1
|
Sowa ST, Kücükdisli M, Mostinski Y, Schaller DA, Vinagreiro CS, Cirillo D, Bosetti C, Brinch SA, van Laar K, Wegert A, Leenders RGG, Krauss S, Waaler J, Volkamer A, Lehtiö L, Nazaré M. Deconstruction of Dual-Site Tankyrase Inhibitors Provides Insights into Binding Energetics and Suggests Critical Hotspots for Ligand Optimization. J Med Chem 2025; 68:7263-7279. [PMID: 40134122 PMCID: PMC11997991 DOI: 10.1021/acs.jmedchem.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Designing inhibitors is a complex task that requires a deep understanding of protein-ligand interactions and their dynamics. Ligands often interact with multiple binding subsites, with noncovalent interactions affecting binding affinity. Conformational changes and plasticity of both, the ligand and the protein influence binding energetics. We investigated the tankyrase ADP-ribosyltransferase as a promising drug target regulating many cellular pathways. Despite the existence of diverse tankyrase inhibitors, their binding energetics and contributions of flexible cryptic subpockets to binding affinity remain elusive. To examine these aspects, we deconstructed inhibitors to key fragments, dissected their energetic contribution to the affinity, and determined their binding mode by X-ray crystallography. Varying ligand efficiencies of the deconstructed, pocket-binding fragments revealed the cryptic nature of subpockets. These insights enabled us to redesign inhibitors with novel linkers, the observed key area for optimization, increasing the potency in enzymatic and cell-based assays by 7.5-fold and 6.2-fold compared to the parent ligand.
Collapse
Affiliation(s)
- Sven T. Sowa
- Faculty
for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Murat Kücükdisli
- Medicinal
Chemistry, Leibniz-Forschungsinstitut für
Molekulare Pharmakologie (FMP), Campus Berlin Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Yelena Mostinski
- Medicinal
Chemistry, Leibniz-Forschungsinstitut für
Molekulare Pharmakologie (FMP), Campus Berlin Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - David A. Schaller
- In Silico
Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Carolina S. Vinagreiro
- Medicinal
Chemistry, Leibniz-Forschungsinstitut für
Molekulare Pharmakologie (FMP), Campus Berlin Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Davide Cirillo
- Medicinal
Chemistry, Leibniz-Forschungsinstitut für
Molekulare Pharmakologie (FMP), Campus Berlin Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Chiara Bosetti
- Faculty
for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Shoshy Alam Brinch
- Oslo
University Hospital, P.O. Box 4950, Nydalen, 0424 Oslo, Norway
- Hybrid
Technology Hub—Centre of Excellence, Institute of Basic Medical
Sciences, University of Oslo, 0317 Oslo, Norway
| | - Kirsten van Laar
- Symeres
Netherlands B.V., Kerkenbos
1013, 6546 BB Nijmegen, The Netherlands
| | - Anita Wegert
- Symeres
Netherlands B.V., Kerkenbos
1013, 6546 BB Nijmegen, The Netherlands
| | | | - Stefan Krauss
- Oslo
University Hospital, P.O. Box 4950, Nydalen, 0424 Oslo, Norway
- Hybrid
Technology Hub—Centre of Excellence, Institute of Basic Medical
Sciences, University of Oslo, 0317 Oslo, Norway
| | - Jo Waaler
- Oslo
University Hospital, P.O. Box 4950, Nydalen, 0424 Oslo, Norway
- Hybrid
Technology Hub—Centre of Excellence, Institute of Basic Medical
Sciences, University of Oslo, 0317 Oslo, Norway
| | - Andrea Volkamer
- In Silico
Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
- Data
Driven Drug Design, Faculty of Mathematics and Computer Sciences, Saarland University, 66123 Saarbrücken, Germany
| | - Lari Lehtiö
- Faculty
for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Marc Nazaré
- Medicinal
Chemistry, Leibniz-Forschungsinstitut für
Molekulare Pharmakologie (FMP), Campus Berlin Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
2
|
Huang D, Wang J, Chen L, Jiang W, Inuzuka H, Simon DK, Wei W. Targeting the PARylation-Dependent Ubiquitination Signaling Pathway for Cancer Therapies. Biomolecules 2025; 15:237. [PMID: 40001540 PMCID: PMC11852910 DOI: 10.3390/biom15020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a dynamic protein post-translational modification (PTM) mediated by ADP-ribosyltransferases (ARTs), which regulates a plethora of essential biological processes, such as DNA repair, gene expression, and signal transduction. Among these, PAR-dependent ubiquitination (PARdU) plays a pivotal role in tagging PARylated substrates for subsequent ubiquitination and degradation events through the coordinated action of enzymes, including the E3 ligase RNF146 and the ADP-ribosyltransferase tankyrase. Notably, this pathway has emerged as a key regulator of tumorigenesis, immune modulation, and cell death. This review elucidates the molecular mechanisms of the PARdU pathway, including the RNF146-tankyrase interaction, substrate specificity, and upstream regulatory pathways. It also highlights the biological functions of PARdU in DNA damage repair, signaling pathways, and metabolic regulation, with a focus on its therapeutic potential in cancer treatment. Strategies targeting PARdU, such as tankyrase and RNF146 inhibitors, synthetic lethality approaches, and immune checkpoint regulation, offer promising avenues for precision oncology. These developments underscore the potential of PARdU as a transformative therapeutic target in combating various types of human cancer.
Collapse
Affiliation(s)
- Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Weiwei Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Di Micco S, Ruggiero D, Terracciano S, Bruno I, Cardullo N, Muccilli V, Tringali C, Bifulco G. Identification of Honokiol-Based Scaffold to Design Tankyrase 1/2 Inhibitors by In Silico and In Vitro Studies. Chem Biodivers 2025; 22:e202401854. [PMID: 39363757 DOI: 10.1002/cbdv.202401854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Recently, we identified magnolol bioinspired derivatives as new Tankyrase 1/2 (TNKS1/2) inhibitors by our Inverse Virtual Screening protocol. Based on these findings, in the present contribution, we enlarged our investigation of neolignans to the natural product honokiol (1) and a group of its analogues (2-8). By integrating in silico analysis and Surface Plasmon Resonance experiments, we investigated the binding of tested compounds against biological target under investigations. Specifically, 1 (honokiol), 2, 6 and 7 bound TNKS2 with a KD in the low nanomolar range, whereas 3-5 and 8 showed absence of affinity for the macromolecule. Furthermore, we also proved the binding specificity of 1 and 7 against TNKS2, while 2 and 6 were found to be also TNKS1 binders. The congener 4 was identified as specific TNKS1 ligand. Promising antiproliferative activity in A549 cancer cell line were obtained for 1 and 6, with honokiol (1) presenting a higher potency than the well-known TNKS2 inhibitor XAV939. Collectively, these outcomes suggest that the honokiol-based scaffold can be employed to design novel anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore De Renzi 50, 84125, Salerno, Italy
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| |
Collapse
|
4
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
5
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization. Proc Natl Acad Sci U S A 2024; 121:e2402903121. [PMID: 39102549 PMCID: PMC11331113 DOI: 10.1073/pnas.2402903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| |
Collapse
|
6
|
Rusinko A, Rezaei M, Friedrich L, Buchstaller HP, Kuhn D, Ghogare A. AIDDISON: Empowering Drug Discovery with AI/ML and CADD Tools in a Secure, Web-Based SaaS Platform. J Chem Inf Model 2024; 64:3-8. [PMID: 38134123 PMCID: PMC10777390 DOI: 10.1021/acs.jcim.3c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
The widespread proliferation of artificial intelligence (AI) and machine learning (ML) methods has a profound effect on the drug discovery process. However, many scientists are reluctant to utilize these powerful tools due to the steep learning curve typically associated with them. AIDDISON offers a convenient, secure, web-based platform for drug discovery, addressing the reluctance of scientists to adopt AI and ML methods due to the steep learning curve. By seamlessly integrating generative models, ADMET property predictions, searches in vast chemical spaces, and molecular docking, AIDDISON provides a sophisticated platform for modern drug discovery. It enables less computer-savvy scientists to utilize these powerful tools in their daily activities, as demonstrated by an example of identifying a valuable set of molecules for lead optimization. With AIDDISON, the benefits of AI/ML in drug discovery are accessible to all.
Collapse
Affiliation(s)
- Andrew Rusinko
- MilliporeSigma, 400 Summit Drive, Burlington, Massachusetts 01803, United States
| | - Mohammad Rezaei
- MilliporeSigma, 400 Summit Drive, Burlington, Massachusetts 01803, United States
| | - Lukas Friedrich
- Merck
Healthcare KGaA, Medicinal Chemistry and Drug Design, Darmstadt 64293, Germany
| | | | - Daniel Kuhn
- Merck
Healthcare KGaA, Medicinal Chemistry and Drug Design, Darmstadt 64293, Germany
| | - Ashwini Ghogare
- MilliporeSigma, 400 Summit Drive, Burlington, Massachusetts 01803, United States
| |
Collapse
|
7
|
Peters XQ, Elamin G, Aljoundi A, Alahmdi MI, Abo-Dya NE, Sidhom PA, Tawfeek AM, Ibrahim MAA, Soremekun O, Soliman MES. Therapeutic Path to Triple Knockout: Investigating the Pan-inhibitory Mechanisms of AKT, CDK9, and TNKS2 by a Novel 2-phenylquinazolinone Derivative in Cancer Therapy- An In-silico Investigation Therapy. Curr Pharm Biotechnol 2024; 25:1288-1303. [PMID: 37581526 DOI: 10.2174/1389201024666230815145001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Blocking the oncogenic Wnt//β-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; Tankyrase 2 (TNKS2), Protein Kinase B (AKT), and Cyclin- Dependent Kinase 9 (CDK9), which propagate the oncogenic Wnt/β-catenin signalling pathway. METHODS During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin- 4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4- one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION The following structural insights provide a starting point for understanding the paninhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.
Collapse
Affiliation(s)
- Xylia Q Peters
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed Issa Alahmdi
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Peter A Sidhom
- Department of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Chemistry Department, Computational Chemistry Laboratory, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Opeyemi Soremekun
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mahmoud E S Soliman
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
8
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-to-osteoblast transition generates an immunosuppressive bone tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569496. [PMID: 38076845 PMCID: PMC10705502 DOI: 10.1101/2023.11.30.569496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone metastatic castrate-resistant prostate cancer (bmCRPC). In this study, we revealed a novel mechanism that may account for the relative resistance of bmCRPC to immune checkpoint therapy. We found that prostate cancer (PCa)-induced bone via endothelial-to-osteoblast (EC-to-OSB) transition causes an ingress of M2-like macrophages, leading to an immunosuppressive bone tumor microenvironment (bone-TME). Analysis of a bmCRPC RNA-seq dataset revealed shorter overall survival in patients with an M2-high versus M2-low signature. Immunohistochemical (IHC) analysis showed CD206 + M2-like macrophages were enriched in bmCRPC specimens compared with primary tumors or lymph node metastasis. In osteogenic PCa xenografts, CD206 + macrophages were enriched adjacent to tumor-induced bone. FACS analysis showed an increase in CD206 + cells in osteogenic tumors compared to non-osteogenic tumors. Genetic or pharmacological inhibition of the EC-to-OSB transition reduced aberrant bone and M2-like macrophages in osteogenic tumors. RNAseq analysis of tumor-associated macrophages from osteogenic (bone-TAMs) versus non-osteogenic (ctrl-TAMs) tumors showed high expression of an M2-like gene signature, canonical and non-canonical Wnt pathways, and a decrease in an M1-like gene signature. Isolated bone-TAMs suppressed T-cell proliferation while ctrl-TAMs did not. Mechanistically, EC-OSB hybrid cells produced paracrine factors, including Wnts, CXCL14 and LOX, which induced M2 polarization and recruited M2-like TAMs to bone-TME. Our study thus links the unique EC-to-OSB transition as an "upstream" event that drives "downstream" immunosuppression in the bone-TME. These studies suggest that therapeutic strategies that inhibit PCa-induced EC-to-OSB transition may reverse immunosuppression to promote immunotherapeutic outcomes in bmCRPC. Significance The insight that prostate cancer-induced bone generates an immunosuppressive bone tumor microenvironment offers a strategy to improve responses to immunotherapy approaches in patients with bone metastatic castrate-resistant prostate cancer.
Collapse
|
9
|
Slika H, Alimonti P, Raj D, Caraway C, Alomari S, Jackson EM, Tyler B. The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies. Cancers (Basel) 2023; 15:3889. [PMID: 37568705 PMCID: PMC10417410 DOI: 10.3390/cancers15153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor and is associated with significant morbidity and mortality in the pediatric population. Despite the use of multiple therapeutic approaches consisting of surgical resection, craniospinal irradiation, and multiagent chemotherapy, the prognosis of many patients with medulloblastoma remains dismal. Additionally, the high doses of radiation and the chemotherapeutic agents used are associated with significant short- and long-term complications and adverse effects, most notably neurocognitive delay. Hence, there is an urgent need for the development and clinical integration of targeted treatment regimens with greater efficacy and superior safety profiles. Since the adoption of the molecular-based classification of medulloblastoma into wingless (WNT) activated, sonic hedgehog (SHH) activated, group 3, and group 4, research efforts have been directed towards unraveling the genetic, epigenetic, transcriptomic, and proteomic profiles of each subtype. This review aims to delineate the progress that has been made in characterizing the neurodevelopmental and molecular features of each medulloblastoma subtype. It further delves into the implications that these characteristics have on the development of subgroup-specific targeted therapeutic agents. Furthermore, it highlights potential future avenues for combining multiple agents or strategies in order to obtain augmented effects and evade the development of treatment resistance in tumors.
Collapse
Affiliation(s)
- Hasan Slika
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Chad Caraway
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Eric M. Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| |
Collapse
|
10
|
Pećina-Šlaus N, Aničić S, Bukovac A, Kafka A. Wnt Signaling Inhibitors and Their Promising Role in Tumor Treatment. Int J Mol Sci 2023; 24:ijms24076733. [PMID: 37047705 PMCID: PMC10095594 DOI: 10.3390/ijms24076733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In a continuous search for the improvement of antitumor therapies, the inhibition of the Wnt signaling pathway has been recognized as a promising target. The altered functioning of the Wnt signaling in human tumors points to the strategy of the inhibition of its activity that would impact the clinical outcomes and survival of patients. Because the Wnt pathway is often mutated or epigenetically altered in tumors, which promotes its activation, inhibitors of Wnt signaling are being intensively investigated. It has been shown that knocking down specific components of the Wnt pathway has inhibitory effects on tumor growth in vivo and in vitro. Thus, similar effects are expected from the application of Wnt inhibitors. In the last decades, molecules acting as inhibitors on the pathway’s specific molecular levels have been identified and characterized. This review will discuss the inhibitors of the canonical Wnt pathway, summarize knowledge on their effectiveness as therapeutics, and debate their side effects. The role of the components frequently mutated in various tumors that are principal targets for Wnt inhibitors is also going to be brought to the reader’s attention. Some of the molecules identified as Wnt pathway inhibitors have reached early stages of clinical trials, and some have only just been discovered. All things considered, inhibition of the Wnt signaling pathway shows potential for the development of future therapies.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Sara Aničić
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anja Bukovac
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Mehta CC, Rohit S, Patel S, Bhatt HG. New molecular insights for 4 H-1,2,4-triazole derivatives as inhibitors of tankyrase and Wnt-signaling antagonist: a molecular dynamics simulation study. J Biomol Struct Dyn 2023; 41:13496-13508. [PMID: 36755438 DOI: 10.1080/07391102.2023.2175376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
Tankyrase (TNKS) enzymes remained central biotargets to treat Wnt-driven colorectal cancers. The success of Olaparib posited the druggability of PARP family enzymes depending on their role in tumor proliferation. In this work, an MD-simulation-based comparative assessment of the protein-ligand interactions using the best-docked poses of three selected compounds (two of the designed and previously synthesized molecules obtained through molecular docking and one reported TNKS inhibitor) was performed for a 500 ns period. The PDB:ID-7KKP and 3U9H were selected for TNKS1 and TNKS2, respectively. The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) based binding energy data exhibited stronger binding of compound-15 (average values of -102.92 and -104.32 kcal/mol for TNKS1 and TNKS2, respectively) as compared to compound-22 (average values of -82.99 and -85.68 kcal/mol for TNKS1 and TNKS2, respectively) and the reported compound-32 (average values of -81.89 and -74.43 kcal/mol for TNKS1 and TNKS2, respectively). Compound-15 and compound-22 exhibited comparable or superior binding to both receptors forming stable complexes when compared to that of compound-32 upon examining their MD trajectories. The key contributors were hydrophobic stacking and optimum hydrogen bonding allowing these molecules to occupy the adenosine pocket by interfacing D-loop residues. The results of bond distance analysis, radius of gyration, root mean square deviation, root mean square fluctuation, snapshots at different time intervals, LUMO-HUMO energy differences, electrostatic potential calculations, and binding free energy suggested better binding efficiency for compound-15 to TNKS enzymes. The computed physicochemical and ADMET properties of compound-15 were encouraging and could be explored further for drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chirag C Mehta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | | | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India
| | - Hardik G Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
12
|
Kim DY, Ryu YS, Lee ES, Koh DI, Moon JH, Jung SA, Kim MJ, Yun H, You JE, Jeong HR, Yoon DI, Kim CH, Hong SW, Gong YD, Jin DH. DGG-300273, a novel WNT/β-catenin inhibitor, induces apoptotic cell death by activating ROS-BIM signaling in a Wnt-dependent manner in colon cancer cells. Invest New Drugs 2023; 41:105-114. [PMID: 36538258 DOI: 10.1007/s10637-022-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
Dysregulated Wnt signaling is associated with malignant oncogenic transformation, especially in colon cancer. Recently, numerous drugs have been developed based on tumorigenesis biomarkers, thus having high potential as drug targets. Likewise, WNT/β-catenin pathway members are attractive therapeutic targets for colon cancer and are currently in various stages of development. However, although inhibitors of proteins regulating the WNT/β-catenin signaling pathway have been extensively studied, they have yet to be clinically approved, and the underlying molecular mechanism(s) of their anticancer effects remain poorly understood. Herein, we show that a novel WNT/β-catenin inhibitor, DGG-300273, inhibits colon cancer cell growth in a Wnt-dependent manner due to upregulation of the BCL2-family protein Bim and caspase-dependent apoptotic cell death. Additionally, DGG-300273-mediated cell death occurs by increased reactive oxygen species (ROS), as shown by abrogation of apoptotic cell death and ROS production following pretreatment with the antioxidant N-acetylcysteine. These results suggest that DGG-300273 represents a promising investigational drug for the treatment of Wnt-associated cancer, thus warranting further characterization and study.
Collapse
Affiliation(s)
- Do Yeon Kim
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yea Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eun-Sil Lee
- Innovative Drug-Like Library Research Center, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dong-In Koh
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jai-Hee Moon
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Soo-A Jung
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Mi Jin Kim
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyeseon Yun
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji-Eun You
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hong-Rae Jeong
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong-Il Yoon
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Chul Hee Kim
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung-Woo Hong
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young-Dae Gong
- Innovative Drug-Like Library Research Center, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| | - Dong-Hoon Jin
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43 gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
13
|
Peters XQ, Agoni C, Soliman MES. Unravelling the Structural Mechanism of Action of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione in Dual-Targeting Tankyrase 1 and 2: A Novel Avenue in Cancer Therapy. Cell Biochem Biophys 2022; 80:505-518. [PMID: 35637423 DOI: 10.1007/s12013-022-01076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Abstract
Tankyrase (TNKS) belonging to the poly(ADPribose) polymerase family, are known for their multi-functioning capabilities, and play an essential role in the Wnt β-catenin pathway and various other cellular processes. Although showing inhibitory potential at a nanomolar level, the structural dual-inhibitory mechanism of the novel TNKS inhibitor, 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione, remains unexplored. By employing advanced molecular modeling, this study provides these insights. Results of sequence alignments of binding site residues identified conserved residues; GLY1185 and ILE1224 in TNKS-1 and PHE1035 and PRO1034 in TNKS-2 as crucial mediators of the dual binding mechanism of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Estimation of the binding free energy of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione showed estimated total energy of -43.88 kcal/mol and -30.79 kcal/mol towards TNKS-1 and 2, respectively, indicating favorable analogous dual binding as previously reported. Assessment of the conformational dynamics of TNKS-1 and 2 upon the binding of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione revealed similar structural changes characterized by increased flexibility and solvent assessible surface area of the residues inferring an analogous structural binding mechanism. Insights from this study show that peculiar, conserved residues are the driving force behind the dual inhibitory mechanism of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione and could aid in the design of novel dual inhibitors of TNKS-1 and 2 with improved therapeutic properties.
Collapse
Affiliation(s)
- Xylia Q Peters
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.,West African Centre for Computational Analysis, Accra, Ghana
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
14
|
Patel A, Bhatt H, Patel B. Structural insights on 2-phenylquinazolin-4-one derivatives as tankyrase inhibitors through CoMFA, CoMSIA, topomer CoMFA and HQSAR studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Leenders RGG, Brinch SA, Sowa ST, Amundsen-Isaksen E, Galera-Prat A, Murthy S, Aertssen S, Smits JN, Nieczypor P, Damen E, Wegert A, Nazaré M, Lehtiö L, Waaler J, Krauss S. Development of a 1,2,4-Triazole-Based Lead Tankyrase Inhibitor: Part II. J Med Chem 2021; 64:17936-17949. [PMID: 34878777 PMCID: PMC8713164 DOI: 10.1021/acs.jmedchem.1c01264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Tankyrase 1 and 2
(TNKS1/2) catalyze post-translational modification
by poly-ADP-ribosylation of a plethora of target proteins. In this
function, TNKS1/2 also impact the WNT/β-catenin and Hippo signaling
pathways that are involved in numerous human disease conditions including
cancer. Targeting TNKS1/2 with small-molecule inhibitors shows promising
potential to modulate the involved pathways, thereby potentiating
disease intervention. Based on our 1,2,4-triazole-based lead compound 1 (OM-1700), further structure–activity relationship
analyses of East-, South- and West-single-point alterations and hybrids
identified compound 24 (OM-153). Compound 24 showed picomolar IC50 inhibition in a cellular (HEK293)
WNT/β-catenin signaling reporter assay, no off-target liabilities,
overall favorable absorption, distribution, metabolism, and excretion
(ADME) properties, and an improved pharmacokinetic profile in mice.
Moreover, treatment with compound 24 induced dose-dependent
biomarker engagement and reduced cell growth in the colon cancer cell
line COLO 320DM.
Collapse
Affiliation(s)
| | - Shoshy Alam Brinch
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Enya Amundsen-Isaksen
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Sudarshan Murthy
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | | | | | | | - Eddy Damen
- Symeres, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Anita Wegert
- Symeres, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Jo Waaler
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
16
|
Poltronieri P, Miwa M, Masutani M. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Int J Mol Sci 2021; 22:10829. [PMID: 34639169 PMCID: PMC8509805 DOI: 10.3390/ijms221910829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, CNR-ISPA, Via Monteroni, 73100 Lecce, Italy
| | - Masanao Miwa
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan;
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
17
|
Hirano Y, Okimoto N, Fujita S, Taiji M. Molecular Dynamics Study of Conformational Changes of Tankyrase 2 Binding Subsites upon Ligand Binding. ACS OMEGA 2021; 6:17609-17620. [PMID: 34278146 PMCID: PMC8280666 DOI: 10.1021/acsomega.1c02159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The interactions between proteins and ligands are involved in various biological functions. While experimental structures provide key static structural information of ligand-unbound and ligand-bound proteins, dynamic information is often insufficient for understanding the detailed mechanism of protein-ligand binding. Here, we studied the conformational changes of the tankyrase 2 binding pocket upon ligand binding using molecular dynamics simulations of the ligand-unbound and ligand-bound proteins. The ligand-binding pocket has two subsites: the nicotinamide and adenosine subsite. Comparative analysis of these molecular dynamics trajectories revealed that the conformational change of the ligand-binding pocket was characterized by four distinct conformations of the ligand-binding pocket. Two of the four conformations were observed only in molecular dynamics simulations. We found that the pocket conformational change on ligand binding was based on the connection between the nicotinamide and adenosine subsites that are located adjacently in the pocket. From the analysis, we proposed the protein-ligand binding mechanism of tankyrase 2. Finally, we discussed the computational prediction of the ligand binding pose using the tankyrase 2 structures obtained from the molecular dynamics simulations.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Laboratory
for Computational Molecular Design and Drug Discovery Molecular Simulation
Platform Unit, RIKEN Center for Biosystems
Dynamics Research (BDR), 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Noriaki Okimoto
- Laboratory
for Computational Molecular Design and Drug Discovery Molecular Simulation
Platform Unit, RIKEN Center for Biosystems
Dynamics Research (BDR), 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Shigeo Fujita
- Laboratory
for Computational Molecular Design and Drug Discovery Molecular Simulation
Platform Unit, RIKEN Center for Biosystems
Dynamics Research (BDR), 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Makoto Taiji
- Laboratory
for Computational Molecular Design and Drug Discovery Molecular Simulation
Platform Unit, RIKEN Center for Biosystems
Dynamics Research (BDR), 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
18
|
Mygland L, Brinch SA, Strand MF, Olsen PA, Aizenshtadt A, Lund K, Solberg NT, Lycke M, Thorvaldsen TE, Espada S, Misaghian D, Page CM, Agafonov O, Nygård S, Chi NW, Lin E, Tan J, Yu Y, Costa M, Krauss S, Waaler J. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience 2021; 24:102807. [PMID: 34337362 PMCID: PMC8313754 DOI: 10.1016/j.isci.2021.102807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Small-molecule tankyrase 1 and tankyrase 2 (TNKS1/2) inhibitors are effective antitumor agents in selected tumor cell lines and mouse models. Here, we characterized the response signatures and the in-depth mechanisms for the antiproliferative effect of tankyrase inhibition (TNKSi). The TNKS1/2-specific inhibitor G007-LK was used to screen 537 human tumor cell lines and a panel of particularly TNKSi-sensitive tumor cell lines was identified. Transcriptome, proteome, and bioinformatic analyses revealed the overall TNKSi-induced response signatures in the selected panel. TNKSi-mediated inhibition of wingless-type mammary tumor virus integration site/β-catenin, yes-associated protein 1 (YAP), and phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT signaling was validated and correlated with lost expression of the key oncogene MYC and impaired cell growth. Moreover, we show that TNKSi induces accumulation of TNKS1/2-containing β-catenin degradasomes functioning as core complexes interacting with YAP and angiomotin proteins during attenuation of YAP signaling. These findings provide a contextual and mechanistic framework for using TNKSi in anticancer treatment that warrants further comprehensive preclinical and clinical evaluations. TNKSi-responding tumor cell lines were identified TNKSi targets WNT/β-catenin, YAP, and PI3K/AKT signaling Reduced MYC expression leads to impaired tumor cell growth
Collapse
Affiliation(s)
- Line Mygland
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Shoshy Alam Brinch
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Martin Frank Strand
- School of Health Sciences, Kristiania University College, P.O. Box 1190 Sentrum, 0107 Oslo, Norway
| | - Petter Angell Olsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Kaja Lund
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway
| | - Nina Therese Solberg
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway
| | - Max Lycke
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway
| | - Tor Espen Thorvaldsen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Sandra Espada
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Dorna Misaghian
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway
| | - Christian M Page
- Center for Fertility and Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway.,Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Oleg Agafonov
- Bioinformatics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway
| | - Ståle Nygård
- Department of Informatics, University of Oslo, P.O. box 080 Blindern, 0316 Oslo, Norway
| | - Nai-Wen Chi
- Endocrine Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Eva Lin
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jenille Tan
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yihong Yu
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mike Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Jo Waaler
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| |
Collapse
|
19
|
Bioinformatic Analysis of the Nicotinamide Binding Site in Poly(ADP-Ribose) Polymerase Family Proteins. Cancers (Basel) 2021; 13:cancers13061201. [PMID: 33801950 PMCID: PMC8002165 DOI: 10.3390/cancers13061201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The PARP family consists of 17 proteins, and some of them are responsible for cancer cells’ viability. Much attention is therefore given to the search for chemical compounds with the ability to suppress distinct PARP family members (for example, PARP-5a and 5b). Here, we present the results of a family-wide bioinformatic analysis of an important functional region in the PARP structure and describe factors that can guide the design of highly selective compounds. Abstract The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.
Collapse
|
20
|
Mehta CC, Bhatt HG. Tankyrase inhibitors as antitumor agents: a patent update (2013 - 2020). Expert Opin Ther Pat 2021; 31:645-661. [PMID: 33567917 DOI: 10.1080/13543776.2021.1888929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Tankyrase inhibitors gained significant attention as therapeutic targets in oncology because of their potency. Their primary role in inhibiting the Wnt signaling pathway makes them an important class of compounds with the potential to be used as a combination therapy in future treatments of colorectal cancer. AREAS COVERED This review describes pertinent work in the development of tankyrase inhibitors with a great emphasis on the recently patented TNKS inhibitors published from 2013 to 2020. This article also highlights a couple of promising candidates having tankyrase inhibitory effects and are currently undergoing clinical trials. EXPERT OPINION Following the successful clinical applications of PARP inhibitors, tankyrase inhibition has gained significant attention in the research community as a target with high therapeutic potential. The ubiquitous role of tankyrase in cellular homeostasis and Wnt-dependent tumor proliferation brought difficulties for researchers to strike the right balance between potency and on-target toxicity. The need for novel tankyrase inhibitors with a better ADMET profile can introduce an additional regimen in treating various malignancies in monotherapy or adjuvant therapy. The development of combination therapies, including tankyrase inhibitors with or without PARP inhibitory properties, can potentially benefit the larger population of patients with unmet medical needs.
Collapse
Affiliation(s)
- Chirag C Mehta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad India
| | - Hardik G Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad India
| |
Collapse
|
21
|
Medulloblastoma drugs in development: Current leads, trials and drawbacks. Eur J Med Chem 2021; 215:113268. [PMID: 33636537 DOI: 10.1016/j.ejmech.2021.113268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Current treatment for MB includes surgical resection, radiotherapy and chemotherapy. Despite significant progress in its management, a portion of children relapse and tumor recurrence carries a poor prognosis. Based on their molecular and clinical characteristics, MB patients are clinically classified into four groups: Wnt, Hh, Group 3, and Group 4. With our increased understanding of relevant molecular pathways disrupted in MB, the development of targeted therapies for MB has also increased. Targeted drugs have shown unique privileges over traditional cytotoxic therapies in balancing efficacy and toxicity, with many of them approved and widely used clinically. The aim of this review is to present the recent progress on targeted chemotherapies for the treatment of all classes of MB.
Collapse
|
22
|
Tamiro F, Weng AP, Giambra V. Targeting Leukemia-Initiating Cells in Acute Lymphoblastic Leukemia. Cancer Res 2021; 81:4165-4173. [PMID: 33414170 DOI: 10.1158/0008-5472.can-20-2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
The concept that different leukemias are developmentally distinct and, like in normal hematopoiesis, generated by restricted populations of cells named leukemia-initiating cells (LIC), is becoming more established. These cancer stem-like cells have been assumed to have unique properties, including the capability of self-renewing and giving rise to "differentiated" or non-LICs that make up the whole tumor. Cell populations enriched with LIC activity have been characterized in different hematopoietic malignancies, including human acute lymphoblastic leukemia (ALL). Related studies have also demonstrated that LICs are functionally distinct from bulk cells and modulated by distinct molecular signaling pathways and epigenetic mechanisms. Here we review several biological and clinical aspects related to LICs in ALL, including (i) immunophenotypic characterization of LIC-enriched subsets in human and mouse models of ALL, (ii) emerging therapeutics against regulatory signaling pathways involved in LIC progression and maintenance in T- and B-cell leukemias, (iii) novel epigenetic and age-related mechanisms of LIC propagation, and (iv) ongoing efforts in immunotherapy to eradicate LIC-enriched cell subsets in relapsed and refractory ALL cases. Current conventional treatments do not efficiently eliminate LICs. Therefore, innovative therapeutics that exclusively target LICs hold great promise for developing an effective cure for ALL.
Collapse
Affiliation(s)
- Francesco Tamiro
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
23
|
|
24
|
Sharma M, Pruitt K. Wnt Pathway: An Integral Hub for Developmental and Oncogenic Signaling Networks. Int J Mol Sci 2020; 21:E8018. [PMID: 33126517 PMCID: PMC7663720 DOI: 10.3390/ijms21218018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Wnt pathway is an integral cell-to-cell signaling hub which regulates crucial development processes and maintenance of tissue homeostasis by coordinating cell proliferation, differentiation, cell polarity, cell movement, and stem cell renewal. When dysregulated, it is associated with various developmental diseases, fibrosis, and tumorigenesis. We now better appreciate the complexity and crosstalk of the Wnt pathway with other signaling cascades. Emerging roles of the Wnt signaling in the cancer stem cell niche and drug resistance have led to development of therapeutics specifically targeting various Wnt components, with some agents currently in clinical trials. This review highlights historical and recent findings on key mediators of Wnt signaling and how they impact antitumor immunity and maintenance of cancer stem cells. This review also examines current therapeutics being developed that modulate Wnt signaling in cancer and discusses potential shortcomings associated with available therapeutics.
Collapse
Affiliation(s)
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
25
|
Sabnis RW. Novel 4-Heteroarylcarbonyl-N-(phenyl or heteroaryl) Piperidine-1-carboxamides as Tankyrase Inhibitors. ACS Med Chem Lett 2020; 11:1676-1677. [PMID: 32944134 DOI: 10.1021/acsmedchemlett.0c00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ram W Sabnis
- 1120 Lyndhurst Way, Roswell, Georgia 30075, United States
| |
Collapse
|
26
|
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19:711-736. [PMID: 32884152 DOI: 10.1038/s41573-020-0076-6] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases - particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
27
|
Damale MG, Pathan SK, Shinde DB, Patil RH, Arote RB, Sangshetti JN. Insights of tankyrases: A novel target for drug discovery. Eur J Med Chem 2020; 207:112712. [PMID: 32877803 DOI: 10.1016/j.ejmech.2020.112712] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Tankyrases are the group of enzymes belonging to a class of Poly (ADP-ribose) polymerase (PARP) recently named ADP-ribosyltransferase (ARTD). The two isoforms of tankyrase i.e. tankyrase1 (TNKS1) and tankyrase2 (TNKS2) were abundantly expressed in various biological functions in telomere regulation, Wnt/β-catenin signaling pathway, viral replication, endogenous hormone regulation, glucose transport, cherubism disease, erectile dysfunction, and apoptosis. The structural analysis, mechanistic information, in vitro and in vivo studies led identification and development of several classes of tankyrase inhibitors under clinical phases. In the nutshell, this review will drive future research on tankyrase as it enlighten the structural and functional features of TNKS 1 and TNKS 2, different classes of inhibitors with their structure-activity relationship studies, molecular modeling studies, as well as past, current and future perspective of the different class of tankyrase inhibitors.
Collapse
Affiliation(s)
- Manoj G Damale
- Department of Pharmaceutical Medicinal Chemistry, Srinath College of Pharmacy, Aurangabad, 431136, MS, India
| | - Shahebaaz K Pathan
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS, 431001, India
| | | | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, M.S, India
| | - Rohidas B Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jaiprakash N Sangshetti
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS, 431001, India.
| |
Collapse
|
28
|
Wen X, Wu Y, Awadasseid A, Tanaka Y, Zhang W. New Advances in Canonical Wnt/β-Catenin Signaling in Cancer. Cancer Manag Res 2020; 12:6987-6998. [PMID: 32821165 PMCID: PMC7418153 DOI: 10.2147/cmar.s258645] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin-mediated signaling is a key pathway regulating tissue growth and development, and tumorigenesis, and has received increasing attention in recent years. In addition to participating in healthy tissue and organ development, ectopic activation of the pathway can cause a variety of tumors and other pathologies. The pathway plays a critical role in many processes such as proliferation, differentiation, apoptosis, migration, invasion, epithelial–mesenchymal transition and cancer cell stemness. The importance of the Wnt signal is self-evident. This review describes the underlying mechanism of Wnt signaling pathway and highlights the latest findings on the relationship between Wnt signaling pathway and tumorigenesis. In addition, the potential relationship between miRNAs and Wnt signaling is presented. Furthermore, we discuss the intrinsic link between Wnt signaling and cancer cell stemness, which shed light on the malignant progression of tumor cells. Finally, cancer treatment strategies based on the canonical Wnt signaling pathway are summarized, hoping to help clinical development.
Collapse
Affiliation(s)
- Xiaolan Wen
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Laboratory of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China
| | - Yanling Wu
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Laboratory of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China
| | - Annoor Awadasseid
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Yoshimasa Tanaka
- Laboratory of Bioinformatics and Molecular Medicine, Center for Medical Innovation, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Wen Zhang
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
29
|
Mehta CC, Patel A, Bhatt HG. New molecular insights into dual inhibitors of tankyrase as Wnt signaling antagonists: 3D-QSAR studies on 4H-1,2,4-triazole derivatives for the design of novel anticancer agents. Struct Chem 2020. [DOI: 10.1007/s11224-020-01583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Kong S, Xue H, Li Y, Li P, Ma F, Liu M, Li W. The long noncoding RNA OTUD6B-AS1 enhances cell proliferation and the invasion of hepatocellular carcinoma cells through modulating GSKIP/Wnt/β-catenin signalling via the sequestration of miR-664b-3p. Exp Cell Res 2020; 395:112180. [PMID: 32682012 DOI: 10.1016/j.yexcr.2020.112180] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/09/2023]
Abstract
Ovarian tumour domain containing 6B antisense RNA1 (OTUD6B-AS1), a newly identified long noncoding RNA (lncRNA), has been reported as a key cancer-related lncRNA. However, the detailed relevance of OTUD6B-AS1 in hepatocellular carcinoma (HCC) remains undetermined. This study was designed to determine the functional significance and regulatory mechanism of OTUD6B-AS1 in HCC. We found that the expression of OTUD6B-AS1 was up-regulated in HCC tissues, and patients with high levels of OTUD6B-AS1 expression had shorter survival rates than those with low OTUD6B-AS1 expression. Elevated expression of the lncRNA was also found in multiple HCC cell lines and the silencing of OTUD6B-AS1 significantly decreased proliferation, colony formation and invasion. Correspondingly, OTUD6B-AS1 overexpression had the opposite effect on HCC cell invasion, colony formation and proliferation. Notably, OTUD6B-AS1 was identified as a molecular sponge of microRNA-664b-3p (miR-664b-3p). The down-regulation of miR-664b-3p was detected in HCC tissues and cell lines, and the up-regulation of miR-664b-3p repressed proliferation and invasion in HCC cells by targeting the glycogen synthase kinase-3β interaction protein (GSKIP). Moreover, OTUD6B-AS1 knockdown or miR-664b-3p up-regulation exerted a suppressive effect on Wnt/β-catenin signalling via the down-regulation of GSKIP. In addition, GSKIP overexpression markedly reversed OTUD6B-AS1 knockdown- or miR-664b-3p overexpression-induced antitumour effects in HCC. Further data confirmed that OTUD6B-AS1 knockdown exerted a tumour-inhibition role in HCC in vivo. Overall, these findings indicate that the lncRNA OTUD6B-AS1 accelerates the proliferation and invasion of HCC cells by enhancing GSKIP/Wnt/β-catenin signalling via the sequestration of miR-664b-3p. Our study reveals a novel molecular mechanism, mediated by lncRNA OTUD6B-AS1, which may play a key role in regulating the progression of HCC.
Collapse
Affiliation(s)
- Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Xue
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Peijie Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fuquan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mengying Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weizhi Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
31
|
Leibold J, Ruscetti M, Cao Z, Ho YJ, Baslan T, Zou M, Abida W, Feucht J, Han T, Barriga FM, Tsanov KM, Zamechek L, Kulick A, Amor C, Tian S, Rybczyk K, Salgado NR, Sánchez-Rivera FJ, Watson PA, de Stanchina E, Wilkinson JE, Dow LE, Abate-Shen C, Sawyers CL, Lowe SW. Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for WNT Pathway Alterations in Prostate Cancer Metastasis. Cancer Discov 2020; 10:1038-1057. [PMID: 32376773 PMCID: PMC7334089 DOI: 10.1158/2159-8290.cd-19-1242] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/26/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022]
Abstract
To study genetic factors influencing the progression and therapeutic responses of advanced prostate cancer, we developed a fast and flexible system that introduces genetic alterations relevant to human disease directly into the prostate glands of mice using tissue electroporation. These electroporation-based genetically engineered mouse models (EPO-GEMM) recapitulate features of traditional germline models and, by modeling genetic factors linked to late-stage human disease, can produce tumors that are metastatic and castration-resistant. A subset of tumors with Trp53 alterations acquired spontaneous WNT pathway alterations, which are also associated with metastatic prostate cancer in humans. Using the EPO-GEMM approach and an orthogonal organoid-based model, we show that WNT pathway activation drives metastatic disease that is sensitive to pharmacologic WNT pathway inhibition. Thus, by leveraging EPO-GEMMs, we reveal a functional role for WNT signaling in driving prostate cancer metastasis and validate the WNT pathway as therapeutic target in metastatic prostate cancer. SIGNIFICANCE: Our understanding of the factors driving metastatic prostate cancer is limited by the paucity of models of late-stage disease. Here, we develop EPO-GEMMs of prostate cancer and use them to identify and validate the WNT pathway as an actionable driver of aggressive metastatic disease.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Josef Leibold
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marcus Ruscetti
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhen Cao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timour Baslan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min Zou
- Departments of Pharmacology, Urology, Medicine, Pathology and Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Judith Feucht
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Teng Han
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Francisco M Barriga
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaloyan M Tsanov
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leah Zamechek
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Kulick
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Corina Amor
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sha Tian
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katarzyna Rybczyk
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson R Salgado
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Cory Abate-Shen
- Departments of Pharmacology, Urology, Medicine, Pathology and Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York.
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
32
|
Waaler J, Leenders RGG, Sowa ST, Alam Brinch S, Lycke M, Nieczypor P, Aertssen S, Murthy S, Galera-Prat A, Damen E, Wegert A, Nazaré M, Lehtiö L, Krauss S. Preclinical Lead Optimization of a 1,2,4-Triazole Based Tankyrase Inhibitor. J Med Chem 2020; 63:6834-6846. [PMID: 32511917 PMCID: PMC8008393 DOI: 10.1021/acs.jmedchem.0c00208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Tankyrases
1 and 2 are central biotargets in the WNT/β-catenin
signaling and Hippo signaling pathways. We have previously developed
tankyrase inhibitors bearing a 1,2,4-triazole moiety and binding predominantly
to the adenosine binding site of the tankyrase catalytic domain. Here
we describe a systematic structure-guided lead optimization approach
of these tankyrase inhibitors. The central 1,2,4-triazole template
and trans-cyclobutyl linker of the lead compound 1 were left unchanged, while side-group East, West, and South
moieties were altered by introducing different building blocks defined
as point mutations. The systematic study provided a novel series of
compounds reaching picomolar IC50 inhibition in WNT/β-catenin signaling cellular reporter assay. The novel optimized
lead 13 resolves previous atropisomerism, solubility,
and Caco-2 efflux liabilities. 13 shows a favorable ADME
profile, including improved Caco-2 permeability and oral bioavailability
in mice, and exhibits antiproliferative efficacy in the colon cancer
cell line COLO 320DM in vitro.
Collapse
Affiliation(s)
- Jo Waaler
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | | | - Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 5400, 90014 Oulu, Finland
| | - Shoshy Alam Brinch
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Max Lycke
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Piotr Nieczypor
- Mercachem BV, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Sjoerd Aertssen
- Mercachem BV, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Sudarshan Murthy
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 5400, 90014 Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 5400, 90014 Oulu, Finland
| | - Eddy Damen
- Mercachem BV, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Anita Wegert
- Mercachem BV, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin Buch, Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 5400, 90014 Oulu, Finland
| | - Stefan Krauss
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
33
|
SOX15 exerts antitumor function in glioma by inhibiting cell proliferation and invasion via downregulation of Wnt/β-catenin signaling. Life Sci 2020; 255:117792. [PMID: 32416168 DOI: 10.1016/j.lfs.2020.117792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
AIMS Sex-determining region of Y chromosome-related high-mobility-group box 15 (SOX15) has recently emerged as a candidate tumor-inhibitor in multiple types of human tumors. To date, the involvement of SOX15 in glioma is undetermined. The purpose of this study was to investigate the expression, function and potential molecular mechanism of SOX15 in glioma. MAIN METHODS Relative mRNA expression was analyzed by real-time quantitative PCR. Protein expression was determined by Western blot. Cell proliferation was assessed by cell counting kit-8 and colony formation assay. Cell invasion was evaluated by Matrigel invasion assay. Wnt/β-catenin activation was monitored by luciferase reporter assay. KEY FINDINGS SOX15 expression was decreased in glioma tissues and cell lines compared with normal controls. Kaplan-Meier analysis revealed that patients with low expression of SOX15 had shorter survival than those who had high expression of SOX15. The upregulation of SOX15 markedly repressed the proliferation and invasion of glioma cells, whereas its depletion enhanced glioma cell proliferation and invasion. Research into the mechanism revealed that SOX15 exerted an inhibitory effect on Wnt/β-catenin signaling in glioma cells. Notably, overexpression of β-catenin partially reversed the SOX15 overexpression-mediated tumor-suppressive effect. In addition, SOX15 overexpression significantly impeded tumor formation by glioma cells in vivo in a mouse xenograft model associated with downregulation of active β-catenin expression. SIGNIFICANCE These data demonstrate that SOX15 functions as a potential tumor-suppressor in glioma by inhibiting cell proliferation and invasion via the downregulation of Wnt/β-catenin signaling.
Collapse
|
34
|
Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol 2020; 3:196. [PMID: 32332858 PMCID: PMC7181813 DOI: 10.1038/s42003-020-0916-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The development of immune checkpoint inhibitors represents a major breakthrough in cancer therapy. Nevertheless, a substantial number of patients fail to respond to checkpoint pathway blockade. Evidence for WNT/β-catenin signaling-mediated immune evasion is found in a subset of cancers including melanoma. Currently, there are no therapeutic strategies available for targeting WNT/β-catenin signaling. Here we show that a specific small-molecule tankyrase inhibitor, G007-LK, decreases WNT/β-catenin and YAP signaling in the syngeneic murine B16-F10 and Clone M-3 melanoma models and sensitizes the tumors to anti-PD-1 immune checkpoint therapy. Mechanistically, we demonstrate that the synergistic effect of tankyrase and checkpoint inhibitor treatment is dependent on loss of β-catenin in the tumor cells, anti-PD-1-stimulated infiltration of T cells into the tumor and induction of an IFNγ- and CD8+ T cell-mediated anti-tumor immune response. Our study uncovers a combinatorial therapeutical strategy using tankyrase inhibition to overcome β-catenin-mediated resistance to immune checkpoint blockade in melanoma.
Collapse
|
35
|
Discovery of Novel Inhibitor for WNT/β-Catenin Pathway by Tankyrase 1/2 Structure-Based Virtual Screening. Molecules 2020; 25:molecules25071680. [PMID: 32268564 PMCID: PMC7180783 DOI: 10.3390/molecules25071680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of the WNT/β-catenin signaling pathway is implicated in various types of cancers. Inhibitors targeting the Wnt signaling pathway are intensively studied in the current cancer research field, the outcomes of which remain to be determined. In this study, we have attempted to discover novel potent WNT/β-catenin pathway inhibitors through tankyrase 1/2 structure-based virtual screening. After screening more than 13.4 million compounds through molecular docking, we experimentally verified one compound, LZZ-02, as the most potent inhibitor out of 11 structurally representative top hits. LiCl-induced HEK293 cells containing TOPFlash reporter showed that LZZ-02 inhibited the transcriptional activity of β-catenin with an IC50 of 10 ± 1.2 μM. Mechanistically, LZZ-02 degrades the expression of β-catenin by stabilizing axin 2, thereby diminishing downstream proteins levels, including c-Myc and cyclin D1. LZZ-02 also inhibits the growth of colonic carcinoma cell harboring constitutively active β-catenin. More importantly, LZZ-02 effectively shrinks tumor xenograft derived from colonic cell lines. Our study successfully identified a novel tankyrase 1/2 inhibitor and shed light on a novel strategy for developing inhibitors targeting the WNT/β-catenin signaling axis.
Collapse
|
36
|
Shirai F, Mizutani A, Yashiroda Y, Tsumura T, Kano Y, Muramatsu Y, Chikada T, Yuki H, Niwa H, Sato S, Washizuka K, Koda Y, Mazaki Y, Jang MK, Yoshida H, Nagamori A, Okue M, Watanabe T, Kitamura K, Shitara E, Honma T, Umehara T, Shirouzu M, Fukami T, Seimiya H, Yoshida M, Koyama H. Design and Discovery of an Orally Efficacious Spiroindolinone-Based Tankyrase Inhibitor for the Treatment of Colon Cancer. J Med Chem 2020; 63:4183-4204. [DOI: 10.1021/acs.jmedchem.0c00045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Anna Mizutani
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8850, Japan
| | | | | | | | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8850, Japan
| | | | | | | | | | | | | | | | - Myung-Kyu Jang
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8850, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake,
Koto-ku, Tokyo 135-8850, Japan
| | - Haruka Yoshida
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8850, Japan
| | - Akiko Nagamori
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8850, Japan
| | | | | | | | | | | | | | | | | | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8850, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake,
Koto-ku, Tokyo 135-8850, Japan
| | - Minoru Yoshida
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
37
|
Rizzuti B, Grande F. Virtual screening in drug discovery: a precious tool for a still-demanding challenge. PROTEIN HOMEOSTASIS DISEASES 2020:309-327. [DOI: 10.1016/b978-0-12-819132-3.00014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Hoch NC, Polo LM. ADP-ribosylation: from molecular mechanisms to human disease. Genet Mol Biol 2019; 43:e20190075. [PMID: 31930280 PMCID: PMC7198025 DOI: 10.1590/1678-4685-gmb-2019-0075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022] Open
Abstract
Post-translational modification of proteins by ADP-ribosylation, catalysed by
poly (ADP-ribose) polymerases (PARPs) using NAD+ as a substrate,
plays central roles in DNA damage signalling and repair, modulates a range of
cellular signalling cascades and initiates programmed cell death by parthanatos.
Here, we present mechanistic aspects of ADP-ribose modification, PARP activation
and the cellular functions of ADP-ribose signalling, and discuss how this
knowledge is uncovering therapeutic avenues for the treatment of increasingly
prevalent human diseases such as cancer, ischaemic damage and
neurodegeneration.
Collapse
Affiliation(s)
- Nicolas C Hoch
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis M Polo
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.,Institute of Histology and Embryology of Mendoza - CONICET, Mendoza, Argentina
| |
Collapse
|
39
|
Lang W, Yuan C, Zhu B, Pan S, Liu J, Luo J, Nie S, Zhu Q, Lee JS, Ge J. Expanding the "minimalist" small molecule tagging approach to different bioactive compounds. Org Biomol Chem 2019; 17:3010-3017. [PMID: 30816385 DOI: 10.1039/c8ob03175d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
"Minimalist" small molecule tagging (MSMT) is a promising approach that easily converts bioactive compounds into affinity-based probes (AfBPs) for proteomic studies. In this work, seven bioactive compounds targeting diversified protein classes were installed with "minimalist" linkers through common reactions to generate the corresponding AfBPs. These probes were evaluated for cell-based protein profiling and target validation. Among them, the entinostat-derived probe EN and the camptothecin-derived probe CA were further utilized in cellular imaging and SILAC-based large-scale target identification. Our extensive studies suggest that the "minimalist" small molecule tagging approach could be expanded to different classes of bioactive compounds for modification into AfBPs as a dual functional tool for both proteomics and cellular imaging.
Collapse
Affiliation(s)
- Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dzobo K, Thomford NE, Senthebane DA. Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:517-538. [PMID: 31613700 DOI: 10.1089/omi.2019.0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This expert review offers a critical synthesis of the latest insights and approaches at targeting the Wnt/β-catenin pathway in various cancers such as colorectal cancer, melanoma, leukemia, and breast and lung cancers. Notably, from organogenesis to cancer, the Wnt/β-catenin signaling displays varied and highly versatile biological functions in animals, with virtually all tissues requiring the Wnt/β-catenin signaling in one way or the other. Aberrant expression of the members of the Wnt/β-catenin has been implicated in many pathological conditions, particularly in human cancers. Mutations in the Wnt/β-catenin pathway genes have been noted in diverse cancers. Biochemical and genetic data support the idea that inhibition of Wnt/β-catenin signaling is beneficial in cancer therapeutics. The interaction of this important pathway with other signaling systems is also noteworthy, but remains as an area for further research and discovery. In addition, formation of different complexes by components of the Wnt/β-catenin pathway and the precise roles of these complexes in the cytoplasmic milieu are yet to be fully elucidated. This article highlights the latest medical technologies in imaging, single-cell omics, use of artificial intelligence (e.g., machine learning techniques), genome sequencing, quantum computing, molecular docking, and computational softwares in modeling interactions between molecules and predicting protein-protein and compound-protein interactions pertinent to the biology and therapeutic value of the Wnt/β-catenin signaling pathway. We discuss these emerging technologies in relationship to what is currently needed to move from concept to actionable strategies in translating the Wnt/β-catenin laboratory discoveries to Wnt-targeted cancer therapies and diagnostics in the clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dimakatso A Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Buchstaller HP, Anlauf U, Dorsch D, Kuhn D, Lehmann M, Leuthner B, Musil D, Radtki D, Ritzert C, Rohdich F, Schneider R, Esdar C. Discovery and Optimization of 2-Arylquinazolin-4-ones into a Potent and Selective Tankyrase Inhibitor Modulating Wnt Pathway Activity. J Med Chem 2019; 62:7897-7909. [DOI: 10.1021/acs.jmedchem.9b00656] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hans-Peter Buchstaller
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Uwe Anlauf
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Dieter Dorsch
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Daniel Kuhn
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Martin Lehmann
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Birgitta Leuthner
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Djordje Musil
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Daniela Radtki
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Claudio Ritzert
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Felix Rohdich
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Richard Schneider
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Christina Esdar
- Merck Healthcare KGaA, Global Research & Development, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| |
Collapse
|
42
|
Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019; 8:cells8070726. [PMID: 31311204 PMCID: PMC6679009 DOI: 10.3390/cells8070726] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and oxidative stress are common and co-substantial pathological processes accompanying and contributing to cancers. Numerous epidemiological studies have indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely associated with both chronic inflammation and oxidative stress in cancers. The administration of NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration. In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression, NSAIDs can control CRs through the regulation of many key circadian genes. The administration of NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 75004 Paris, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
43
|
Stakheev D, Taborska P, Strizova Z, Podrazil M, Bartunkova J, Smrz D. The WNT/β-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci Rep 2019; 9:4761. [PMID: 30886380 PMCID: PMC6423115 DOI: 10.1038/s41598-019-41182-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/28/2019] [Indexed: 01/22/2023] Open
Abstract
Upregulated Wnt/β-catenin signaling is associated with increased cancer cell resistance and cancer cell-elicited immunosuppression. In non-neoplastic immune cells, upregulated Wnt/β-catenin is, however, associated with either immunosuppression or immunostimulation. Therefore, it is difficult to predict the therapeutic impact inhibitors of Wnt/β-catenin signaling will have when combined with cancer immunotherapy. Here, we evaluated the benefit(s) of the Wnt/β-catenin signaling inhibitor XAV939 in the in vitro elimination of LNCaP prostate cancer cells when cocultured with lymphocytes from patients with localized biochemically recurrent prostate cancer (BRPCa). We found that 5 µM XAV939 inhibited β-catenin translocation to the nucleus in LNCaP cells and CD4+ BRPCa lymphocytes without affecting their proliferation and viability. Preconditioning BRPCa lymphocytes with 5 µM XAV939 accelerated the elimination of LNCaP cells during the coculturing. However, during subsequent re-coculturing with fresh LNCaP cells, BRPCa lymphocytes were no longer able to eliminate LNCaP cells unless coculturing and re-coculturing were performed in the presence of 5 µM XAV939. Comparable results were obtained for PC-3 prostate cancer cells. These findings provide a rationale for combining cell-based immunotherapy of PCa with inhibitors of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Dmitry Stakheev
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Pavla Taborska
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Zuzana Strizova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Michal Podrazil
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jirina Bartunkova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Daniel Smrz
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
44
|
Zhang L, Zhu Y, Cheng H, Zhang J, Zhu Y, Chen H, Chen L, Qi H, Ren G, Tang J, Zhong M, Hua W, Shi X, Li Q. The Increased Expression of Estrogen-Related Receptor α Correlates with Wnt5a and Poor Prognosis in Patients with Glioma. Mol Cancer Ther 2019; 18:173-184. [PMID: 30322948 DOI: 10.1158/1535-7163.mct-17-0782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/10/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
Malignant glioma is an often fatal type of cancer. Elevated expression of the orphan nuclear receptor estrogen-related receptor alpha (ERRα) is an unfavorable factor for malignant progression and poor prognosis in several cancers, although the mechanism by which this receptor affects the pathophysiology of cancers remains obscure. However, few studies have been conducted in regard to the role of ERRα in glioma. In the current study, we found that elevated expression of ERRα was observed in 107 glioma cases by means of IHC. Clinically, high expression of ERRα was associated with later stages of disease progression and clinical outcome of patients with glioma. ERRα had the ability to promote cell proliferation and migration in glioma cell lines. Moreover, in a xenograft model, we also found that silencing ERRα had an inhibitory effect on the growth of glioma. Further investigation confirmed that ERRα was involved in the carcinogenesis of glioma via the regulation of the Wnt5a signal pathway in vitro and in vivo Our study was first to show the overexpression of ERRα in glioma tissues and a direct correlation between ERRα expression and clinical prognosis of glioma. Together, these data reveal that ERRα has prognostic significance in glioma, and targeting ERRα may provide a reliable therapeutic strategy for the treatment for human glioma.
Collapse
Affiliation(s)
- Liudi Zhang
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqian Zhu
- Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China
| | - Haifei Chen
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Lu Chen
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Huijie Qi
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Guoqiang Ren
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jianmin Tang
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiaojin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China.
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China.
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Liu J, Feng K, Ren Y. In silico studies on potential TNKS inhibitors: a combination of pharmacophore and 3D-QSAR modelling, virtual screening, molecular docking and molecular dynamics. J Biomol Struct Dyn 2018; 37:3803-3821. [DOI: 10.1080/07391102.2018.1528887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jianxin Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Kairui Feng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yujie Ren
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
46
|
Kim YE, Jeon HJ, Kim D, Lee SY, Kim KY, Hong J, Maeng PJ, Kim KR, Kang D. Quantitative Proteomic Analysis of 2D and 3D Cultured Colorectal Cancer Cells: Profiling of Tankyrase Inhibitor XAV939-Induced Proteome. Sci Rep 2018; 8:13255. [PMID: 30185973 PMCID: PMC6125324 DOI: 10.1038/s41598-018-31564-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Recently there has been a growing interest in three-dimensional (3D) cell culture systems for drug discovery and development. These 3D culture systems better represent the in vivo cellular environment compared to two-dimensional (2D) cell culture, thereby providing more physiologically reliable information on drug screening and testing. Here we present the quantitative profiling of a drug-induced proteome in 2D- and 3D-cultured colorectal cancer SW480 cells using 2D nanoflow liquid chromatography-tandem mass spectrometry (2D-nLC-MS/MS) integrated with isobaric tags for relative and absolute quantitation (iTRAQ). We identified a total of 4854 shared proteins between 2D- and 3D-cultured SW480 cells and 136/247 differentially expressed proteins (up/down-regulated in 3D compared to 2D). These up/down-regulated proteins were mainly involved in energy metabolism, cell growth, and cell-cell interactions. We also investigated the XAV939 (tankyrase inhibitor)-induced proteome to reveal factors involved in the 3D culture-selective growth inhibitory effect of XAV939 on SW480 cells. We identified novel XAV939-induced proteins, including gelsolin (a possible tumor suppressor) and lactate dehydrogenase A (a key enzyme of glycolysis), which were differentially expressed between 2D- and 3D-cultured SW480 cells. These results provide a promising informative protein dataset to determine the effect of XAV939 on the expression levels of proteins involved in SW480 cell growth.
Collapse
Affiliation(s)
- Young Eun Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Hyo Jin Jeon
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Dahee Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Sun Young Lee
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea.,College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Ki Young Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Pil Jae Maeng
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Kwang-Rok Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea.
| |
Collapse
|
47
|
Ke Y, Liang JJ, Hou RJ, Li MM, Zhao LF, Wang W, Liu Y, Xie H, Yang RH, Hu TX, Wang JY, Liu HM. Synthesis and biological evaluation of novel Jiyuan Oridonin A-1,2,3-triazole-azole derivatives as antiproliferative agents. Eur J Med Chem 2018; 157:1249-1263. [DOI: 10.1016/j.ejmech.2018.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/05/2023]
|
48
|
Identification by Inverse Virtual Screening of magnolol-based scaffold as new tankyrase-2 inhibitors. Bioorg Med Chem 2018; 26:3953-3957. [DOI: 10.1016/j.bmc.2018.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
|
49
|
Chen C, Zhu D, Zhang H, Han C, Xue G, Zhu T, Luo J, Kong L. YAP-dependent ubiquitination and degradation of β-catenin mediates inhibition of Wnt signalling induced by Physalin F in colorectal cancer. Cell Death Dis 2018; 9:591. [PMID: 29789528 PMCID: PMC5964149 DOI: 10.1038/s41419-018-0645-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/01/2018] [Accepted: 04/20/2018] [Indexed: 01/27/2023]
Abstract
Aberrant activation of Wnt/β-catenin signalling is critical in the progression of human cancers, especially colorectal cancer (CRC). Therefore, inhibition of Wnt/β-catenin signalling is a significant potential target for CRC therapy. Here, we identified for the first time that Physalin F (PF), a steroid derivative isolated from Physalis angulate, acts as an antagonist of Wnt/β-catenin signalling. In vitro, PF decreased Wnt3a-induced TOPFlash reporter activity in HEK293T cells and promoted the formation of the β-catenin destruction complex. Importantly, PF also inhibited Wnt/β-catenin signalling and accelerated the degradation of β-catenin in CRC cells. However, PF did not affect the stabilization of Axin or the interaction of β-catenin with E-cadherin. Interestingly, we further found that PF promoted YAP binding to the β-catenin destruction complex, which facilitated the ubiquitination and degradation of β-catenin. Silencing and pharmacological inhibition of YAP reversed the formation of the β-catenin destruction complex induced by PF, implying that YAP binding to the β-catenin destruction complex was responsible for PF-mediated inhibition of Wnt/β-catenin signalling. Furthermore, PF observably inhibited tumour growth by down-regulating β-catenin in tumour-bearing mice. Collectively, our findings indicated that PF inhibited Wnt/β-catenin signalling by accelerating the ubiquitination and degradation of β-catenin in a YAP-dependent manner and therefore PF could be a novel potential candidate for CRC therapy.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Dongrong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Guimin Xue
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Tianyu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
50
|
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F, Ciccarelli R. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel) 2018; 9:genes9020105. [PMID: 29462960 PMCID: PMC5852601 DOI: 10.3390/genes9020105] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely “cancer stem cells”, are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| |
Collapse
|