1
|
Zheng YY, Zhang X, Zhang YH, Zhang MQ, Liu Z, Wang P, Yao GS, Wang CY. Discovery of Antibacterial Azaphilone Hybrid Metabolites from Marine-Derived Aspergillus terreus PPS1. JOURNAL OF NATURAL PRODUCTS 2025; 88:1181-1190. [PMID: 40340408 DOI: 10.1021/acs.jnatprod.5c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Three novel azaphilone hybrids (1-3) with two types of structural units, along with four known compounds (4-7), were obtained from the marine sediment-derived fungus Aspergillus terreus PPS1. Asperbenzophilone A (1) features an unprecedented 6/6/6/6 ring system containing a hemiketal group. Butyropyranones I and II (2 and 3) are equipped with an azaphilone fragment preasperpyranone and a butyrolactone, which are connected through ether bonds. Comprehensive spectroscopic techniques, ECD calculations, and deduction of biosynthetic pathways were used to confirm the planar structures and absolute configurations of the new compounds. Compound 2 displayed significant anti-MRSA activity. Additionally, compound 2 exhibited moderate cytotoxic activity on human tumor cell lines 786-O, 5637, MCF-7, A-673, and 293T and medium inhibitory activity against the SARS-CoV-2 main protease (Mpro/3CLpro).
Collapse
Affiliation(s)
- Yao-Yao Zheng
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
| | - Xiu Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, People's Republic of China
| | - Ya-Hui Zhang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
| | - Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, People's Republic of China
| | - Zhiqing Liu
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
| | - Pingyuan Wang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
| | - Guang-Shan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, People's Republic of China
| | - Chang-Yun Wang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
| |
Collapse
|
2
|
Wen Q, He Y, Chi J, Wang L, Ren Y, Niu X, Yang Y, Chen K, Zhu Q, Lin J, Xiang Y, Xie J, Chen W, Yu Y, Wang B, Wang B, Zhang Y, Lu C, Wang K, Teng P, Zhou R. Naturally inspired chimeric quinolone derivatives to reverse bacterial drug resistance. Eur J Med Chem 2025; 289:117496. [PMID: 40088661 DOI: 10.1016/j.ejmech.2025.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Antimicrobial resistance poses an urgent threat to global health, underscoring the critical need for new antibacterial drugs. Ciprofloxacin, a third-generation quinolone antibiotic, is used to treat different types of bacterial infections; however, it often results in the rapid emergence of resistance in clinical settings. Inspired by low susceptibility to antimicrobial resistance of natural antimicrobial peptides, we herein propose a host defense peptide-mimicking strategy for designing chimeric quinolone derivatives which may reduce the likelihood of antibacterial resistance. This strategy involves the incorporation of deliberately designed amphiphilic moieties into ciprofloxacin to mimic the structural characteristics and resistance-evading properties of host defense peptides. A resulting chimeric compound IPMCL-28b, carrying a rigid linker and three cationic amino acids along with a lipophilic acyl n-decanoyl tail, exhibited potent activity against a panel of multidrug-resistant bacterial strains by endowing the ciprofloxacin derivatives with additional ability to disrupt bacterial cell membranes. Molecular dynamics simulations showed that IPMCL-28b demonstrates significantly stronger disruptive interactions with cell membranes than ciprofloxacin. This compound not only demonstrated high selectivity with low hemolysis side effect, but also significantly reduced the likelihood of resistance development compared with ciprofloxacin. Excitingly, IPMCL-28b demonstrated highly enhanced in vivo antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with a 99.99 % (4.4 log) reduction in skin bacterial load after a single dose. These findings highlight the potential of host defense peptides-mimicking amphiphilic ciprofloxacin derivatives to reverse antibiotic resistance and mitigate the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Qi Wen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jiaying Chi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Luyao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yixuan Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Xiaoke Niu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanqing Yang
- Zhejiang Key Laboratory of Cell and Molecular Intelligent Design and Development, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kang Chen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Qi Zhu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Juncheng Lin
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Wenteng Chen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Yongping Yu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China.
| | - Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Ruhong Zhou
- Zhejiang Key Laboratory of Cell and Molecular Intelligent Design and Development, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China; Department of Chemistry, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Sharma V, Saini M, Das R, Chauhan S, Sharma D, Mujwar S, Gupta S, Mehta DK. Recent Updates on Antibacterial Quinolones: Green Synthesis, Mode of Interaction and Structure-Activity Relationship. Chem Biodivers 2025; 22:e202401936. [PMID: 39756027 DOI: 10.1002/cbdv.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Quinolone antibiotics are a crucial class of synthetic antibacterial agents, widely utilized due to their broad spectrum of antibacterial activity. Due to the development of antimicrobial resistance, the potency of quinolone drugs decreased. Many conventional methods have been developed to elevate amination rate and to improve yield. These methods are generally characterized by prolonged reaction durations, high boiling solvents, harsh conditions, costly reagents and excessive heat generation, which have adversely affected the therapeutic efficacy of these compounds. Recently, green chemistry has focused on sustainable chemistry-dependent quinolone analogue synthesis methods that significantly reduce bacterial infections. These methods include one-pot synthesis, photoredox catalysis, phase transfer catalysis, ultrasonic irradiation, microwave-assisted, green solvent and catalyst-free synthesis, which often utilize energy-efficient, non-toxic and less time-consuming techniques, aligning with green chemistry principles to improve safety and environmental impact. Researchers continuously explore innovative approaches to applying these methods in synthetic reactions. This review includes a comprehensive analysis of synthetic literature from the past 15 years from Scopus, PubMed, Embase and WOS using keywords, such as green chemistry, quinolone and antibacterial, highlighting significant advancements and emerging trends. This work's importance lies in its extensive literature overview on green synthesis methods for quinolones and related heterocyclic compounds. Furthermore, to provide useful information for the generation of future antibacterial drugs, some structural-activity relationship studies and in silico studies have also been included to investigate the stable binding interactions between quinolone leads and various target proteins.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Monika Saini
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Diksha Sharma
- Department of Pharmaceutical Chemistry, Swami Devidyal College of Pharmacy, Barwala, India
| | - Somdutt Mujwar
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
4
|
Paul S, Biswas S, Choudhuri T, Bandyopadhyay S, Mandal S, Bagdi AK. I 2-Catalyzed Cascade Annulation/Cross-Dehydrogenative Coupling: Excellent Platform to Access 3-Sulfenyl Pyrazolo[1,5- a]pyrimidines with Potent Antibacterial Activity against Pseudomonas aeruginosa and Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2025; 8:3254-3269. [PMID: 40105898 DOI: 10.1021/acsabm.5c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The increasing resistance of bacteria to antibiotics has become a serious threat to existing options for treating bacterial infections. We have developed a synthetic methodology for 3-sulfenyl pyrazolo[1,5-a]pyrimidines with potent antibacterial activity. This iodine-catalyzed strategy has been developed by employing amino pyrazoles, enaminones/chalcones, and thiophenols through intermolecular cyclization and subsequent cross-dehydrogenative sulfenylation. This highly regioselective and practicable protocol has been utilized to synthesize structurally diverse 3-sulfenyl pyrazolo[1,5-a]pyrimidines with wide functionalities. This strategy is also extendable toward the synthesis of bis(pyrazolo[1,5-a]pyrimidin-3-yl)sulfanes from amino pyrazole, enaminones/chalcone, and KSCN and the synthesis of 3-sulfenyl pyrazolo[1,5-a]pyrimidine from direct acetophenone. Mechanistic investigation disclosed a radical pathway for C-H sulfenylation and the involvement of 3-iodo pyrazolo[1,5-a]pyrimidine as the active intermediate. The biological investigation disclosed the potent antibacterial activity of sulfenyl pyrazolo[1,5-a]pyrimidines against Pseudomonas aeruginosa and Staphylococcus aureus, whereas pyrazolo[1,5-a]pyrimidine and sulfinyl pyrazolo[1,5-a]pyrimidine have no such antibacterial activity. Sulfenyl pyrazolo[1,5-a]pyrimidines mechanistically inhibited bacterial growth by the accumulation of ROS as well as induction in lipid peroxidation. Subsequently, such circumstances changed the membrane potential and facilitated the interaction with membrane-associated proteins, leading to a loss in membrane integrity and damage to bacterial cell membranes. Moreover, these derivatives potentiated the antibacterial efficacy of the commercial antibiotic ciprofloxacin against the selected bacterial strains and can be considered an alternative therapy against these bacterial infections.
Collapse
Affiliation(s)
- Suvam Paul
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Samik Biswas
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | | | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Avik Kumar Bagdi
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
5
|
Anand R, Yadav N, Mudgal D, Jindal S, Sengupta S, Kumar D, Singh J, Panday NK, Mishra V. Synthesis, In-Silico Molecular Docking Studies, and In-Vitro Antimicrobial Evaluation of Isatin Scaffolds bearing 1, 2, 3-Triazoles using Click Chemistry. Indian J Microbiol 2025; 65:405-423. [PMID: 40371040 PMCID: PMC12069789 DOI: 10.1007/s12088-024-01264-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/14/2024] [Indexed: 05/16/2025] Open
Abstract
Bacterial infections continue to present a formidable challenge to human health, prompting intensified research efforts towards the development of effective antibacterial agents. This study harnesses click chemistry techniques to synthesize Isatin-1,2,3-triazole as a novel antibacterial agent, evaluating its in vitro efficacy against prevalent pathogens including Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains using both the microdilution and well-diffusion methods. The findings reveal a notable enhancement in antibacterial activity upon incorporation of the triazole moiety into the Isatin framework against both E. coli and S. aureus. Further analysis, including structure-activity relationship studies and molecular docking investigations, highlights the superior antibacterial potency of triazole-tethered Isatin tosyl azide compared to N-propargyl Isatin. Molecular docking simulations with Staphylococcus aureus (PDB ID: 4TU5) and Escherichia coli (PDB ID: 6YD9) proteins exhibit promising binding affinities of - 10.44 kJ/mol and - 8.4 kJ/mol, respectively. Isatin triazole demonstrates favorable gastrointestinal absorption properties, low toxicity profiles, adherence to Lipinski's rule of five, and compliance with Veber and Ghose standards. Furthermore, molecular dynamics simulations attest to the stability of protein complexes over a 100 ns timeframe. Collectively, these findings underscore the therapeutic potential of Isatin triazole compounds against bacterial infections, warranting further clinical exploration to elucidate their mechanisms of action and therapeutic efficacy. Graphical Abstract
Collapse
Affiliation(s)
- Ritesh Anand
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313 India
| | - Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313 India
| | - Deeksha Mudgal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313 India
| | - Simran Jindal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313 India
| | - Sunak Sengupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himanchal Pradesh 173229 India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himanchal Pradesh 173229 India
| | - Jay Singh
- Department of Chemistry, Banaras Hindu University, Varanasi, 221005 India
| | - Nagendra Kumar Panday
- Lab No. 3040, Biochemistry Laboratory, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313 India
| |
Collapse
|
6
|
Santivañez JCM, Figueiredo Angolini CF. The genus Palicourea Aubl. (Rubiaceae): source of bioactive compounds. Nat Prod Res 2025:1-15. [PMID: 39892422 DOI: 10.1080/14786419.2024.2449510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 02/03/2025]
Abstract
The genus Palicourea Aubl. belong to the Rubiaceae family, which is distributed in Tropical America. A compressive bibliographic survey was carried out on the uses in traditional medicine, bioactive properties, and secondary metabolites isolated from the genus. The Web of Science, Science Direct, Pubmed, Scopus and Google Scholar databases were utilised between the years 1990 -2024. The genus is used in traditional medicine for purposes such as antimalarial, haemostatic, dewormer, hypertension, hepatitis, antiulcerogenic, and so on. Bioactivities have been reported for the extracts and isolated compounds such as anti-plasmodial activity, antiprotozoal, antioxidant, anti-inflammatory, antimycobacterial, toxicity, and so on. As well as, anticancer activity, nitric oxide, acetylcholinesterase, and monoamine oxidase inhibitory activity, anthelmintic and others, respectively. Approximately 106 metabolites were isolated from the genus, including iridoids, flavonoids, triterpenes, coumarins, phytosterols, phenolic acids, and alkaloids. The analysis of the collected information shows that the genus is an important source of bioactive compounds. The monoterpene indole alkaloids class represents the largest number of isolated compounds. This review provides a foundation on the phytochemical components, uses in traditional medicine, and biological activities of extracts and isolated compounds of the genus Palicourea Aubl., thereby contributing to future studies in the search for discoveries and potential applications.
Collapse
Affiliation(s)
- Julio Cesar Maceda Santivañez
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Santo André, Brazil
| | - Célio Fernando Figueiredo Angolini
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Santo André, Brazil
| |
Collapse
|
7
|
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers 2025; 29:711-737. [PMID: 38683488 DOI: 10.1007/s11030-024-10862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - M U Khan
- Department of pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Al Qassim, Saudi Arabia
| |
Collapse
|
8
|
Sadineni K, Haridasyam SB, Gujja V, Muvvala V, Nechipadappu SK, Nanda Pilli KVV, Chepuri K, Allaka TR. Novel tetrazolyl-1,2,3-triazole derivatives as potent antimicrobial targets: design, synthesis and molecular docking techniques. J Biomol Struct Dyn 2024:1-16. [PMID: 39562999 DOI: 10.1080/07391102.2024.2425830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/05/2024] [Indexed: 11/21/2024]
Abstract
The main objective of this study is to produce novel triazoles-loaded tetrazoles, which are crucial in the development of prospective therapeutic agents in medicinal chemistry. Recent investigations have found a wide range of uses for these derivatives, and they are prospective lead molecules for the synthesis of substances with enormous therapeutic utility for various diseases, especially for bacterial therapy. New series of 1,2,3-triazole derivatives have been synthesized from methyl (2S,4S)-4-azido-1-(2,4-difluoro-3-methylbenzoyl)pyrrolidine-2-carboxylate (5) using a well-established click reaction that has several advantages to afford a novel heterocyclic compound based on tetrazole moieties. The structures of the new compounds were ascertained by spectral means (IR, NMR: 1H and 13C) and mass spectrum. All the synthesized compounds were assessed in vitro antimicrobial activity against Gram-+ve (S. pyogenes, S. aureus and B. subtilis), Gram-negative (E. coli and P. aeruginosa) bacterial and fungal strains A. flavus and C. albicans. The prepared compounds 7b and7f proved to have strong impact on S. aureus and S. pyogenes strains with MICs of 2.5 µg/mL and 1.5 µg/mL respectively. Among the tested compounds, hybrids 7b, 7f, 7h, and 7i exhibited exceptional antifungal susceptibilities against C. albicans with zone of inhibition 25 ± 0.2, 30 ± 0.3, 30 ± 0.1, and 28 ± 0.2 mm respectively, which is stronger than fluconazole (28 ± 0.1 mm). The capacity of ligand 7f to form a stable compound on the active site of S. aureus complex with DNA Gyrase (2XCT) was confirmed by docking studies using amino acids Ala233(A), Arg234(A), Gly283(A), Ser286(A), Lys52(A), His280(A), Gly51(A), His282(A) and Val246(A). Furthermore, the physicochemical and ADME (absorption, distribution, metabolism, and excretion) filtration molecular properties, estimation of toxicity, and bioactivity scores of these scaffolds were evaluated.
Collapse
Affiliation(s)
- Kumaraswamy Sadineni
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Venkanna Gujja
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Venkatanaryana Muvvala
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Sunil Kumar Nechipadappu
- Department of Analytical and Structural Chemistry, CSIR-IICT, Tarnaka, Hyderabad, Telangana, India
| | - Kishore Veera Venkata Nanda Pilli
- Department of Chemistry, School of Applied Sciences and Humanities, Vignans Foundation for Science, Technology and Research University), Vadlamudi, Guntur, India
| | - Kalyani Chepuri
- Centre for Biotechnology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| |
Collapse
|
9
|
Arutiunov N, Zatsepilina AM, Aksenova AA, Aksenov NA, Aksenov DA, Leontiev AV, Aksenov AV. One-Pot Synthesis of N-Fused Quinolone-4 Tetracyclic Scaffolds from 2,2-Disubstituted Indolin-3-ones. ACS OMEGA 2024; 9:45501-45517. [PMID: 39554462 PMCID: PMC11561625 DOI: 10.1021/acsomega.4c07691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
A cascade transformation of C2-quaternary indoxyls leading to an efficient assembly of complex (dihydro)indolo[1,2-a]quinolin-5-one ring systems is reported. The method involves the gram-scale preparation of 2-(2-aryl-3-oxoindolin-2-yl)-2-phenylacetonitriles which are then converted with methyl ketones to the corresponding 2-(2-oxo-2-aryl(alkyl)ethyl)-2-phenylindolin-3-ones. The latter can either be isolated with good yields (75-96%) or, in the case of o-nitroacetophenone, used in situ for further base-assisted intramolecular SNAr cyclization resulting in indoxyl-fused quinolone-4 hybrids (up to 95%).
Collapse
Affiliation(s)
- Nikolai
A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna M. Zatsepilina
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna A. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| |
Collapse
|
10
|
Da Costa GP, Sacramento M, Barcellos AM, Alves D. Comprehensive Review on the Synthesis of [1,2,3]Triazolo[1,5-a]Quinolines. CHEM REC 2024; 24:e202400107. [PMID: 39413121 DOI: 10.1002/tcr.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Indexed: 10/18/2024]
Abstract
This report outlines the evolution and recent progress about the different protocols to synthesize the N-heterocycles fused hybrids, specifically [1,2,3]triazolo[1,5-a]quinoline. This review encompasses a broad range of approaches, describing several reactions for obtaining this since, such as dehydrogenative cyclization, oxidative N-N coupling, Dieckmann condensation, intramolecular Heck, (3+2)-cycloaddition, Ullman-type coupling and direct intramolecular arylation reactions. We divided this review in three section based in the starting materials to synthesize the target [1,2,3]triazolo[1,5-a]quinolines. Starting materials containing quinoline or triazole units previously formed, as well as starting materials which both quinoline and triazole units are formed in situ. Different methods of obtaining are described, such as metal-free or catalyzed conditions, azide-free, using conventional heating or alternative energy sources, such as electrochemical and photochemical methods. Mechanistic insights underlying the reported reactions were also described in this comprehensive review.
Collapse
Affiliation(s)
- Gabriel P Da Costa
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Pesquisa em Síntese Orgânica Sustentável-PSOS, Universidade Federal do Rio Grande-FURG, Escola de Química e Alimentos-EQA, Av. Itália km 8, s/n-Campus Carreiros, 96.203-900, Rio Grande, RS
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
11
|
Aziz HA, El-Saghier AM, Badr M, Elsadek BEM, Abuo-Rahma GEDA, Shoman ME. Design, synthesis and mechanistic study of N-4-Piperazinyl Butyryl Thiazolidinedione derivatives of ciprofloxacin with Anticancer Activity via Topoisomerase I/II inhibition. Sci Rep 2024; 14:24101. [PMID: 39406816 PMCID: PMC11480511 DOI: 10.1038/s41598-024-73793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
A new group of thiazolidine-2,4-dione derivatives of ciprofloxacin having butyryl linker 3a-l was synthesized via an alkylation of thiazolidine-2,4-diones with butyryl ciprofloxacin with yield range 48-77% andfully characterized by various spectroscopic and analytical tools. Anti-cancer screening outcomes indicated that 3a and 3i possess antiproliferative activities against human melanoma LOX IMVI cancer cell line with IC50 values of 26.7 ± 1.50 and 25.4 ± 1.43 µM, respectively, using doxorubicin and cisplatin as positive controls with an IC50 of 7.03 ± 0.40 and 5.07 ± 0.29 µM, respectively. Additionally, compound 3j showed promising anticancer activity against human renal cancer A498 cell line with IC50 value of 33.9 ± 1.91 µM while doxorubicin and cisplatin showed IC50 values of 3.59 ± 0.20 and 7.92 ± 0.45, respectively. On the other hand, compound 3i did not show considerable anti-bacterial activity against S. aureus, E. coli and P. aeruginosa, and only moderate activity against K. pneumoniae with only a tenth of the activity of ciprofloxacin, confirming the cytotoxicity observed. Mechanistically, compound 3i inhibited both topoisomerase I and II with IC50 of 4.77 ± 0.26 and 15 ± 0.81 µM. Furthermore, it induced cell cycle arrest at S phase in melanoma LOX IMVI cells. Moreover, 3i provoked substantial levels of early, late apoptosis and necrosis in melanoma LOX IMVI cell line comparable to that induced by doxorubicin. Furthermore, compound 3i increased the expression level of active caspase-3 by 49 folds higher in LOX IMVI cell, increased protein expression level of Bax more than the control by 3 folds and inhibited PARP-1by 33% in LOX IMVI. All results were supported by theoretical docking studies on both tested enzymes confirming potential cytotoxicity for the synthesized hybrids.
Collapse
Affiliation(s)
- Hossameldin A Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley, 72511, Egypt
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt
| | - Ahmed M El-Saghier
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt.
- Department of Pharmaceutical Chemistry, Deraya University, New Minya, 61768, Minia, Egypt.
- Department of pharmaceutical chemistry, Deraya University, New Minia, 61768, Egypt.
| | - Mai E Shoman
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
12
|
Zang ZL, Wang YX, Battini N, Gao WW, Zhou CH. Synthesis and antibacterial medicinal evaluation of carbothioamido hydrazonyl thiazolylquinolone with multitargeting antimicrobial potential to combat increasingly global resistance. Eur J Med Chem 2024; 275:116626. [PMID: 38944934 DOI: 10.1016/j.ejmech.2024.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The global microbial resistance is a serious threat to human health, and multitargeting compounds are considered to be promising to combat microbial resistance. In this work, a series of new thiazolylquinolones with multitargeting antimicrobial potential were developed through multi-step reactions using triethoxymethane and substituted anilines as start materials. Their structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Antimicrobial evaluation revealed that some of the target compounds could effectively inhibit microbial growth. Especially, carbothioamido hydrazonyl aminothiazolyl quinolone 8a showed strong inhibitory activity toward drug-resistant Staphylococcus aureus with MIC value of 0.0047 mM, which was 5-fold more active than that of norfloxacin. The highly active compound 8a exhibited negligible hemolysis, no significant toxicity in vitro and in vivo, low drug resistance, as well as rapidly bactericidal effects, which suggested its favorable druggability. Furthermore, compound 8a was able to effectively disrupt the integrity of the bacterial membrane, intercalate into DNA and inhibit the activity of topoisomerase IV, suggesting multitargeting mechanism of action. Compound 8a could form hydrogen bonds and hydrophobic interactions with DNA-topoisomerase IV complex, indicating the insertion of aminothiazolyl moiety was beneficial to improve antibacterial efficiency. These findings indicated that the active carbothioamido hydrazonyl aminothiazolyl quinolone 8a as a chemical therapeutic candidate demonstrated immense potential to tackle drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Gil-Gonzalo R, Durante-Salmerón DA, Pouri S, Doncel-Pérez E, Alcántara AR, Aranaz I, Acosta N. Chitosan-Coated Liposome Formulations for Encapsulation of Ciprofloxacin and Etoposide. Pharmaceutics 2024; 16:1036. [PMID: 39204381 PMCID: PMC11359655 DOI: 10.3390/pharmaceutics16081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer and bacterial infections rank among the most significant global health threats. accounting for roughly 25 million fatalities each year. This statistic underscores the urgent necessity for developing novel drugs, enhancing current treatments, and implementing systems that boost their bioavailability to achieve superior therapeutic outcomes. Liposomes have been recognised as effective carriers; nonetheless, they encounter issues with long-term stability and structural integrity, which limit their pharmaceutical applicability. Chitosomes (chitosan-coated liposomes) are generally a good alternative to solve these issues. This research aims to demonstrate the effective individual encapsulation of ciprofloxacin (antibacterial, hydrophilic) and etoposide (anticancer, hydrophobic), within chitosomes to create more effective drug delivery systems (oral administration for ciprofloxacin, parenteral administration for etoposide). Thus, liposomes and chitosomes were prepared using the thin-film hydration technique and were characterised through ATR-FTIR, Dynamic Light Scattering (DLS), zeta potential, and release profiling. In both cases, the application of chitosomes enhanced long-term stability in size and surface charge. Chitosome-encapsulated ciprofloxacin formulations exhibited a slower and sustained release profile, while the combined effect of etoposide and chitosan showed heightened efficacy against the glioblastoma cell line U373. Therefore, coating liposomes with chitosan improved the encapsulation system's properties, resulting in a promising method for drug delivery.
Collapse
Affiliation(s)
- Rubén Gil-Gonzalo
- Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain; (R.G.-G.); (S.P.)
| | - D. Alonzo Durante-Salmerón
- Department of Chemistry in Pharmaceutical Science, Pharmacy Faculty, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; (D.A.D.-S.); (A.R.A.)
| | - Saeedeh Pouri
- Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain; (R.G.-G.); (S.P.)
| | - Ernesto Doncel-Pérez
- Neural Regeneration Group, Hospital Nacional de Parapléjicos (SESCAM), E-45071 Toledo, Spain;
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Science, Pharmacy Faculty, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; (D.A.D.-S.); (A.R.A.)
| | - Inmaculada Aranaz
- Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain; (R.G.-G.); (S.P.)
- Department of Chemistry in Pharmaceutical Science, Pharmacy Faculty, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; (D.A.D.-S.); (A.R.A.)
| | - Niuris Acosta
- Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain; (R.G.-G.); (S.P.)
- Department of Chemistry in Pharmaceutical Science, Pharmacy Faculty, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; (D.A.D.-S.); (A.R.A.)
| |
Collapse
|
14
|
Singh VK, Kumari P, Som A, Rai S, Mishra R, Singh RK. Design, synthesis and antimicrobial activity of novel quinoline derivatives: an in silico and in vitro study. J Biomol Struct Dyn 2024; 42:6904-6924. [PMID: 37477261 DOI: 10.1080/07391102.2023.2236716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
A series of new quinoline derivatives has been designed, synthesized and evaluated as antibacterial and antifungal agents functioning as peptide deformylase enzyme (PDF) inhibitors and fungal cell wall disruptors on the basis of computational and experimental methods. The molecular docking and ADMET assessment aided in the synthesis of quinoline derivatives starting from 6-amino-4-methyl-1H-quinoline-2-one substituted with different types of sulfonyl/benzoyl/propargyl moieties. These newly synthesized compounds were evaluated for their in vitro antibacterial and antifungal activity. Antibacterial screening of all compounds showed excellent MIC value (MIC, 50 - 3.12 µg/mL) against bacterial strains, viz. Bacillus cerus, Staphylococcus, Pseudomonas and Escherichia coli. Compounds 2 and 6 showed better activity. Fractional inhibitory concentration (FIC) values of compounds were lowered by 1/2 to 1/128 of the original MIC values when a combinatorial screening with reference drugs was performed. Further, antifungal screening against fungal strains, viz. A. flavus, A. niger, F. oxysporum and C. albicans also showed that all compounds were potentially active and compound 6 being the most potent. Further, the cytotoxicity experiments revealed that compound 6 was the least toxic molecule. The molecular dynamics (MD) simulation investigations elucidated the conformational stability of compound 6-PDF complex with flexible binding pocket residues. The highest number of stable hydrogen bonds with the PDF residues during the entire simulation time illustrated strong binding affinity of compound 6 with PDF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Priyanka Kumari
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India
| | - Shivangi Rai
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
15
|
Khwaza V, Mlala S, Aderibigbe BA. Advancements in Synthetic Strategies and Biological Effects of Ciprofloxacin Derivatives: A Review. Int J Mol Sci 2024; 25:4919. [PMID: 38732134 PMCID: PMC11084713 DOI: 10.3390/ijms25094919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|
16
|
Zhao X, Verma R, Sridhara MB, Sharath Kumar KS. Fluorinated azoles as effective weapons in fight against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2024; 143:106975. [PMID: 37992426 DOI: 10.1016/j.bioorg.2023.106975] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The rapid spread of Methicillin-resistant Staphylococcus aureus (MRSA) and its difficult-to-treat skin and filmsy diseases are making MRSA a threat to human life. The most dangerous feature is the fast emergence of MRSA resistance to all recognized antibiotics, including vancomycin. The creation of novel, effective, and non-toxic drug candidates to combat MRSA isolates is urgently required. Fluorine containing small molecules have taken a centre stage in the field of drug development. Over the last 50 years, there have been a growing number of fluorinated compounds that have been approved since the clinical usage of fluorinated corticosteroids in the 1950 s and fluoroquinolones in the 1980 s. Due to its advantages in terms of potency and ADME (absorption, distribution, metabolism, and excretion), fluoro-pharmaceuticals have been regarded as a potent and useful tool in the rational drug design method. The flexible bioactive fluorinated azoles are ideal candidates for the development of new antibiotics. This review summarizes the decade developments of fluorinated azole derivatives with a wide antibacterial activity against diverged MRSA strains. In specific, we correlated the efficacy of structurally varied fluorinated azole analogues including thiazole, benzimidazole, oxadiazole and pyrazole against MRSA and discussed different angles of structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City-719000, P. R. China
| | - Rameshwari Verma
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, P. R. China
| | - M B Sridhara
- Department of Chemistry, Rani Channamma University, Vidyasangama, Belagavi 591156, India
| | | |
Collapse
|
17
|
Tahmasebi B, Iraji A, Sherafati M, Moazzam A, Akhlagh SA, Adib M, Mahdavi M. Structure-based drug discovery and antimicrobial activity of ciprofloxacin-grafted Ugi adducts. J Biomol Struct Dyn 2023; 41:8165-8174. [PMID: 36214687 DOI: 10.1080/07391102.2022.2130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
A new series of ciprofloxacin-derived Ugi adducts were rationally designed and synthesized. The synthesized molecules were explored for their potential antimicrobial activities against four pathogenic microorganisms. Among these derivatives, compound 7h with a 4-nitrophenyl substituent at R2 exhibited significant activity against two tested Gram-positive bacteria with a minimum inhibitory concentration value of 0.097 µg/mL while 7i bearing 4-chlorophenyl pendant demonstrated the best antimicrobial activities against Gram-negative bacteria. Furthermore, the analysis of the structure-activity relationships disclosed that types of substitutions differently affect the bacteria so the most potent derivative against Gram-negative infections was the least active one in Gram-positive microorganisms. Also, the molecular docking and molecular dynamic simulations were executed on 7i as the most potent Gram-negative anti-bacterial agent against ATP-binding sites of DNA gyrase B. Accordingly, our findings suggest that ciprofloxacin-based Ugi adducts are an interesting precursor for the design of potent antimicrobial agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Behnam Tahmasebi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Sherafati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Riyahi Z, Asadi P, Hassanzadeh F, Khodamoradi E, Gonzalez A, Karimi Abdolmaleki M. Synthesis of novel conjugated benzofuran-triazine derivatives: Antimicrobial and in-silico molecular docking studies. Heliyon 2023; 9:e18759. [PMID: 37576200 PMCID: PMC10412834 DOI: 10.1016/j.heliyon.2023.e18759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Two new developments of antibacterial agents, a series of benzofuran-triazine based compounds (8a-8h) were designed and synthesized. The derivatives were prepared through conventional chemical reactions and structurally characterized with FT-IR, 1H and 13C NMR techniques. The antibacterial activity of the synthesized derivatives was assessed against gram-positive bacterial strains (Bacillus subtilis, and Staphylococcus aureus) and gram-negative bacterial strains (Salmonella entritidis and Escherichia coli). Compound 8e, with the MIC value of 125-32 μg/μl against all the examined strains of bacteria, was the most active antibacterial compound. The synthesized derivatives were also studied for docking to the binding sites of dihydrofolate reductase (DHFR) receptor which has a key role in drug resistance associated with bacterial infections. The synthesized compounds showed good interaction with the targets through hydrogen bonding and hydrophobic interactions. According to antibacterial and docking studies, compound 8e could be introduced as a candidate for development of antibacterial compounds.
Collapse
Affiliation(s)
- Zahra Riyahi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Elahe Khodamoradi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexa Gonzalez
- Department of Nursing, Texas A&M International University, Laredo, TX 78041, USA
| | - Mahmood Karimi Abdolmaleki
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
19
|
Al-Akhras AA, Zahra JA, El-Abadelah MM, Abu-Niaaj LF, Khanfar MA. 8-Amino-7-(aryl/hetaryl)fluoroquinolones. An emerging set of synthetic antibacterial agents. Z NATURFORSCH C 2023; 78:157-168. [PMID: 36278497 DOI: 10.1515/znc-2022-0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
Abstract
This study reports the synthesis of seven new 8-amino-7-(aryl/hetaryl)fluoroquinolones and their antibacterial activity against 10 bacteria associated with microbial infections and foodborne illnesses. These fluoroquinolones are prepared via the reactions of selected aryl(hetaryl)boronic acids with ethyl-7chloro-6-fluoro-8-nitroquinolone-3-carboxylate, under Suzuki-Miyaura cross-coupling conditions. Nitro group reduction of the latter resulted in the corresponding 8-aminoquinolone-3-esters which upon hydrolysis formed the respective 8-amino-7-(aryl/hetaryl)-quinolone-3-carboxylic acids. The latter compounds were tested against selected Gram-negative bacteria (Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumonia) and Gram-positive bacteria (Enterococcus feacalis, Listeria monocytogenes, Streptococcus agalactiae, Staphylococcus epidermidis, and Staphylococcus aureus). The tested fluoroquinolones showed a significant antimicrobial activity against most of the tested bacterial strains. The antimicrobial activity of some of the tested compounds were comparable to or higher than a wide range of standard antibiotics including ampicillin, ciprofloxacin, and imipenem. The results highlight the new synthesized 8-amino-7-(aryl/hetaryl)fluroquinolones as promising candidates for new antimicrobial drugs to treat bacterial infections. This study highlights that the newly synthetic 8-amino-7-(aryl/hetaryl)fluroquinolones are promising candidates for new antimicrobial drugs to treat human diseases including foodborne illnesses.
Collapse
Affiliation(s)
- Ala'a A Al-Akhras
- Chemistry Department, Faculty of Science, The University of Jordan, Amman, 11942, Jordan.,Chemistry Department, Faculty of Science, Jerash University, Jerash, Jordan
| | - Jalal A Zahra
- Chemistry Department, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Mustafa M El-Abadelah
- Chemistry Department, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Lubna F Abu-Niaaj
- Department of Agricultural and Life Sciences, College of Engineering, Science, Technology and Agriculture, Central State University, Wilberforce, OH 45384, USA
| | - Monther A Khanfar
- Chemistry Department, Faculty of Science, The University of Jordan, Amman, 11942, Jordan.,Department of Chemistry, Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| |
Collapse
|
20
|
Hryhoriv H, Kovalenko SM, Georgiyants M, Sidorenko L, Georgiyants V. A Comprehensive Review on Chemical Synthesis and Chemotherapeutic Potential of 3-Heteroaryl Fluoroquinolone Hybrids. Antibiotics (Basel) 2023; 12:antibiotics12030625. [PMID: 36978492 PMCID: PMC10045242 DOI: 10.3390/antibiotics12030625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Fluoroquinolones have been studied for more than half a century. Since the 1960s, four generations of these synthetic antibiotics have been created and successfully introduced into clinical practice. However, they are still of interest for medicinal chemistry due to the wide possibilities for chemical modification, with subsequent useful changes in the pharmacokinetics and pharmacodynamics of the initial molecules. This review summarizes the chemical and pharmacological results of fluoroquinolones hybridization by introducing different heterocyclic moieties into position 3 of the core system. It analyses the synthetic procedures and approaches to the formation of heterocycles from the fluoroquinolone carboxyl group and reveals the most convenient ways for such procedures. Further, the results of biological activity investigations for the obtained hybrid pharmacophore systems are presented. The latter revealed numerous promising molecules that can be further studied to overcome the problem of resistance to antibiotics, to find novel anticancer agents and more.
Collapse
Affiliation(s)
- Halyna Hryhoriv
- Pharmaceutical Chemistry Department, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Sergiy M Kovalenko
- Organic Chemistry Department, Karazin National University, 61022 Kharkiv, Ukraine
| | - Marine Georgiyants
- Department of Anesthesiology Intensive Therapy and Pediatrics Anesthesiology, Kharkiv National Medical University, 61022 Kharkiv, Ukraine
| | - Lyudmila Sidorenko
- Pharmaceutical Chemistry Department, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Victoriya Georgiyants
- Pharmaceutical Chemistry Department, National University of Pharmacy, 61002 Kharkiv, Ukraine
| |
Collapse
|
21
|
Dine I, Mulugeta E, Melaku Y, Belete M. Recent advances in the synthesis of pharmaceutically active 4-quinolone and its analogues: a review. RSC Adv 2023; 13:8657-8682. [PMID: 36936849 PMCID: PMC10015437 DOI: 10.1039/d3ra00749a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
4-Quinolone and its analogs are heterocyclic classes of organic compounds displaying biologically active and a broad spectrum of pharmaceutical drug scaffolds. 4-Quinolone is the first-line chemotherapeutic treatment for a wide spectrum of bacterial infections. Recently, 4-quinolone and its derivatives have been shown to have the potential to cure and regulate various acute and chronic diseases, including pain, ischemia, immunomodulation, inflammation, malarial, bacterial infection, fungal infection, HIV, and cancer, based on several reports. This review highlights and provides brief information to better understand the development of experimental progress made to date in the synthetic protocol towards 4-quinolone and its analogs. Thus, classical synthesis protocol, metal-free reaction protocol, and transition metal-catalyzed reaction procedures are briefly discussed along with the pharmaceutical activities of selected 4-quinolone derivatives.
Collapse
Affiliation(s)
- Ilili Dine
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| | - Endale Mulugeta
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| | - Melis Belete
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| |
Collapse
|
22
|
Shinde A, Thakare PP, Nandurkar Y, Chavan A, Shaikh ALN, Mhaske PC. Synthesis of 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol as potential antimycobacterial agents. CHEMICKE ZVESTI 2023; 77:3791-3802. [PMID: 37252671 PMCID: PMC9961301 DOI: 10.1007/s11696-023-02741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Resistance to antibiotic drugs has directed global health security to a life-threatening situation due to mycobacterial infections. In search of a new potent antimycobacterial, a series of (±) 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol (8a-p) have been synthesized. The structures of the newly synthesized derivatives were characterized by spectrometric analysis. Derivatives 8a-p were evaluated for antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC 25177), antibacterial activity against Proteus mirabilis (NCIM2388), Escherichia coli (NCIM 2065), Bacillus subtilis (NCIM2063) Staphylococcus albus (NCIM 2178) and antifungal activity against Candida albicans (NCIM 3100), Aspergillus niger (ATCC 504). Thirteen 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol (8a-m) derivatives reported moderate to good antitubercular activity against M. tuberculosis H37Rv with MIC 9.2-106.4 μM. Compounds 8a and 8h showed comparable activity with respect to the standard drug pyrazinamide. The active compounds screened for cytotoxicity activity against L929 mouse fibroblast cells showed no significant cytotoxic activity. Compounds 8c, 8d, 8e, 8g, 8k, and 8o displayed good activity against S. albus. Compounds 8c and 8n showed good activity against P. mirabilis and E. coli, respectively. The potential antimycobacterial activities imposed that the 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol derivatives could lead to compounds that could treat tuberculosis. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11696-023-02741-3.
Collapse
Affiliation(s)
- Abhijit Shinde
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
| | - Prashant P. Thakare
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
| | - Yogesh Nandurkar
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
- Department of Chemistry, N. Wadia College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Abhijit Chavan
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
| | - Abdul Latif N. Shaikh
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
- Department of Chemistry, Jijamata College of Science and Arts (Affiliated to Savitribai Phule Pune University), Bhende, Ahmednagar, India
| | - Pravin C. Mhaske
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
| |
Collapse
|
23
|
Ashram M, Habashneh AY, Bardaweel S, Taha MO. A Click Synthesis, Molecular Docking and Biological Evaluation of 1,2,3-triazoles-benzoxazepine hybrid as potential anticancer agents. Med Chem Res 2023; 32:271-287. [DOI: 10.1007/s00044-022-03001-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
|
24
|
Kannekanti PK, Nukala SK, Bangaru M, Sirassu N, Manchal R, Thirukovela NS. Synthesis of Amide Derivatives as Tubulin Polymerization Inhibiting Antiproliferative Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Praveen kumar Kannekanti
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Mallikarjuna Bangaru
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Narsimha Sirassu
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Ravinder Manchal
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | | |
Collapse
|
25
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Shinde A, Ugale SR, Nandurkar Y, Modak M, Chavan AP, Mhaske PC. Synthesis, Characterization, and Antimicrobial Activity Screening of Some Novel 3-(2-(3-(Substituted benzyloxy)oxetan-3-yl)-3-fluorophenoxy)-8-fluoro-2-methylquinoline Derivatives as Potential Antimycobacterial Agents. ACS OMEGA 2022; 7:47096-47107. [PMID: 36570236 PMCID: PMC9773968 DOI: 10.1021/acsomega.2c06245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Microbial infections remain a grave threat to global health security due to increasing antibiotic resistance. The coronavirus pandemic has increased the risk of microbial infection. To combat these infections, the search for new therapeutic agents is in high demand. A series of new 3-(2-(3-(substituted benzyloxy)oxetan-3-yl)-3-fluorophenoxy)-8-fluoro-2-methylquinoline (9a-i) derivatives have been synthesized. The structure of synthesized compounds was analyzed by spectroscopic methods. The newly synthesized oxetanyl-quinoline derivatives were evaluated for in vitro antibacterial activity against Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), Bacillus subtilis (NCIM 2063), Staphylococcus albus (NCIM 2178), and in vitro antifungal activity against Aspergillus niger (ATCC 504) and Candida albicans (NCIM 3100). Six oxetanyl-quinoline derivatives 9a, 9b, 9c, 9d, 9e, and 9h have shown good antibacterial activity against P. mirabilis with MIC 31.25-62.5 μM, 3-(((3-(2-fluoro-6-((8-fluoro-2-methylquinolin-3-yl)oxy)phenyl)oxetan-3-yl)oxy)methyl)benzonitrile (9f) reporting comparable activity against P. mirabilis with respect to the standard drug streptomycin. Compound 9a also showed good activity against B. subtilis with MIC 31.25 μM. The eight compounds 9a, 9b, 9d, 9e, 9f, 9g, 9h, and 9i have shown good antifungal activity against A. niger. The synthesized compounds were also screened for antimycobacterial activity against Mycobacterium tuberculosis H37Rv by MTT assay. Among the nine derivatives, compounds 9b, 9c, 9d, 9f, 9g, 9h, and 9i showed excellent antimycobacterial activity with MIC 3.41-12.23 μM, and two derivatives showed good activity with MIC 27.29-57.73 μM. All the derivatives were further evaluated for cytotoxicity against the Vero cell line and were found to be nontoxic. The in silico study of compounds 9a-i was performed against ATP synthase (PDB ID: 4V1F) and most of the compounds showed the stable and significant binding to ATP synthase, confirming their plausible mode of action as ATP synthase inhibitors. Thus, the significant antimycobacterial activity of 3-(2-(3-(substituted benzyloxy)oxetan-3-yl)-3-fluorophenoxy)-8-fluoro-2-methylquinoline derivatives has suggested that the oxatenyl-quinoline compounds could assist in the development of lead compounds to treat mycobacterial infections.
Collapse
Affiliation(s)
- Abhijit Shinde
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
| | - Sandip R. Ugale
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
| | - Yogesh Nandurkar
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
- Department
of Chemistry, Nowrosjee Wadia College (Affiliated to Savitribai Phule Pune University), Pune 411 001, India
| | - Manisha Modak
- Department
of Zoology, S. P. Mandali’s Sir Parashurambhau
College (Affiliated to Savitribai Phule Pune University), Tilak Road, Pune 411 030, India
| | - Abhijit P. Chavan
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
| | - Pravin C. Mhaske
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
| |
Collapse
|
27
|
Belakhov VV. Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
28
|
Murrieta MF, Brillas E, Nava JL, Sirés I. Solar photoelectro-Fenton-like process with anodically-generated HClO in a flow reactor: Norfloxacin as a pollutant with a particular structure. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
The commercial antibiotics with inherent AIE feature: In situ visualization of antibiotic metabolism and specifically differentiation of bacterial species and broad-spectrum therapy. Bioact Mater 2022; 23:223-233. [PMID: 36439086 PMCID: PMC9673049 DOI: 10.1016/j.bioactmat.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
The research on pharmacology usually focuses on the structure-activity relationships of drugs, such as antibiotics, to enhance their activity, but often ignores their optical properties. However, investigating the photophysical properties of drugs is of great significance because they could be used to in situ visualize their positions and help us to understand their working metabolism. In this work, we identified a class of commercialized antibiotics, such as levofloxacin, norfloxacin, and moxifloxacin (MXF) hydrochloride, featuring the unique aggregation-induced emission (AIE) characteristics. By taking advantage of their AIE feature, antibiotic metabolism in cells could be in situ visualized, which clearly shows that the luminescent aggregates accumulate in the lysosomes. Moreover, after a structure-activity relationship study, we found an ideal site of MXF to be modified with a triphenylphosphonium and an antibiotic derivative MXF-P was prepared, which is able to specifically differentiate bacterial species after only 10 min of treatment. Moreover, MXF-P shows highly effective broad-spectrum antibacterial activity, excellent therapeutic effects and biosafety for S. aureus-infected wound recovery. Thus, this work not only discovers the multifunctionalities of the antibiotics but also provides a feasible strategy to make the commercialized drugs more powerful.
Collapse
|
30
|
Synthesis of indole-tetrazole coupled aromatic amides; In vitro anticancer activity, in vitro tubulin polymerization inhibition assay and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Elmongy EI, Ahmed AAS, El Sayed IET, Fathy G, Awad HM, Salman AU, Hamed MA. Synthesis, Biocidal and Antibiofilm Activities of New Isatin-Quinoline Conjugates against Multidrug-Resistant Bacterial Pathogens along with Their In Silico Screening. Antibiotics (Basel) 2022; 11:1507. [PMID: 36358162 PMCID: PMC9686684 DOI: 10.3390/antibiotics11111507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 07/29/2023] Open
Abstract
Isatin-quinoline conjugates 10a-f and 11a-f were assembled by the reaction of N-(bromobutyl) isatin derivatives 3a, b with aminoquinolines 6a-c and their corresponding hydrazinyl 9a-c in good yields. The structures of the resulting conjugates were established by spectroscopic tools and showed data consistent with the proposed structures. In vitro antibacterial activity against different bacterial strains was evaluated. All tested conjugates showed significant biocidal activity with lower MIC than the first line drugs chloramphenicol and ampicillin. Conjugates 10a, 10b and 10f displayed the most potent activity against all clinical isolates. The antibiofilm activity for all tested conjugates was screened against the reference drug vancomycin using the MRSA strain. The results revealed that all conjugates had an inhibitory activity against biofilm formation and conjugate. Conjugate 11a showed 83.60% inhibition at 10 mg/mL. In addition, TEM studies were used to prove the mechanism of antibacterial action of conjugates 10a and 11a against (MRSA). Modeling procedures were performed on 10a-f and 11a-f and interestingly the results were nearly consistent with the biological activities. In addition, in silico pharmacokinetic evaluation was performed and revealed that the synthesized compounds 10a-f and 11a-f were considered drug-like molecules with promising bioavailability and high GI absorption. The results confirmed that the title compounds caused the disruption of bacterial cell membranes and could be used as potential leads for the further development and optimization of antibacterial agents.
Collapse
Affiliation(s)
- Elshaymaa I. Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdullah A. S. Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | | | - Ghady Fathy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Hanem M. Awad
- Department of Tanning Materials and Leather Technology, National Research Centre, Dokki, Giza 12611, Egypt
| | - Ayah Usama Salman
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mohamed A. Hamed
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
32
|
Asghar AA, Akhlaq M, Jalil A, Azad AK, Asghar J, Adeel M, Albadrani GM, Al-Doaiss AA, Kamel M, Altyar AE, Abdel-Daim MM. Formulation of ciprofloxacin-loaded oral self-emulsifying drug delivery system to improve the pharmacokinetics and antibacterial activity. Front Pharmacol 2022; 13:967106. [PMID: 36267282 PMCID: PMC9577179 DOI: 10.3389/fphar.2022.967106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to increase the aqueous solubility of ciprofloxacin (CPN) to improve oral bioavailability. This was carried out by formulating a stable formulation of the Self-Emulsifying Drug Delivery System (SEDDS) using various ratios of lipid/oil, surfactant, and co-surfactant. A pseudo-ternary phase diagram was designed to find an area of emulsification. Eight formulations (F1-CPN-F8-CPN) containing oleic acid oil, silicone oil, olive oil, castor oil, sunflower oil, myglol oil, polysorbate-80, polysorbate-20, PEO-200, PEO-400, PEO-600, and PG were formulated. The resultant SEDDS were subjected to thermodynamic study, size, and surface charge studies to improve preparation. Improved composition of SEDDS F5-CPN containing 40% oil, 60% polysorbate-80, and propylene glycol (Smix ratio 6: 1) were thermodynamically stable emulsions having droplet size 202.6 nm, charge surface -13.9 mV, and 0.226 polydispersity index (PDI). Fourier transform infra-red (FT-IR) studies revealed that the optimized formulation and drug showed no interactions. Scanning electron microscope tests showed the droplets have an even surface and spherical shape. It was observed that within 5 h, the concentration of released CPN from optimized formulations F5-CPN was 93%. F5-CPN also showed a higher antibacterial action against S. aurous than free CPN. It shows that F5-CPN is a better formulation with a good release and high antibacterial activity.
Collapse
Affiliation(s)
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Aamir Jalil
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakaria University, Multan, Punjab, Pakistan
| | | | - Junaid Asghar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amin A. Al-Doaiss
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
33
|
Thakare PP, Dakhane S, Shikh AN, Modak M, Patil A, Bobade VD, Mhaske PC. Design, Synthesis, Antimicrobial and Ergosterol Inhibition Activity of New 4-(Imidazo[1,2-a]Pyridin-2-yl)Quinoline Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1933107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Prashant P. Thakare
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| | - Sagar Dakhane
- Department of Chemistry, Abasaheb Garware College, Pune, Maharashtra, India
| | - Abdullatif N. Shikh
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
- Department of Chemistry, Jijamata College of Science and Arts, Bhende, Ahmednagar, Pune, Maharashtra, India
| | - Manisha Modak
- Department of Zoology, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| | - Ashiwini Patil
- Department of Biotechnology, Viva College, Mumbai, Maharashtra, India
| | - Vivek D. Bobade
- Post-Graduate Department of Chemistry, H. P. T. Arts and R. Y. K. Science College, Nashik, Maharashtra, India
| | - Pravin C. Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| |
Collapse
|
34
|
Nchioua I, Alsubari A, Mague JT, Ramli Y. Crystal structure and Hirshfeld surface analysis of N-(2,6-di-methyl-phen-yl)-2-[3-hy-droxy-2-oxo-3-(2-oxoprop-yl)indolin-1-yl]acetamide. Acta Crystallogr E Crystallogr Commun 2022; 78:922-925. [PMID: 36072528 PMCID: PMC9443800 DOI: 10.1107/s2056989022007848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The cup-shaped conformation of the title mol-ecule, C21H22N2O4, is largely determined by an intra-molecular N-H⋯O hydrogen bond. In the crystal, double layers of mol-ecules are formed by O-H⋯O and C-H⋯O hydrogen bonds. A Hirshfeld surface analysis was performed, which confirms the regions that are active for inter-molecular inter-actions.
Collapse
Affiliation(s)
- Intissar Nchioua
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, 8 Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
35
|
Abdel-Aziz SA, Cirnski K, Herrmann J, Abdel-Aal MA, Youssif B, Salem O. Novel fluoroquinolone hybrids as dual DNA gyrase and urease inhibitors with potential antibacterial activity: Design, synthesis, and biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
37
|
Fluoroquinolones Hybrid Molecules as Promising Antibacterial Agents in the Fight against Antibacterial Resistance. Pharmaceutics 2022; 14:pharmaceutics14081749. [PMID: 36015376 PMCID: PMC9414178 DOI: 10.3390/pharmaceutics14081749] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of bacterial resistance has motivated researchers to discover new antibacterial agents. Nowadays, fluoroquinolones keep their status as one of the essential classes of antibacterial agents. The new generations of fluoroquinolones are valuable therapeutic tools with a spectrum of activity, including Gram-positive, Gram-negative, and atypical bacteria. This review article surveys the design of fluoroquinolone hybrids with other antibacterial agents or active compounds and underlines the new hybrids' antibacterial properties. Antibiotic fluoroquinolone hybrids have several advantages over combined antibiotic therapy. Thus, some challenges related to joining two different molecules are under study. Structurally, the obtained hybrids may contain a cleavable or non-cleavable linker, an essential element for their pharmacokinetic properties and mechanism of action. The design of hybrids seems to provide promising antibacterial agents helpful in the fight against more virulent and resistant strains. These hybrid structures have proven superior antibacterial activity and less susceptibility to bacterial resistance than the component molecules. In addition, fluoroquinolone hybrids have demonstrated other biological effects such as anti-HIV, antifungal, antiplasmodic/antimalarial, and antitumor activity. Many fluoroquinolone hybrids are in various phases of clinical trials, raising hopes that new antibacterial agents will be approved shortly.
Collapse
|
38
|
Mor S, Sindhu S, Khatri M, Punia R, Sandhu H, Sindhu J, Jakhar K. Antimicrobial evaluation and QSAR studies of 3,6-disubstituted-11H-benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 5:100050. [DOI: 10.1016/j.ejmcr.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Nwabuife JC, Omolo CA, Govender T. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria "E. coli; P. aeruginosa; Saureus; and MRSA" and their infections. J Control Release 2022; 349:338-353. [PMID: 35820538 DOI: 10.1016/j.jconrel.2022.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Ciprofloxacin (CIP) a broad-spectrum antibiotic, is used extensively for the treatment of diverse infections and diseases of bacteria origin, and this includes infections caused by E. coli; P. aeruginosa; S. aureus; and MRSA. This extensive use of CIP has therefore led to an increase in resistance by these infection causing organisms. Nano delivery systems has recently proven to be a possible solution to resistance to these organisms. They have been applied as a strategy to improve the target specificity of CIP against infections and diseases caused by these organisms, thereby maximising the efficacy of CIP to overcome the resistance. Herein, we proffer a brief overview of the mechanisms of resistance; the causes of resistance; and the various approaches employed to overcome this resistance. The review then proceeds to critically evaluate various nano delivery systems including inorganic based nanoparticles; lipid-based nanoparticles; capsules, dendrimers, hydrogels, micelles, and polymeric nanoparticles; and others; that have been applied for the delivery of CIP against E. coli; P. aeruginosa; S. aureus; and MRSA infections. Finally, the review highlights future areas of research, for the optimisation of various nano delivery systems, to maximise the therapeutic efficacy of CIP against these organisms. This review confirms the potential of nano delivery systems, for addressing the challenges of resistance to caused by E. coli; P. aeruginosa; S. aureus; and MRSA to CIP.
Collapse
Affiliation(s)
- Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.; Department of Pharmaceutics, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa..
| |
Collapse
|
40
|
Patel KB, Kumari P. A Review: Structure-activity relationship and antibacterial activities of Quinoline based hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Cebeci YU, Karaoğlu ŞA. Quinolone‐Rhodanine Hybrid Compounds: Synthesis and Biological Evaluation as Anti‐Bacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Zhang H, Qi Y, Zhao X, Li M, Wang R, Cheng H, Li Z, Guo H, Li Z. Dithienylethene-Bridged Fluoroquinolone Derivatives for Imaging-Guided Reversible Control of Antibacterial Activity. J Org Chem 2022; 87:7446-7455. [PMID: 35608344 DOI: 10.1021/acs.joc.2c00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emerging field of photopharmacology has offered a promising alternative to guard against the bacterial resistance by effectively avoiding antibiotic accumulation in the body or environment. However, the degradation, toxicity, and thermal reversibility have always been an ongoing concern for potential applications of azobenzene-based photopharmacology. Developing novel photopharmacological agents based on a more matched switch is highly in demand and remains a major challenge. Herein, two novel dithienylethene-bridged dual-fluoroquinolone derivatives have been developed by introducing two fluoroquinolone drugs into both ends of the dithienylethene (DTE) switch, in which the fluoroquinolone acts as a fluorophore except for the pharmacodynamic component. For comparison, two monofluoroquinolone-DTE hybrids were also prepared by a similar strategy. As expected, these resultant DTE-based antibacterial agents displayed efficient photochromism and fluorescence switching behavior in dimethyl sulfoxide. Moreover, improved antibacterial activities compared to those of monofluoroquinolone derivatives and a maximum fourfold active difference against Escherichia coli (E. coli) for open and closed isomers and photoswitchable bacterial imaging for Staphylococcus aureus and E. coli were observed. The molecular docking to DNA gyrase gave a rationale for the discrepancies in antibacterial activity for both isomers. Therefore, these fluoroquinolone derivatives can act as interesting imaging-guided photopharmacological agents for further in vivo studies.
Collapse
Affiliation(s)
- Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xinru Zhao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Manman Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ruyue Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Huiping Cheng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zhuo Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Hui Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
43
|
Singh P, Sahoo SK, Goud NS, Swain B, Yaddanapudi VM, Arifuddin M. Microwave‐Assisted Copper‐Catalyzed One‐Pot Synthesis of 2‐Aryl/Heteroaryl‐4‐Quinolones via Sequential IntramolecularAza‐Michael addition and Oxidation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Priti Singh
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Medicinal Chemistry INDIA
| | - Santosh Kumar Sahoo
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Chemical Sciences INDIA
| | - Nerella Sridhar Goud
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Mdicinal Chemsitry INDIA
| | - Baijayantimala Swain
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Medicinal Chemisty INDIA
| | - Venkata Madhavi Yaddanapudi
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Chemical Sciences INDIA
| | - Mohammed Arifuddin
- National Institute of Pharmaceutical Education & Research (NIPER) Medicinal Chemistry Balanagar 500037 Hyderabad INDIA
| |
Collapse
|
44
|
Saadon KE, Taha NMH, Mahmoud NA, Elhagali GAM, Ragab A. Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02575-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractA new series of pyridine-2-one and pyrazole derivatives were designed and synthesized based on cyanoacrylamide derivatives containing 2,4-dichlro aniline and 6-methyl 2-amino pyridine as an aryl group. Condensation of cyanoacrylamide derivatives 3a–d with different active methylene (malononitrile, ethyl cyanoacetate cyanoacetamide, and ethyl acetoacetate) in the presence of piperidine as basic catalyst afforded the corresponding pyridinone derivatives 4a–c, 5, 9, and 13. Furthermore, the reaction of cyanoacrylamide derivatives 3a–d with bi-nucleophile as hydrazine hydrate and thiosemicarbazide afforded the corresponding pyrazole derivatives 14a,b and 16. The newly designed derivatives were confirmed and established based on the elemental analysis and spectra data (IR, 1H NMR, 13C NMR, and mass). The in vitro antibacterial activity was evaluated against four bacterial strains with weak to good antibacterial activity. Moreover, the results indicated that the most active derivatives 3a, 4a, 4b, 9, and 16 might lead to antibacterial agents, especially against B. subtilis and P. vulgaris. The DFT calculations were performed to estimate its geometric structure and electronic properties. In addition, the most active pyridinone and pyrazole derivatives were further evaluated for in silico physicochemical, drug-likeness, and toxicity prediction. These derivatives obeyed all Lipinski’s and Veber’s rules without any violation and displayed non-immunotoxin, non-mutagenic, and non-cytotoxic. Molecular docking simulation was performed inside the active site of Topoisomerase IV (PDB:3FV5). It displayed binding energy ranging from -14.97 kcal/mol to -18.86 kcal/mol with hydrogen bonding and arene–cation interaction. Therefore, these derivatives were suggested to be good antibacterial agents via topoisomerase IV inhibitor.
Graphical abstract
Collapse
|
45
|
Juliana Martins F, Savacini Sagrillo F, Josiane Vinturelle Medeiros R, Gonçalves de Souza A, Rodrigues Pinto Costa A, Silva Novais J, Alves Miceli L, R Campos V, Marie Sá Figueiredo A, Claudia Cunha A, Lidmar von Ranke N, Lamim Bello M, de A Abrahim-Vieira B, M T De Souza A, A Ratcliffe N, da Costa Santos Boechat F, Cecília Bastos Vieira de Souza M, Rangel Rodrigues C, Carla Castro H. Evaluation of biological activities of quinone-4-oxoquinoline derivatives against pathogens of clinical importance. Curr Top Med Chem 2022; 22:973-991. [PMID: 35524665 DOI: 10.2174/1568026622666220504124710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbial resistance has become a worldwide public health problem, and may lead to morbidity and mortality in affected patients. OBJECTIVE Therefore, this work aimed to evaluate the antibacterial activity of quinone-4-oxoquinoline derivatives. METHOD These derivatives were evaluated against Gram-positive and Gram-negative bacteria by their antibacterial activity, anti-biofilm, and hemolytic activities and by in silico assays. RESULTS The quinone-4-oxoquinoline derivatives presented broad-spectrum antibacterial activities, and in some cases were more active than commercially available reference drugs. These compounds also inhibited bacterial adhesion and the assays revealed seven non-hemolytic derivatives. The derivatives seem to cause damage to the bacterial cell membrane and those containing the carboxyl group at the C-3 position of the 4-quinolonic nucleus were more active than those containing a carboxyethyl group. CONCLUSION The isoquinoline-5,8-dione nucleus also favored antimicrobial activity. The study showed that the target of the derivatives must be a non-conventional hydrophobic allosteric binding pocket on the DNA gyrase enzyme.
Collapse
Affiliation(s)
- Francislene Juliana Martins
- Federal Fluminense University, Biology Institute, Postgraduate Program in Science and Biotechnology, Niterói, Rio de Janeiro, Brazil
| | - Fernanda Savacini Sagrillo
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | | | - Alan Gonçalves de Souza
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | - Amanda Rodrigues Pinto Costa
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | - Juliana Silva Novais
- Federal Fluminense University, Medical School, Postgraduate in Pathology, Niterói, Rio de Janeiro, Brazil.,Universidade Estácio de Sá (UNESA), Faculdade de Farmácia, São Gonçalo, Rio de Janeiro, Brazil
| | - Leonardo Alves Miceli
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Vinícius R Campos
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Federal University of Rio de Janeiro, Microbiology Institute Professor Paulo Goes, Department of Medical Microbiology, Rio de Janeiro, Brazil
| | - Anna Claudia Cunha
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | - Natalia Lidmar von Ranke
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Murilo Lamim Bello
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Bárbara de A Abrahim-Vieira
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Alessandra M T De Souza
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Norman A Ratcliffe
- Department of Biosciences, College of Science Swansea University, SA2 8PP. UK
| | | | | | - Carlos Rangel Rodrigues
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Helena Carla Castro
- Federal Fluminense University, Biology Institute, Postgraduate Program in Science and Biotechnology, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Khalil MA, Sonbol FI, Al-Madboly LA, Aboshady TA, Alqurashi AS, Ali SS. Exploring the Therapeutic Potentials of Exopolysaccharides Derived From Lactic Acid Bacteria and Bifidobacteria: Antioxidant, Antitumor, and Periodontal Regeneration. Front Microbiol 2022; 13:803688. [PMID: 35547125 PMCID: PMC9082500 DOI: 10.3389/fmicb.2022.803688] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The metabolites of lactic acid bacteria (LAB) and bifidobacteria (Bb) have recently received a lot of attention due to their ability to protect interactions in blood and tissues, as well as their biodegradability and biocompatibility in human tissue. Exopolysaccharides (EPS) derived from bacteria have a long history of use in therapeutic and other industrial applications with no adverse effects. In this regard, EPSs were isolated and characterized from LAB and Bb culture supernatants to determine their antioxidant, antitumor, and periodontal regeneration properties. The antioxidant capacity of the EPSs varied with concentration (0.625-20 mg/ml). The highest antioxidant activity was found in LAB: Streptococcus thermophiles DSM 24731-EPS1, Lactobacillus delbrueckii ssp. bulgaricus DSM 20081T-EPS5, Limosilactobacillus fermentum DSM 20049-EPS6, and Bb; Bifidobacterium longum ssp. longum DSM 200707-EPS10. Human breast cancer cells (MCF7), human colon cancer cells (CaCo2), human liver cancer cells (HepG2), and human embryonic kidney 293 (HEK 293) cells were used as controls to assess the antitumor properties of the selected EPSs. According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, EPS5 had the highest cytotoxicity against MCF7, CaCo2, and HepG2, with IC50 values of 7.91, 10.69, and 9.12 mg/ml, respectively. Lactate dehydrogenase (LDH) activity was significantly higher in cell lines treated with EPS5-IC50 values compared to other EPSs-IC50 values (p < 0.05). Real time (RT)-PCR results showed that EPS5 treatment increased Bax, Caspase 8, Caspase 3, and p53 gene expression. The expression of the BCL2, MCL1, and Vimentin genes, on the other hand, was reduced. The MTT test was used to examine the effect of EPS5 on the viability of human periodontal ligament fibroblast cells (hPDLFCs), and it was discovered that EPS5 increased hPDLFC viability. According to high-performance liquid chromatography (HPLC) analysis, galactose made up 12.5% of EPS5. The findings of this study pave the way for the use of EPS, which hold great promise for a variety of therapeutic purposes such as antioxidant, antitumor, and periodontal regeneration.
Collapse
Affiliation(s)
- Maha A. Khalil
- Biology Department, College of Science, Taif University, Taif, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Fatma I. Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A. Al-Madboly
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Tamer A. Aboshady
- Periodontology, Oral Medicine, Diagnosis and Radiology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Abeer S. Alqurashi
- Biology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Sameh S. Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
47
|
Synthesis, antibacterial evaluation and in silico study of DOTA-fluoroquinolone derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02869-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Li Z, Zhao L, Bian Y, Li Y, Qu J, Song F. The antibacterial activity of quinazoline and quinazolinone hybrids. Curr Top Med Chem 2022; 22:1035-1044. [PMID: 35255796 DOI: 10.2174/1568026622666220307144015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Bacterial infections cause substantial morbidity and mortality across the world and pose serious threats to humankind. Drug resistance, especially multidrug resistance resulting from different defensive mechanisms in bacteria, is the leading cause of failure the chemotherapy, making it an urgent need to develop more effective antibacterials. Quinazoline and quinazolinone frameworks have received considerable attention due to their diversified therapeutic potential. In particular, quinazoline/quinazolinone hybrids could exert antibacterial activity through various mechanisms and are useful scaffolds for the discovery of novel antibacterials. This review principally emphases on the antibacterial potential, structure-activity relationships (SARs), and mechanism of action of quinazoline and quinazolinone hybrids, covering articles published between 2017 and 2021.
Collapse
Affiliation(s)
- Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yu Li
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Jie Qu
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
49
|
Chen P, Chen X, Yu W, Zhou B, Liu L, Yang Y, Du P, Liu L, Li C. Ciprofloxacin stress changes key enzymes and intracellular metabolites of Lactobacillus plantarum DNZ-4. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Srinivas Reddy M, Swamy Thirukovela N, Narsimha S, Ravinder M, Kumar Nukala S. Synthesis of fused 1,2,3-triazoles of Clioquinol via sequential CuAAC and C H arylation; in vitro anticancer activity, in silico DNA topoisomerase II inhibitory activity and ADMET. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|