathways. We demonstrated for the first time that pyrrolidine SS13 is involved in the induction of autophagy accompanied by increased levels of autophagic markers (p-AMPK, p-ULK, LC3I/II and ATG7) and a significant decrease in p62 protein levels in both cell lines. Finally, chloroquine, an inhibitor of autophagy, enhanced cell survival and suppressed the cytotoxic effect of SS13 in HCT116 and Caco-2 cells, indicating that SS13 contributes to autophagy-mediated cell death. Taken together, our results suggest that oxidative stress and autophagy participate in the antiproliferative effect of pyrrolidine SS13 on colorectal cancer cells. Further research using primary cell cultures obtained from different animal tissues as well as performing in vivo experiments is needed to understand these processes in detail and to investigate the potential therapeutic application of new pyrrolidine derivatives.
Collapse
Affiliation(s)
- Natalia Nosalova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Monika Majirska
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Alexandra Keselakova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Miroslava Martinkova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Dominika Fabianova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Andrej Mirossay
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| |
Collapse
|
4
|
Nosalova N, Keselakova A, Kello M, Martinkova M, Fabianova D, Pilatova MB. Involvement of Both Extrinsic and Intrinsic Apoptotic Pathways in Tridecylpyrrolidine-Diol Derivative-Induced Apoptosis In Vitro. Int J Mol Sci 2023; 24:11696. [PMID: 37511455 PMCID: PMC10380684 DOI: 10.3390/ijms241411696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the decreasing trend in mortality from colorectal cancer, this disease still remains the third most common cause of death from cancer. In the present study, we investigated the antiproliferative and pro-apoptotic effects of (2S,3S,4R)-2-tridecylpyrrolidine-3,4-diol hydrochloride on colon cancer cells (Caco-2 and HCT116). The antiproliferative effect and IC50 values were determined by the MTT and BrdU assays. Flow cytometry, qRT-PCR and Western blot were used to study the cellular and molecular mechanisms involved in the induction of apoptotic pathways. Colon cancer cell migration was monitored by the scratch assay. Concentration-dependent cytotoxic and antiproliferative effects on both cell lines, with IC50 values of 3.2 ± 0.1 μmol/L (MTT) vs. 6.46 ± 2.84 μmol/L (BrdU) for HCT116 and 2.17 ± 1.5 μmol/L (MTT) vs. 1.59 ± 0.72 μmol/L (BrdU), for Caco-2 were observed. The results showed that tridecylpyrrolidine-induced apoptosis was associated with the externalization of phosphatidylserine, reduced mitochondrial membrane potential (MMP) accompanied by the activation of casp-3/7, the cleavage of PARP and casp-8, the overexpression of TNF-α and FasL and the dysregulation of Bcl-2 family proteins. Inhibition of the migration of treated cells across the wound area was detected. Taken together, our data show that the anticancer effects of tridecylpyrrolidine analogues in colon cancer cells are mediated by antiproliferative activity, the induction of both extrinsic and intrinsic apoptotic pathways and the inhibition of cell migration.
Collapse
Affiliation(s)
- Natalia Nosalova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Alexandra Keselakova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Miroslava Martinkova
- Department of Organic Chemistry, Faculty of Science, Institute of Chemical Sciences, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Dominika Fabianova
- Department of Organic Chemistry, Faculty of Science, Institute of Chemical Sciences, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
5
|
Hernández-Zazueta MS, García-Romo JS, Luzardo-Ocampo I, Carbonell-Barrachina ÁA, Taboada-Antelo P, Rosas-Burgos EC, Ezquerra-Brauer JM, Martínez-Soto JM, Candia-Plata MDC, Santacruz-Ortega HDC, Burgos-Hernández A. N-(2-ozoazepan-3-yl)-pyrrolidine-2-carboxamide, a novel Octopus vulgaris ink-derived metabolite, exhibits a pro-apoptotic effect on A549 cancer cell line and inhibits pro-inflammatory markers. Food Chem Toxicol 2023:113829. [PMID: 37225033 DOI: 10.1016/j.fct.2023.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
This research aimed to chemically synthesize and evaluate the antiproliferative and anti-inflammatory potential of ozopromide (OPC), a novel compound recently isolated from O. vulgaris ink. After chemical synthesis, OPC structural characterization was confirmed by COSY2D, FTIR, and C-/H-NMR. OPC inhibited the growth of human breast (MDA-MB-231), prostate (22Rv1), cervix (HeLa), and lung (A549) cancerous cells, being the highest effect on the latter (IC50: 53.70 μM). As confirmed by flow cytometry, OPC induced typical apoptosis-derived morphological features on A549 cells, mostly at early and late apoptosis stages. OPC generated a dose-dependent effect inhibiting IL-6 and IL-8 on LPS-stimulated peripheral mononuclear cells (PBMCs). A major affinity of OPC to Akt-1 and Bcl-2 proteins in silico agreed with the observed pro-apoptotic mechanisms. Results suggested that OPC has the potential to alleviate inflammation and be further studied for anticancer activity. Marine-derived food products such as ink contains bioactive metabolites exhibiting potential health benefits.
Collapse
Affiliation(s)
| | - Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, Universidad Autonoma de Queretaro, 76010, Queretaro, Mexico
| | | | - Pablo Taboada-Antelo
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | | | | | | | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
6
|
Bhat AA, Singh I, Tandon N, Tandon R. Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). Eur J Med Chem 2023; 246:114954. [PMID: 36481599 DOI: 10.1016/j.ejmech.2022.114954] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Pyrrolidine molecules are a significant class of synthetic and natural plant metabolites, which show the diversity of pharmacological activities. An extensive variety of synthetic pyrrolidine compounds with numerous derivatization like spirooxindole, thiazole, metal complexes, coumarin, etc have revealed significant anticancer activity. Pyrrolidine molecules are found not only as potential anticancer candidates but also retain the lowest side effects. Depending upon the diverse substitution patterns of the derivatives, these molecules have demonstrated an incredible ability to regulate the various targets to give excellent anti-proliferative activities. Taking these into consideration, efforts have been taken by the scientific fraternity to design and develop a potent anticancer scaffold with negligible side effects. In the present review, we cover the latest advancements in the synthesis of pyrrolidine molecules which have promising anticancer activity toward numerous cancer cell lines. Additionally, it also highlights the effectiveness of derivatives via elucidation of Structural-Activity-Relationship (SAR) which is discussed in detail.
Collapse
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Nitin Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| | - Runjhun Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
7
|
Afza N, Fatma S, Ghous F, Shukla S, Rai S, Srivastava K, Bishnoi A. An Efficient Multicomponent Synthesis, Characterization, SAR, In-silico ADME prediction and Molecular docking Studies of 2-Amino-7-(substituted-phenyl)-3-cyano-4-phenyl-4,5,6,7-tetrahydropyrano[2,3-b] pyrrole-5-carboxylic acid Derivatives and Their in-vitro Antimicrobial Activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Resta IM, Lucantoni F, Apostolova N, Galindo F. Fluorescent styrylpyrylium probes for the imaging of mitochondria in live cells. Org Biomol Chem 2021; 19:9043-9057. [PMID: 34617091 DOI: 10.1039/d1ob01543e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eight styrylpyrylium tetrafluoroborate salts have been synthesized and fully optically characterized by UV-vis absorption and fluorescence steady-state/time-resolved spectroscopies. The new dyes exhibit strong emission bands with yellow-orange colours, depending on the substituents present in the structure. Notably, the Stokes shift recorded for some of them exceeds 100 nm, a very valuable feature for biological imaging. Four of them have been assayed as biological imaging agents by confocal laser scanning microscopy (CLSM) in the human hepatoma cell line Hep3B. It has been found that all the compounds efficiently stain intracellular structures which have been identified as mitochondria through colocalization assays with MitoView (a well-known mitochondrial marker) and using carbonyl cyanide m-chlorophenyl hydrazone (CCCP) as a mitochondrial membrane potential uncoupler. Additionally, the potential ability of the studied dyes as cytotoxic drugs has been explored. The inhibitory concentration (IC50) against Hep3B was found to be in the range of 4.2 μM-11.5 μM, similar to other described anticancer drugs for the same hepatoma cell line. The combined features of a good imaging agent and potential anticancer drug make the family of the studied pyrylium salts good candidates for further theranostic studies. Remarkably, despite the extensive use of pyrylium dyes in several scientific areas (from photocatalysis to optics), there is no precedent description of a styrylpyrylium salt with potential theranostic applications.
Collapse
Affiliation(s)
- Ignacio Muñoz Resta
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Federico Lucantoni
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibañez n. 15-17, 46010, Valencia, Spain.
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana), Spain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibañez n. 15-17, 46010, Valencia, Spain.
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana), Spain
- CIBERehd (Centro de Investigación Biomédica en Red: Enfermedades hepáticas y digestivas), Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
9
|
Zaher DM, Ramadan WS, El-Awady R, Omar HA, Hersi F, Srinivasulu V, Hachim IY, Al-Marzooq FI, Vazhappilly CG, Merali S, Merali C, Soares NC, Schilf P, Ibrahim SM, Al-Tel TH. A Novel Benzopyrane Derivative Targeting Cancer Cell Metabolic and Survival Pathways. Cancers (Basel) 2021; 13:cancers13112840. [PMID: 34200264 PMCID: PMC8201054 DOI: 10.3390/cancers13112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/03/2023] Open
Abstract
(1) Background: Today, the discovery of novel anticancer agents with multitarget effects and high safety margins represents a high challenge. Drug discovery efforts indicated that benzopyrane scaffolds possess a wide range of pharmacological activities. This spurs on building a skeletally diverse library of benzopyranes to identify an anticancer lead drug candidate. Here, we aim to characterize the anticancer effect of a novel benzopyrane derivative, aiming to develop a promising clinical anticancer candidate. (2) Methods: The anticancer effect of SIMR1281 against a panel of cancer cell lines was tested. In vitro assays were performed to determine the effect of SIMR1281 on GSHR, TrxR, mitochondrial metabolism, DNA damage, cell cycle progression, and the induction of apoptosis. Additionally, SIMR1281 was evaluated in vivo for its safety and in a xenograft mice model. (3) Results: SIMR1281 strongly inhibits GSHR while it moderately inhibits TrxR and modulates the mitochondrial metabolism. SIMR1281 inhibits the cell proliferation of various cancers. The antiproliferative activity of SIMR1281 was mediated through the induction of DNA damage, perturbations in the cell cycle, and the inactivation of Ras/ERK and PI3K/Akt pathways. Furthermore, SIMR1281 induced apoptosis and attenuated cell survival machinery. In addition, SIMR1281 reduced the tumor volume in a xenograft model while maintaining a high in vivo safety profile at a high dose. (4) Conclusions: Our findings demonstrate the anticancer multitarget effect of SIMR1281, including the dual inhibition of glutathione and thioredoxin reductases. These findings support the development of SIMR1281 in preclinical and clinical settings, as it represents a potential lead compound for the treatment of cancer.
Collapse
Affiliation(s)
- Dana M. Zaher
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A. Omar
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
| | - Ibrahim Y. Hachim
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farah I. Al-Marzooq
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Cijo G. Vazhappilly
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- School of Arts and Sciences, American University of Ras Al Khaimah, P.O. Box 10021, Ras Al Khaimah 10021, United Arab Emirates
| | - Salim Merali
- School of Pharmacy, Temple University, 3307 N Broad Street, Room 552, Philadelphia, PA 19140, USA; (S.M.); (C.M.)
| | - Carmen Merali
- School of Pharmacy, Temple University, 3307 N Broad Street, Room 552, Philadelphia, PA 19140, USA; (S.M.); (C.M.)
| | - Nelson C. Soares
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - Saleh M. Ibrahim
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7417
| |
Collapse
|
10
|
Devi P, Bishnoi A, Fatma S. Synthesis, Spectroscopic Properties, and Quantum Mechanical Study of 5-Oxo-1-phenyl-4-(piperidin-1-ylmethyl)pyrrolidine-3-carboxylic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Mollanejad K, Asghari S, Jadidi K. Diastereoselective synthesis of pyrrolo[1, 2‐c]imidazoles using chiral thiohydantoins, malononitrile, and aldehydes and evaluation of their antioxidant and antibacterial activities. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Khadijeh Mollanejad
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar Iran
| | - Sakineh Asghari
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar Iran
- Nano and Biotechnology Research GroupUniversity of Mazandaran Babolsar Iran
| | - Khosrow Jadidi
- Department of ChemistryShahid Beheshti University Tehran Iran
| |
Collapse
|
12
|
Yang Q, Lin QQ, Xing HY, Zhao ZG. Visible-light-mediated difluoromethylphosphonation of alkenes for the synthesis of CF2P-containing heterocycles. Org Chem Front 2019. [DOI: 10.1039/c9qo01030k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Novel synthesis of CF2P-containing heterocycles has been developed via visible-light-mediated nucleophilic cyclization of unsaturated carboxylic acids, alcohol and sulfonamides.
Collapse
Affiliation(s)
- Qiang Yang
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| | - Qing-Qing Lin
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| | - Hou-Ying Xing
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| | - Zhi-Gang Zhao
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| |
Collapse
|
13
|
Li C, Qi ZC, Yang Q, Qiang XY, Yang SD. Visible-Light-Catalyzed Phosphonation-Annulation: an Efficient Strategy to Synthesize β-Phosphonopyrrolidines and β-Phosphonolactones. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
| | - Zhi-Chao Qi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
| | - Qiang Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
| | - Xiao-Yue Qiang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou Gansu 730000 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou Gansu 730000 China
| |
Collapse
|
14
|
Antrodia cinnamomea boosts the anti-tumor activity of sorafenib in xenograft models of human hepatocellular carcinoma. Sci Rep 2018; 8:12914. [PMID: 30150684 PMCID: PMC6110745 DOI: 10.1038/s41598-018-31209-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been recognized worldwide as one of the major causes of cancer death. The medicinal fungus Antrodia cinnamomea (A. cinnamomea) has been served as a functional food for liver protection. The aim of the present study was to investigate the potential activity of A. cinnamomea extracts as a safe booster for the anticancer activity of sorafenib, a multi-kinase inhibitor approved for the treatment of HCC. The biologically active triterpenoids in the ethanolic extracts of A. cinnamomea (EAC) were initially identified by HPLC/LC/MS then the different extracts and sorafenib were assessed in vitro and in vivo. EAC could effectively sensitize HCC cells to low doses of sorafenib, which was perceived via the ability of the combination to repress cell viability and to induce cell cycle arrest and apoptosis in HCC cells. The ability of EAC to enhance sorafenib activity was mediated through targeting mitogen-activated protein (MAP) kinases, modulating cyclin proteins expression and inhibiting cancer cell invasion. Moreover, the proposed combination significantly suppressed ectopic tumor growth in mice with high safety margins compared to single-agent treatment. Thus, this study highlights the advantage of combining EAC with sorafenib as a potential adjuvant therapeutic strategy against HCC.
Collapse
|
15
|
Nural Y, Gemili M, Seferoglu N, Sahin E, Ulger M, Sari H. Synthesis, crystal structure, DFT studies, acid dissociation constant, and antimicrobial activity of methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl)carbamothioyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Nural Y, Gemili M, Ulger M, Sari H, De Coen LM, Sahin E. Synthesis, antimicrobial activity and acid dissociation constants of methyl 5,5-diphenyl-1-(thiazol-2-yl)pyrrolidine-2-carboxylate derivatives. Bioorg Med Chem Lett 2018; 28:942-946. [DOI: 10.1016/j.bmcl.2018.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
|