1
|
Khan S, Hussain R, Khan Y, Iqbal T, Anwar S, Aziz T, Alharbi M. In silico DFT and molecular modeling of novel pyrazine-bearing thiazolidinone hybrids derivatives: elucidating in vitro anti-cancer and urease inhibitors. Z NATURFORSCH C 2025; 80:213-231. [PMID: 39350342 DOI: 10.1515/znc-2024-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 04/30/2025]
Abstract
In the present work, one of the leading health issues i.e. cancer was targeted by synthesizing and biologically investigating the potential of pyrazine-based thiazolidinone derivatives (1-13). The basic structure of the synthesized compounds was determined using a variety of spectroscopic techniques, including 1H NMR, 13C NMR, and HREI-MS. These scaffolds were studied for their biological profiles as anti-cancer as well as anti-urease agents. The biological effectiveness of these compounds was compared using the reference tetrandrine (IC50 = 4.50 ± 0.20 µM) and thiourea (IC50 = 5.10 ± 0.10 µM), respectively. Among novel compounds, scaffold 3, 6, 7 and 10 demonstrated an excellent potency with highest inhibitory potential (IC50 = 1.70 ± 0.10 and 1.30 ± 0.20 µM), (IC50 = 4.20 ± 0.10 and 5.10 ± 0.30 µM), (IC50 = 2.10 ± 0.10 and 3.20 ± 0.20 µM) and (IC50 = 2.70 ± 0.20 and 4.20 ± 0.20 µM), respectively, out of which scaffold 3 emerged as the leading compound due to the presence of highly reactive -CF3 moiety which interacts via hydrogen bonding. Molecular docking investigations of the potent compounds was also carried out which revealed the binding interactions of ligands with the active sites of enzyme. Moreover, the electronic properties, nucleophilic and electrophilic sited of the lead compounds were also studied under density functional theory (DFT).
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, 22500, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad Campus, Islamabad, 45550, Pakistan
| | - Tayyiaba Iqbal
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, 22500, Pakistan
| | - Saeed Anwar
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, 22500, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality , University of Ioannina, 47132 Arta, Greece
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Maurya A, Patel UK, Tiwari P, Joshi G, Kumar R, Tilak R, Agarwal A. Design and synthesis of new benzimidazole-hybrids as anti-microbial agents: exploring the mechanistic insights as DNA gyrase inhibitors via in silico and in vitro based studies. J Biomol Struct Dyn 2025:1-20. [PMID: 40359192 DOI: 10.1080/07391102.2025.2501669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 05/15/2025]
Abstract
Two series of antibacterial agents, 1,2,3-triazole and aminopyrimidine benzimidazole hybrids, were designed, synthesized, and characterized by IR, NMR, Mass spectroscopy, and X-ray crystallography studies. The biological studies revealed that compounds 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 8d, 8e, 9d, 9e, 9f, 9h, 9j, and 9k exhibited significant antibacterial activity in vitro compared to the standard drug ciprofloxacin, against Gram-positive and Gram-negative bacterial strains. The study of hemotoxicity displayed a negligible toxicity profile for all the compounds. Furthermore, the mechanistic insights predicted via molecular docking studies on DNA gyrase revealed (Glide Scores) that compounds 5c and 5f possess better affinity within the active domain of DNA gyrase, which was further corroborated using molecular dynamics followed by direct DNA gyrase-based inhibition assays. Compound 5f was the most potent, while 5c showed an equipotent inhibition compared to a standard drug.
Collapse
Affiliation(s)
- Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Upendra Kumar Patel
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, Uttarakhand, India
| | - Roshan Kumar
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Oduselu GO, Ajani OO, Ogunnupebi TA, Elebiju OF, Bodun DS, Opebiyi OT, Adebiyi E. Synthesis, in silico and in vitro antimicrobial efficacy of some amidoxime-based benzimidazole and benzimidamide derivatives. RSC Med Chem 2025:d5md00114e. [PMID: 40162201 PMCID: PMC11950986 DOI: 10.1039/d5md00114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
Amidoximes are employed as building blocks to synthesise heterocyclic motifs with biological significance. They are very reactive and are used as prodrugs of amidine. This present study unveils the synthesis of amidoxime-based benzimidazole and benzimidamide motifs and evaluates their in silico and in vitro antimicrobial potential as future drug candidates. The compounds (2a, 2b, 4a-c) were synthesized using multi-step synthetic pathways. The synthesised compounds were characterised using physico-chemical examination, 1H- and 13C-NMR, DEPT-135, and FT-IR spectroscopic analyses. The in silico antimicrobial potentials of the synthesized compounds were carried out against glucosamine-6-phosphate synthase of E. coli (PDB ID: 2VF5), and N-myristoyltransferase (NMT) of C. albicans (PDB ID: 1IYL), while the in vitro antimicrobial screening was investigated against selected bacteria and fungi. The in silico studies were carried out using predicted ADMET screening, molecular docking, MM-GBSA, induced-fit docking (IFD), and molecular dynamics (MD) simulation studies. Furthermore, the in vitro experimental validations were performed using the agar diffusion method and the standard antibacterial and antifungal drugs used were gentamicin and ketoconazole respectively. The predicted toxicity test of the compounds showed no significant risk, except for 4c, which showed high tumorigenic risk. Compounds 2b and 2a gave better binding energies; -8.0 kcal mol-1 for 2VF5 and -11.7 kcal mol-1 for 1IYL, respectively. The antimicrobial zone of inhibition and minimum inhibitory concentration values were 40 mm and 3.90 mg mL-1 against S. mutans, then 42 mm and 1.90 mg mL-1 against C. albicans. Potential antimicrobial drug candidates have been identified in this report and should be explored for future preclinical research.
Collapse
Affiliation(s)
- Gbolahan O Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana P. O Box LG 54, Legon Accra Ghana
| | - Olayinka O Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- Department of Chemistry, Covenant University Km 10 Idiroko Road P.M.B. 1023 Ota Ogun State Nigeria
| | - Temitope A Ogunnupebi
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- Department of Chemistry, Covenant University Km 10 Idiroko Road P.M.B. 1023 Ota Ogun State Nigeria
| | - Oluwadunni F Elebiju
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- Department of Chemistry, Covenant University Km 10 Idiroko Road P.M.B. 1023 Ota Ogun State Nigeria
| | - Damilola S Bodun
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- African Center of Excellence in Bioinformatics and Data Intensive Science, Makerere University Kampala Uganda
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
4
|
Khowdiary MM, Khan S, Iqbal T, Rehman W, Khan MB, Rehman MU, Fiaz Z, Hakimullah. Synthesis, Molecular Simulation, DFT, and Kinetic Study of Imidazotriazole-Based Thiazolidinone as Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase Enzymes. Pharmaceuticals (Basel) 2025; 18:415. [PMID: 40143192 PMCID: PMC11944621 DOI: 10.3390/ph18030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Alzheimer's disease is a complex and multifactorial brain disorder characterized by gradual memory impairment, cognitive disturbance, and severe dementia, and, ultimately, its progression leads to patient death. This research work presents the design, synthesis, and characterization of novel imidazotriazole-based thiazolidinone derivatives (1-14), displaying promising anti-Alzheimer's activity. Methods: These derivatives were synthesized by using 1H-imidazole-2-thiol as a starting reagent. Structural characterization was accomplished by 13C-NMR and 1H-NMR, while the molecular weight was confirmed by HREI-MS. These compounds were investigated for their anti-Alzheimer's potential under an in vitro analysis. Results: These compounds showed a significant to moderate biological potential against AChE and BChE in comparison to donepezil (IC50 = 8.50 µM and 8.90 µM against AChE and BuChE), used as a reference drug. Among these compounds, analog 10 with IC50 values of 6.70 µM and 7.10 µM against AChE and BuChE emerged as the lead compound of the series with promising biological efficacy against targeted enzymes. Molecular docking revealed the interactive nature of active ligands against target enzymes. These compounds were also assessed under dynamic conditions to examine the structural deviation and conformational changes in a protein complex structure. DFT calculations provided the relative stability and reactivity of the lead compounds. An ADMET analysis showed that these compounds have no toxicological profile. Conclusions: This research study paves the way for the further development and optimization of novel and selective imidazotriazole-based thiazolidinone inhibitors as potent anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Manal M. Khowdiary
- Department of Chemistry, Faculty of Applied Science, University College-Al Leith, University of Umm Al-Qura, Makkah 21955, Saudi Arabia
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan
| | - Tayyiaba Iqbal
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara Univeristy, Mansehra 21120, Pakistan
| | - Muhammad Bilal Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan
| | - Zanib Fiaz
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan
| | - Hakimullah
- Department of Chemistry, Balochistan University of Information and Technology, Engineering & Management Sciences, Quetta 87300, Pakistan
| |
Collapse
|
5
|
Faheem I, Nagaraja V. Multifunctional Mycobacterial Topoisomerases with Distinctive Features. ACS Infect Dis 2025; 11:366-385. [PMID: 39825760 DOI: 10.1021/acsinfecdis.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, Mycobacterium tuberculosis retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task. DNA topoisomerases make up a unique class of ubiquitous enzymes that ensure steady-state level supercoiling and solve topological problems occurring during DNA transactions in cells. They continue to be attractive targets for the discovery of novel classes of antibacterials and to develop better molecules from existing drugs by virtue of their reaction mechanism. The limited repertoire of topoisomerases in M. tuberculosis, key differences in their properties compared to topoisomerases from other bacteria, their essentiality for the pathogen's survival, and validation as candidates for drug discovery provide an opportunity to exploit them in drug discovery efforts. The present review provides insights into their organization, structure, function, and regulation to further efforts in targeting them for new inhibitor discovery. First, the structure and biochemical properties of DNA gyrase and Topoisomerase I (TopoI) of mycobacteria are described compared to the well-studied counterparts from other bacteria. Next, we provide an overview of known inhibitors of DNA gyrase and emerging novel bacterial topoisomerase inhibitors (NBTIs). We also provide an update on TopoI-specific compounds, highlighting mycobacteria-specific inhibitors.
Collapse
Affiliation(s)
- Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
6
|
Indalkar S, Kumar Sahoo D, Bhange DS, Waghmode M, Shekh S, Gaikwad LD, Gadave KM. Pyrimidine-based sulfonamides and acetamides as potent antimicrobial Agents: Synthesis, Computational Studies, and biological assessment. Bioorg Chem 2024; 151:107667. [PMID: 39067418 DOI: 10.1016/j.bioorg.2024.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
A series of novel sulfonamide and acetamide derivatives of pyrimidine were synthesized and their antimicrobial activities were assessed. Based on the Microbroth dilution method, the minimum inhibitory concentration (MIC) of the synthesized compounds demonstrated moderate to good levels of antifungal and antibacterial activity. Structure-activity relationship analysis suggested that the presence of electron-withdrawing groups, such as halogens, nitrile, and nitro groups, on the pyrimidine ring contributed to the enhanced antimicrobial potency, while electron-donating substituents led to a decrease in activity. Computational studies, including density functional theory (DFT), frontier molecular orbitals (FMO), and molecular electrostatic potential (MEP) analysis, provided insights into the electronic properties and charge distribution of the compounds. Drug-likeness evaluation using ADME/Tox analysis indicated that the synthesized compounds possess favorable physicochemical properties and could be potential drug candidates. Molecular docking against the Mycobacterium TB protein tyrosine phosphatase B (MtbPtpB) revealed that the synthesized compounds exhibited strong binding affinities (-46 kcal/mol to - 61 kcal/mol) and formed stable protein-ligand complexes through hydrogen bonding and π-π stacking interactions with key residues in the active site. The observed interactions from the docking simulations were consistent with the predicted interaction sites identified in the FMO and MEP analyses. These findings suggest that the synthesized pyrimidine derivatives could serve as promising antimicrobial agents and warrant further investigation for drug development.
Collapse
Affiliation(s)
- Supriya Indalkar
- Department of Chemistry Prof. Ramakrishna Arts Commerce and Science College, Savitribai Phule Pune University, India; Department of Chemistry, Dr. D.Y. Patil Arts, Commerce & Science College, Pimpri, Savitribai Phule Pune University, India.
| | - Dipak Kumar Sahoo
- School of Sciences, Woxsen University, Kamkole, Sadasivpet, Sangareddy District, Hyderabad 502345, Telangana, India.
| | - Dattatraya S Bhange
- Department of Chemistry Prof. Ramakrishna Arts Commerce and Science College, Savitribai Phule Pune University, India
| | | | - Shamasoddin Shekh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Lalaso D Gaikwad
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| | - Kisan M Gadave
- Annasaheb Magar College, Savitribai, Phule Pune University, India.
| |
Collapse
|
7
|
Zang ZL, Gao WW, Zhou CH. Unique aminothiazolyl coumarins as potential DNA and membrane disruptors towards Enterococcus faecalis. Bioorg Chem 2024; 148:107451. [PMID: 38759357 DOI: 10.1016/j.bioorg.2024.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Yan Y, Xie X, Jiang W, Bao A, Deng Z, Wang D, Wang J, Li W, Tang X. Novel Pyrido[4,3- d]pyrimidine Derivatives as Potential Sterol 14α-Demethylase Inhibitors: Design, Synthesis, Inhibitory Activity, and Molecular Modeling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12260-12269. [PMID: 38759097 DOI: 10.1021/acs.jafc.3c09543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 μg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 μg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 μg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.
Collapse
Affiliation(s)
- Yingkun Yan
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiansong Xie
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Wenjing Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Ailing Bao
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Ziquan Deng
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Deyuan Wang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Jingwen Wang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Weiyi Li
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiaorong Tang
- School of Science, Xihua University, Chengdu 610039, PR China
| |
Collapse
|
9
|
Li W, Yang X, Ahmad N, Zhang SL, Zhou CH. Novel aminothiazoximone-corbelled ethoxycarbonylpyrimidones with antibiofilm activity to conquer Gram-negative bacteria through potential multitargeting effects. Eur J Med Chem 2024; 268:116219. [PMID: 38368710 DOI: 10.1016/j.ejmech.2024.116219] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
The emergence of drug-resistant microorganisms threatens human health, and it is usually exacerbated by the formation of biofilm, which forces the development of new antibacterial agents with antibiofilm activity. In this work, a novel category of aminothiazoximone-corbelled ethoxycarbonylpyrimidones (ACEs) was designed and synthesized, and some of the prepared ACEs showed potent bioactivity against the tested bacteria. In particular, imidazolyl ACE 6c showed better inhibitory activity towards Acinetobacter baumannii and Escherichia coli with MIC values both of 0.0066 mmol/L than norfloxacin. It was also revealed that imidazolyl ACE 6c not only possessed inconspicuous hemolytic rate and cytotoxicity, low drug resistance and no risk of penetrating the blood-brain barrier, but also exhibited obvious biofilm inhibition and eradication activities. The preliminary mechanism research suggested that imidazolyl ACE 6c could induce metabolic dysfunction by deactivating lactate dehydrogenase and promote the accumulation of reactive oxygen species to decrease the reduced glutathione and ultimately cause oxidative damage in bacteria. Furthermore, ACE 6c was also found that could insert into DNA to form the supramolecular complex of 6c-DNA and trigger cell death. The multidimensional effect might promote bacterial cell rupture, leading to the leakage of intracellular content. These findings manifested that novel imidazolyl ACE 6c as a potential multitargeting antibacterial agent with potent antibiofilm activity could provide new possibility for the treatment of refractory biofilm-intensified bacterial infections.
Collapse
Affiliation(s)
- Wei Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Nisar Ahmad
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Zhang J, Tan YM, Li SR, Battini N, Zhang SL, Lin JM, Zhou CH. Discovery of benzopyridone cyanoacetates as new type of potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 265:116107. [PMID: 38171147 DOI: 10.1016/j.ejmech.2023.116107] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Zhao X, Verma R, Sridhara MB, Sharath Kumar KS. Fluorinated azoles as effective weapons in fight against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2024; 143:106975. [PMID: 37992426 DOI: 10.1016/j.bioorg.2023.106975] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The rapid spread of Methicillin-resistant Staphylococcus aureus (MRSA) and its difficult-to-treat skin and filmsy diseases are making MRSA a threat to human life. The most dangerous feature is the fast emergence of MRSA resistance to all recognized antibiotics, including vancomycin. The creation of novel, effective, and non-toxic drug candidates to combat MRSA isolates is urgently required. Fluorine containing small molecules have taken a centre stage in the field of drug development. Over the last 50 years, there have been a growing number of fluorinated compounds that have been approved since the clinical usage of fluorinated corticosteroids in the 1950 s and fluoroquinolones in the 1980 s. Due to its advantages in terms of potency and ADME (absorption, distribution, metabolism, and excretion), fluoro-pharmaceuticals have been regarded as a potent and useful tool in the rational drug design method. The flexible bioactive fluorinated azoles are ideal candidates for the development of new antibiotics. This review summarizes the decade developments of fluorinated azole derivatives with a wide antibacterial activity against diverged MRSA strains. In specific, we correlated the efficacy of structurally varied fluorinated azole analogues including thiazole, benzimidazole, oxadiazole and pyrazole against MRSA and discussed different angles of structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City-719000, P. R. China
| | - Rameshwari Verma
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, P. R. China
| | - M B Sridhara
- Department of Chemistry, Rani Channamma University, Vidyasangama, Belagavi 591156, India
| | | |
Collapse
|
12
|
Natarajan R, Kumar P, Subramani A, Siraperuman A, Angamuthu P, Bhandare RR, Shaik AB. A Critical Review on Therapeutic Potential of Benzimidazole Derivatives: A Privileged Scaffold. Med Chem 2024; 20:311-351. [PMID: 37946342 DOI: 10.2174/0115734064253813231025093707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Benzimidazole nucleus is a predominant heterocycle displaying a wide spectrum of pharmacological activities. The privileged nature of the benzimidazole scaffold has been revealed by its presence in most small molecule drugs and in its ability to bind multiple receptors with high affinity. A literature review of the scaffold reveals several instances where structural modifications of the benzimidazole core have resulted in high-affinity lead compounds against a variety of biological targets. Hence, this structural moiety offers opportunities to discover novel, better, safe and highly potent biological agents. The goal of the present review is to compile the medicinal properties of benzimidazole derivatives with a focus on SAR (Structure-Activity Relationships).
Collapse
Affiliation(s)
- Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Padma Kumar
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Arunkumar Subramani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sathyabama Institute of Science and Technology, Chennai, lndia
| | - Amuthalakshmi Siraperuman
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Prabakaran Angamuthu
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, UAE
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
13
|
Rana N, Grover P, Singh H. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Curr Top Med Chem 2024; 24:541-579. [PMID: 38288806 DOI: 10.2174/0115680266290152240110074034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites. The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.
Collapse
Affiliation(s)
- Neha Rana
- School of Pharmacy (SOP), Noida International University, Yamuna Expressway, Gautam Budh Nagar, 203201, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| |
Collapse
|
14
|
Oduselu GO, Aderohunmu DV, Ajani OO, Elebiju OF, Ogunnupebi TA, Adebiyi E. Synthesis, in silico and in vitro antimicrobial efficacy of substituted arylidene-based quinazolin-4(3 H)-one motifs. Front Chem 2023; 11:1264824. [PMID: 37818483 PMCID: PMC10561392 DOI: 10.3389/fchem.2023.1264824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction: Quinazolin-4(3H)-one derivatives have attracted considerable attention in the pharmacological profiling of therapeutic drug targets. The present article reveals the development of arylidene-based quinazolin-4(3H)-one motifs as potential antimicrobial drug candidates. Methods: The synthetic pathway was initiated through thermal cyclization of acetic anhydride on anthranilic acid to produce 2-methyl-4H-3,1-benzoxazan-4-one 1, which (upon condensation with hydrazine hydrate) gave 3-amino-2-methylquinazolin-4(3H)-one 2. The reaction of intermediate 2 at its amino side arm with various benzaldehyde derivatives furnished the final products, in the form of substituted benzylidene-based quinazolin-4(3H)-one motifs 3a-l, and with thiophene-2-carbaldehyde to afford 3 m. The purified targeted products 3a-m were effectively characterized for structural authentication using physicochemical parameters, microanalytical data, and spectroscopic methods, including IR, UV, and 1H- and 13C-NMR, as well as mass spectral data. The substituted arylidene-based quinazolin-4(3H)-one motifs 3a-m were screened for both in silico and in vitro antimicrobial properties against selected bacteria and fungi. The in silico studies carried out consisted of predicted ADMET screening, molecular docking, and molecular dynamics (MD) simulation studies. Furthermore, in vitro experimental validation was performed using the agar diffusion method, and the standard antibacterial and antifungal drugs used were gentamicin and ketoconazole, respectively. Results and discussion: Most of the compounds possessed good binding affinities according to the molecular docking studies, while MD simulation revealed their levels of structural stability in the protein-ligand complexes. 2-methyl-3-((thiophen-2-ylmethylene)amino) quinazolin-4(3H)-one 3 m emerged as both the most active antibacterial agent (with an minimum inhibitory concentration (MIC) value of 1.95 μg/mL) against Staphylococcus aureus and the most active antifungal agent (with an MIC value of 3.90 μg/mL) against Candida albicans, Aspergillus niger, and Rhizopus nigricans.
Collapse
Affiliation(s)
- Gbolahan O. Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Damilola V. Aderohunmu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwadunni F. Elebiju
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Temitope A. Ogunnupebi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Cai K, Liu Y, Yue Y, Liu Y, Guo F. Essential Oil Nanoemulsion Hydrogel with Anti-Biofilm Activity for the Treatment of Infected Wounds. Polymers (Basel) 2023; 15:polym15061376. [PMID: 36987156 PMCID: PMC10054311 DOI: 10.3390/polym15061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The formation of a bacterial biofilm on an infected wound can impede drug penetration and greatly thwart the healing process. Thus, it is essential to develop a wound dressing that can inhibit the growth of and remove biofilms, facilitating the healing of infected wounds. In this study, optimized eucalyptus essential oil nanoemulsions (EEO NEs) were prepared from eucalyptus essential oil, Tween 80, anhydrous ethanol, and water. Afterward, they were combined with a hydrogel matrix physically cross-linked with Carbomer 940 (CBM) and carboxymethyl chitosan (CMC) to prepare eucalyptus essential oil nanoemulsion hydrogels (CBM/CMC/EEO NE). The physical-chemical properties, in vitro bacterial inhibition, and biocompatibility of EEO NE and CBM/CMC/EEO NE were extensively investigated and the infected wound models were proposed to validate the in vivo therapeutic efficacy of CBM/CMC/EEO NE. The results showed that the average particle size of EEO NE was 15.34 ± 3.77 nm with PDI ˂ 0.2, the minimum inhibitory concentration (MIC) of EEO NE was 15 mg/mL, and the minimum bactericidal concentration (MBC) against S. aureus was 25 mg/mL. The inhibition and clearance of EEO NE against S. aureus biofilm at 2×MIC concentrations were 77.530 ± 7.292% and 60.700 ± 3.341%, respectively, demonstrating high anti-biofilm activity in vitro. CBM/CMC/EEO NE exhibited good rheology, water retention, porosity, water vapor permeability, and biocompatibility, meeting the requirements for trauma dressings. In vivo experiments revealed that CBM/CMC/EEO NE effectively promoted wound healing, reduced the bacterial load of wounds, and accelerated the recovery of epidermal and dermal tissue cells. Moreover, CBM/CMC/EEO NE significantly down-regulated the expression of two inflammatory factors, IL-6 and TNF-α, and up-regulated three growth-promoting factors, TGF-β1, VEGF, and EGF. Thus, the CBM/CMC/EEO NE hydrogel effectively treated wounds infected with S. aureus, enhancing the healing process. It is expected to be a new clinical alternative for healing infected wounds in the future.
Collapse
Affiliation(s)
| | - Yang Liu
- Correspondence: ; Tel.: +86-754-86503093; Fax: +86-754-86502726
| | | | | | | |
Collapse
|
17
|
Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer's Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020559. [PMID: 36677616 PMCID: PMC9860845 DOI: 10.3390/molecules28020559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.
Collapse
|
18
|
Patyal M, Κaur K, Sharma P, Gupta N, Malik AK, Paul K. Nanoscale synthesis, structural elucidation, DFT, and biological activity of amide appended transition metal(II) macrocyclic complexes in drug delivery system. J COORD CHEM 2023. [DOI: 10.1080/00958972.2022.2151363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Meenakshi Patyal
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Kirandeep Κaur
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Promila Sharma
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Nidhi Gupta
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | | | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
19
|
Abdullah MN, Ali Y, Abd Hamid S. Insights into the structure and drug design of benzimidazole derivatives targeting the epidermal growth factor receptor (EGFR). Chem Biol Drug Des 2022; 100:921-934. [PMID: 34651438 DOI: 10.1111/cbdd.13974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Tyrosine kinase overexpression could result in an unfavourable consequence of cancer progression in the body. A number of kinase inhibitor drugs targeting various cancer-related protein kinases have been developed and proven successful in clinical therapy. Benzimidazole is one of the most studied scaffolds in the search for effective anticancer drugs. The association of various functional groups and the structural design of the compounds may influence the binding towards the receptor. Despite numerous publications on the design, synthesis and biological assays of benzimidazole derivatives, their inhibitory activities against epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), have not been specifically analysed. This review covers recent research reports on the anticancer activity of benzimidazole derivatives focusing on EGFR expression cell lines, based on their structure-activity relationship study. We believe it would aid researchers to envision the challenges and explore benzimidazole's potentials as tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Mar'iyah Najihah Abdullah
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
| | - Yousaf Ali
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia.,SYNTOF, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
| |
Collapse
|
20
|
Abdullah MN, Hamid SA, Salhimi SM, Jalil NAS, Al-Amin M, Jumali NS. Design and Synthesis of 1-sec/tert-Butyl-2-Chloro/Nitrophenylbenzimidazole Derivatives: Molecular Docking and In Vitro Evaluation against MDA-MB-231 and MCF-7 Cell Lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Ullah H, Zada H, Khan F, Hayat S, Rahim F, Hussain A, Manzoor A, Wadood A, Ayub K, Rehman AU, Sarfaraz S. Benzimidazole bearing thiourea analogues: Synthesis, β-glucuronidase inhibitory potential and their molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Xie J, Wang L, Zhang X, Li Y, Liao X, Yang C, Tang RY. Discovery of New Anti-MRSA Agents Based on Phenoxyethanol and Its Mechanism. ACS Infect Dis 2022; 8:2291-2306. [PMID: 36255441 DOI: 10.1021/acsinfecdis.2c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a severe threat to public health and safety. The discovery and development of novel anti-MRSA drugs with a new mode of action are a challenge. In this study, a class of novel aryloxyethyl propiolates and their homologues as anti-MRSA agents have been designed and synthesized based on phenoxyethanol, of which compound II-39 showed high inhibitory activity against MRSA with an MIC of 0.78 μg/mL and an MBC of 3.13 μg/mL, which was better than that of vancomycin. Compound II-39 could destroy the cell wall and cell membrane, inhibited the formation of a biofilm, and bound to the DNA of MRSA through the electrostatic and groove interaction. Proteomic and metabolomic studies revealed that compound II-39 affected multiple intracellular metabolic pathways of MRSA. Notably, compound II-39 could effectively inhibit the expression of CrtPQMN proteins and block the biosynthesis of virulence factor (staphyloxanthin). Thus, aryloxyethyl propiolates and their homologues are promising anti-MRSA agents with multiple targets.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Lijuan Wang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou510642, China
| | - Yiyang Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou510642, China
| | - Xin Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Caixin Yang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China.,Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou510642, China
| |
Collapse
|
23
|
Basha NJ. Therapeutic Efficacy of Benzimidazole and Its Analogs: An Update. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous Bengaluru, India
| |
Collapse
|
24
|
Ma Y, Zohaib Aslam M, Wu M, Nitin N, Sun G. Strategies and perspectives of developing anti-biofilm materials for improved food safety. Food Res Int 2022; 159:111543. [DOI: 10.1016/j.foodres.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 11/04/2022]
|
25
|
Noman EA, Radin Mohamed RMS, Al-Gheethi AA, Al-Shaibani MM, Al-Wrafy FA, Al-Maqtari QA, Vo DVN. Antibiotics and antibiotic-resistant bacteria in greywater: Challenges of the current treatment situation and predictions of future scenario. ENVIRONMENTAL RESEARCH 2022; 212:113380. [PMID: 35537493 DOI: 10.1016/j.envres.2022.113380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The current work reviews the quantitative microbiological risk assessment of antibiotic-resistant bacteria (ARB) in greywater and discusses the international strategies currently used for reducing antimicrobial resistance. The work highlights the countries that have a plan for the treatment and reuse of greywater and the current guidelines used in these countries. The paper also investigates the role of greywater in the distribution of antimicrobial resistance because of antibiotics and ARB. A bibliometric analysis was conducted for the studies on greywater, pathogenic bacteria, and antibiotics. The studies obtained from Scopus database were screened and compared to obtain the data for global antimicrobial resistance in 2000 and 2021. The strategies used by developed countries that led to the reduction in the recorded antimicrobial resistance are also listed. The challenges and limitations associated with the current plans adopted by several countries to minimise the spreading of the antimicrobial resistance are highlighted, while proposed solutions are provided. Two main issues associated with the distribution of antimicrobial resistance are (1) the absence of a plan in developing counties and presence of antimicrobial agents and ARB in the environment and (2) the difficulties in the current treatment technologies used for the removal of these antimicrobial agents from the water and wastewater. Based on the review and discussion, it was concluded that more advanced technologies are required to ensure total elimination of the antimicrobial agents and ARB from the environment. In addition, a new international standard should be drafted for the ARB in the environment, as they differ from the one currently used for medical applications.
Collapse
Affiliation(s)
- Efaq Ali Noman
- Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia; Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Adel Ali Al-Gheethi
- Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Muhanna Mohammed Al-Shaibani
- Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen
| | | | - Dai-Viet N Vo
- Centre of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
26
|
Malik A, Singh UP. Immobilized Cu‐Schiff Base Complex on MCM‐41as Catalyst in the Synthesis of Benzimidazole Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202200794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arti Malik
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 India
| | - Udai P. Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 India
| |
Collapse
|
27
|
Yang X, Syed R, Fang B, Zhou C. A new discovery towards novel skeleton of benzimidazole‐conjugated pyrimidinones as unique effective antibacterial agents. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Rasheed Syed
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Cheng‐He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
28
|
Aloe emodin-conjugated sulfonyl hydrazones as novel type of antibacterial modulators against S. aureus 25923 through multifaceted synergistic effects. Bioorg Chem 2022; 127:106035. [PMID: 35870413 DOI: 10.1016/j.bioorg.2022.106035] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Aloe emodin-conjugated sulfonyl hydrazones were designed and synthesized as novel type of antibacterial modulators. Aloe emodin benzenesulfonyl hydrazone 5a (AEBH-5a) was preponderant for the treatment of S. aureus 25923 (MIC = 0.5 μg/mL) over norfloxacin and presented high selectivity between bacterial membranes and mammalian membranes. Especially, AEBH-5a could eliminate the formed biofilms and relieve the development of S. aureus 25923 resistance. The antibacterial mechanism of AEBH-5a from extracellularity to intracellularity illustrated that AEBH-5a could destroy bacterial membrane integrity, leading to the leakage of protein and nucleic acid. Besides, AEBH-5a could not only interact with DNA and induce oxidative stress but also inhibit lactate dehydrogenase (LDH) activity as well as render metabolic inactivation. In silico ADME studies prediction of AEBH-5a revealed a favorable bioavailability score and prominent drug-likeness profile. This research showed that the multifaceted synergistic effect initiated by aloe emodin-conjugated sulfonyl hydrazones is a reasonable and effective tactic to combat menacing bacterial infections.
Collapse
|
29
|
Tan YM, Li D, Li FF, Fawad Ansari M, Fang B, Zhou CH. Pyrimidine-conjugated fluoroquinolones as new potential broad-spectrum antibacterial agents. Bioorg Med Chem Lett 2022; 73:128885. [PMID: 35835379 DOI: 10.1016/j.bmcl.2022.128885] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
Pyrimidine-conjugated fluoroquinolones were constructed to cope with the dreadful resistance. Most of the target pyrimidine derivatives effectively suppressed the growth of the tested strains, especially, 4-aminopyrimidinyl compound 1c showed a broad antibacterial spectrum and low cytotoxicity and exhibited superior antibacterial potency against Enterococcus faecalis with a low MIC of 0.25 μg/mL to norfloxacin and ciprofloxacin. The active compound 1c with fast bactericidal potency could inhibit the formation of biofilms and showed much lower trend for the development of drug-resistance than norfloxacin and ciprofloxacin. Further exploration revealed that compound 1c could prompt ROS accumulations in bacterial cells and interact with DNA to form a DNA-1c complex, thus facilitating bacterial death. ADME analysis indicated that compound 1c possessed favorable drug-likeness and promising pharmacokinetic properties. These results demonstrated that pyrimidine-conjugated fluoroquinolones held hope as potential antibacterial candidates and deserve further study.
Collapse
Affiliation(s)
- Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Di Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
30
|
Li FF, Zhao WH, Tangadanchu VKR, Meng JP, Zhou CH. Discovery of novel phenylhydrazone-based oxindole-thiolazoles as potent antibacterial agents toward Pseudomonas aeruginosa. Eur J Med Chem 2022; 239:114521. [PMID: 35716514 DOI: 10.1016/j.ejmech.2022.114521] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
With the soaring of bacterial infection and drug resistance, it is imperative to exploit new efficient antibacterial agents. This work constructed a series of unique phenylhydrazone-based oxindole-thiolazoles to combat monstrous bacterial resistance. Some target molecules showed potent antibacterial activity, among which oxindole-thiolimidazole derived carboxyphenylhydrazone 4e exhibited an 8-fold stronger inhibitory ability than norfloxacin on the growth of P. aeruginosa, with MIC value of 1 μg/mL. Compound 4e with imperceptible hemolysis could hamper bacterial biofilm formation and significantly impede the development of bacterial resistance. Subsequent mechanism studies demonstrated that 4e could destruct bacterial cytoplasmic membrane, causing the leakage of cellular contents (protein and nucleic acid). Moreover, metabolic stagnation and intracellular oxidative stress caused by 4e expedited the death of bacteria. Furthermore, molecule 4e existed supramolecular interactions with DNA to block DNA proliferation. These research results provided a promising light for phenylhydrazone-based oxindole-thiolazoles as novel potential antibacterial agents.
Collapse
Affiliation(s)
- Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wen-Hao Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiang-Ping Meng
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
31
|
Deng Z, Sun H, Bheemanaboina RRY, Luo Y, Zhou CH. Natural aloe emodin-hybridized sulfonamide aminophosphates as novel potential membrane-perturbing and DNA-intercalating agents against Enterococcus faecalis. Bioorg Med Chem Lett 2022; 64:128695. [PMID: 35314326 DOI: 10.1016/j.bmcl.2022.128695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
The dramatic rise in drug resistance accelerated the desire for new antibacterial agents to safeguard human health. This work constructed a novel type of aloe emodin-hybridized sulfonamide aminophosphates as unique potential antibacterial agents. The biological assay revealed that some target hybrids possessed potent inhibitory activity. Particularly, ethyl aminophosphate-hybridized sulfadiazine aloe emodin 7a (EASA-7a) not only displayed preponderant antibacterial efficiency against drug-resistant E. faecalis at low concentration as 0.25 μg/mL but also possessed strong bacteriostatic capacity and low propensity to develop resistance toward E. faecalis. The weak hemolysis toward human red blood cells and efficient biofilm-disruptive ability further implied the therapeutic potential of EASA-7a. Preliminary studies disclosed that the excellent antibacterial behavior of EASA-7a might be attributed to its capacity to permeate and depolarize the bacterial membrane, as well as promote ROS accumulation and intercalate with DNA. These findings manifested that EASA-7a was worthy of further development to combat life-threatening bacterial infections.
Collapse
Affiliation(s)
- Zhao Deng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
32
|
Novel metronidazole-derived three-component hybrids as promising broad-spectrum agents to combat oppressive bacterial resistance. Bioorg Chem 2022; 122:105718. [DOI: 10.1016/j.bioorg.2022.105718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
|
33
|
Xie YP, Sangaraiah N, Meng JP, Zhou CH. Unique Carbazole-Oxadiazole Derivatives as New Potential Antibiotics for Combating Gram-Positive and -Negative Bacteria. J Med Chem 2022; 65:6171-6190. [PMID: 35389643 DOI: 10.1021/acs.jmedchem.2c00001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel carbazole-oxadiazoles were developed as new potential antibacterial agents to combat dreadful resistance. Some target compounds displayed predominant inhibitory effects on the tested Gram-positive and -negative bacteria, and carbazole-oxadiazoles 5g, 5i-k, 16a-c, and tetrazole analogues 23b-c were found to be efficient in impeding the growth of MRSA and Pseudomonas aeruginosa ATCC 27853 (MICs = 0.25-4 μg/mL). Furthermore, compounds 5g and 23b-c not only possessed rapid bactericidal ability and low tendency to develop resistance but also exhibited low cytotoxic effects toward Hek 293T, HeLa, and red blood cells (RBCs), especially molecule 5g also showed low toxicity in vivo, which showed the therapeutic potential of these compounds. Further exploration indicated that compounds 5g, 5i, and 23b-c could disintegrate the integrity of bacterial cell membranes to leak the cytoplasmic contents, thus exerting excellent antibacterial effects. These facts mean that carbazole-based antibacterial agents might have bright prospects in confronting bacterial infections.
Collapse
Affiliation(s)
- Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nagarajan Sangaraiah
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
34
|
Song D, Zhang N, Ma Y, Zhang S, Chen W, Guo T, Ma S. Acridinium-conjugated aromatic heterocycles as highly potent FtsZ inhibitors: Design, synthesis, and biological evaluation. Arch Pharm (Weinheim) 2022; 355:e2100400. [PMID: 35267210 DOI: 10.1002/ardp.202100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/05/2022]
Abstract
The epidemic of multidrug resistance (MDR) is a serious threat to public health, and new classes of antibiotics with novel mechanisms of action are in critical need. We rationally designed and efficiently synthesized three series of new chemical entities with potential antibacterial activity targeting filamenting temperature-sensitive mutant Z (FtsZ). Evaluation of these compounds against a panel of Gram-positive bacteria including MDR and vancomycin-resistant Enterococcus strains indicated that most compounds showed enhanced antibacterial efficacy, comparable or even superior to the reference drugs. The newly synthesized compounds proved to be substrates of the Escherichia coli efflux pump AcrB, thus affecting the activity. Their structure-activity relationships were summarized in detail. The most potent compound 10f quickly eliminated bacteria in a bactericidal mode, with low susceptibility to induce bacterial resistance. Further mechanistic studies with the BsFtsZ protein revealed that 10f functioned as an effective FtsZ inhibitor through altering the dynamics of FtsZ self-polymerization via a stimulatory mechanism, which leads to inhibition of cell division and cell death. Besides, 10f not only displayed no obvious cytotoxicity to mammalian cells but also had a high efficacy in a murine model of bacteremia in vivo. Regarded as a whole, our findings highlight 10f as a promising new FtsZ-targeting bactericidal agent.
Collapse
Affiliation(s)
- Di Song
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nan Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yangchun Ma
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shenyan Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weijin Chen
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shutao Ma
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
35
|
Hashem HE, Amr AEGE, Nossier ES, Anwar MM, Azmy EM. New Benzimidazole-, 1,2,4-Triazole-, and 1,3,5-Triazine-Based Derivatives as Potential EGFR WT and EGFR T790M Inhibitors: Microwave-Assisted Synthesis, Anticancer Evaluation, and Molecular Docking Study. ACS OMEGA 2022; 7:7155-7171. [PMID: 35252706 PMCID: PMC8892849 DOI: 10.1021/acsomega.1c06836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
A new series of benzimidazole, 1,2,4-triazole, and 1,3,5-triazine derivatives were designed and synthesized using a microwave irradiation synthetic approach utilizing 2-phenylacetyl isothiocyanate (1) as a key starting material. All the new analogues were evaluated as anticancer agents against a panel of cancer cell lines utilizing doxorubicin as a standard drug. Most of the tested derivatives exhibited selective cytotoxic activity against MCF-7 and A-549 cancer cell lines. Furthermore, the new target compounds 5, 6, and 7 as the most potent antiproliferative agents have been assessed as in vitro EGFRWT and EGFRT790M inhibitors compared to the reference drugs erlotinib and AZD9291. They represented more potent suppression activity against the mutated EGFRT790M than the wild-type EGFRWT. Moreover, the compounds 5, 6, and 7 down-regulated the oncogenic parameter p53 ubiquitination. A docking simulation of compound 6b was carried out to correlate its molecular structure with its significant EGFR inhibition potency and its possible binding interactions within the active site of EGFRWT and the mutant EGFRT790M.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Pharmaceutical
Chemistry Department, Drug Exploration & Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied
Organic Chemistry Department, National Research
Center, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Pharmaceutical
Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy
(Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Manal M. Anwar
- Department
of Therapeutic Chemistry, National Research
Centre, Dokki, Cairo 12622, Egypt
| | - Eman M. Azmy
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| |
Collapse
|
36
|
Yang X, Sun H, Maddili SK, Li S, Yang RG, Zhou CH. Dihydropyrimidinone imidazoles as unique structural antibacterial agents for drug-resistant gram-negative pathogens. Eur J Med Chem 2022; 232:114188. [DOI: 10.1016/j.ejmech.2022.114188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022]
|
37
|
Garadi WA, Sert Y, El Hafi M, El Ibrahimi B, Ramli Y, Mague JT, El Ghayati L, Sebbar NK, Essassi EM. One‐step Synthesis of novel
N1
‐ substituted benzimidazole derivatives: Experimental and theoretical investigations. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wedad Al Garadi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences Mohammed V University in Rabat BP Rabat Morocco
| | - Yusuf Sert
- Bozok University Department of Physics Yozgat/ Turkey
| | - Mohamed El Hafi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences Mohammed V University in Rabat BP Rabat Morocco
| | - Brahim El Ibrahimi
- Team of Physical Chemistry and Environment Faculty of Sciences, University of Ibn Zohr, P.O. Box 8106 Cité Dakhla Agadir Morocco
- Faculty of Applied Sciences, 86153 Aït Melloul IBN ZOHR University Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy Mohammed V University Rabat Morocco
| | - Joel T. Mague
- Department of Chemistry Tulane University New Orleans LA USA
| | - Lhoussaine El Ghayati
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences Mohammed V University in Rabat BP Rabat Morocco
| | - Nada Kheira Sebbar
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences Mohammed V University in Rabat BP Rabat Morocco
- Faculty of Applied Sciences, 86153 Aït Melloul IBN ZOHR University Morocco
- Laboratory of Chemistry and Environment, Applied Bioorganic Chemistry Team, Faculty of Sciences Ibn Zohr University Agadir Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences Mohammed V University in Rabat BP Rabat Morocco
| |
Collapse
|
38
|
Sun H, Huang SY, Jeyakkumar P, Cai GX, Fang B, Zhou CH. Natural Berberine-derived Azolyl Ethanols as New Structural Antibacterial Agents against Drug-Resistant Escherichia coli. J Med Chem 2021; 65:436-459. [PMID: 34964345 DOI: 10.1021/acs.jmedchem.1c01592] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural berberine-derived azolyl ethanols as new structural antibacterial agents were designed and synthesized for fighting with dreadful bacterial resistance. Partial target molecules exhibited potent activity against the tested strains, particularly, nitroimidazole derivative 4d and benzothiazole-2-thoil compound 18b, with low cytotoxicity both exerted strong antibacterial activities against multidrug-resistant Escherichia coli at low concentrations as 0.007 and 0.006 mM, respectively. Meanwhile, the active compounds 4d and 18b possessed the ability to rapidly kill bacteria and observably eradicate the E. coli biofilm by reducing exopolysaccharide content to prevent bacterial adhesion, which was conducive to alleviating the development of E. coli resistance. Preliminary mechanistic explorations suggested that the excellent antibacterial potential of molecules 4d and 18b might be attributed to their ability to disintegrate membrane, accelerate ROS accumulation, reduce bacterial metabolism, and intercalate into DNA groove. These results provided powerful information for the further exploitation of natural berberine derivatives against bacterial pathogens.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shi-Yu Huang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
39
|
Sun C, Zhang S, Qian P, Li Y, Ren W, Deng H, Jiang L. Synthesis and fungicidal activity of novel benzimidazole derivatives bearing pyrimidine-thioether moiety against Botrytis cinerea. PEST MANAGEMENT SCIENCE 2021; 77:5529-5536. [PMID: 34378332 DOI: 10.1002/ps.6593] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Botrytis cinerea is a serious plant fungus and strongly affects the yield and quality of crops. The main control strategy is the employment of fungicides. To research for efficient fungicide with novel structure, a series of novel benzimidazole derivatives bearing pyrimidine and thioether moieties were designed and synthesized. RESULTS Some target compounds such as 4h, 4i, 4k, 4l, 4m, 4s, 4t and 4u exhibited notable fungicidal activities, with half maximal effective concentration (EC50 ) values in the range 0.13-0.24 μg mL-1 , which means that their activities were comparable or higher than that of carbendazim (EC50 = 0.21 μg mL-1 ). Among them, N-(4-fluorophenyl)-2-((4-(1H-benzimidazol-2-yl)-6-(4-methoxyphenyl) pyrimidin-2-yl)thio)acetamide (4m) displayed the best activity (EC50 = 0.13 μg mL-1 ). Molecular electrostatic potential analysis of 4m elucidated that the NH moiety of benzimidazole ring was located in the positive potential region and may generate hydrogen bond with target amino acid residue. Molecular docking analysis revealed that there was one hydrogen bond and one 𝜋-𝜋 interaction between 4m and target protein. CONCLUSIONS This study demonstrated that the benzimidazole derivatives bearing pyrimidine and thioether moieties can be further optimized as a lead compound for the control of B. cinerea. The combination of molecular electrostatic potential and molecular docking analyses may provide a valuable reference for studying the interaction between the ligand and target protein. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changxing Sun
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Shuai Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Ping Qian
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Ying Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Wansheng Ren
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Hao Deng
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Lin Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, P.R. China
| |
Collapse
|
40
|
Krishnendu P R, Koyiparambath VP, Bhaskar V, Arjun B, Zachariah SM. Formulating The Structural Aspects Of Various Benzimidazole Cognates. Curr Top Med Chem 2021; 22:473-492. [PMID: 34852738 DOI: 10.2174/1568026621666211201122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazole derivatives are widely used in clinical practice as potential beneficial specialists. Recently, the neuroprotective effect of derivatives of benzimidazole moiety has also shown positive outcomes. OBJECTIVE To develop favourable molecules for various neurodegenerative disorders using the versatile chemical behaviour of the benzimidazole scaffold. METHODS About 25 articles were collected that discussed various benzimidazole derivatives and categorized them under various subheadings based on the targets such as BACE 1, JNK, MAO, choline esterase enzyme, oxidative stress, mitochondrial dysfunction in which they act. The structural aspects of various benzimidazole derivatives were also studied. CONCLUSION To manage various neurodegenerative disorders, a multitargeted approach will be the most hopeful stratagem. Some benzimidazole derivatives can be considered for future studies, which are mentioned in the discussed articles.
Collapse
Affiliation(s)
- Krishnendu P R
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - B Arjun
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| |
Collapse
|
41
|
Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front Pharmacol 2021; 12:762807. [PMID: 34803707 PMCID: PMC8597275 DOI: 10.3389/fphar.2021.762807] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, nitrogenous heterocyclic molecules have attracted a great deal of interest among medicinal chemists. Among these potential heterocyclic drugs, benzimidazole scaffolds are considerably prevalent. Due to their isostructural pharmacophore of naturally occurring active biomolecules, benzimidazole derivatives have significant importance as chemotherapeutic agents in diverse clinical conditions. Researchers have synthesized plenty of benzimidazole derivatives in the last decades, amidst a large share of these compounds exerted excellent bioactivity against many ailments with outstanding bioavailability, safety, and stability profiles. In this comprehensive review, we have summarized the bioactivity of the benzimidazole derivatives reported in recent literature (2012-2021) with their available structure-activity relationship. Compounds bearing benzimidazole nucleus possess broad-spectrum pharmacological properties ranging from common antibacterial effects to the world's most virulent diseases. Several promising therapeutic candidates are undergoing human trials, and some of these are going to be approved for clinical use. However, notable challenges, such as drug resistance, costly and tedious synthetic methods, little structural information of receptors, lack of advanced software, and so on, are still viable to be overcome for further research.
Collapse
Affiliation(s)
- Shejuti Rahman Brishty
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | | | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
42
|
Li Y, Zhang JH, Xie HX, Ge YX, Wang KM, Song ZL, Zhu KK, Zhang J, Jiang CS. Discovery of new 2-phenyl-1H-benzo[d]imidazole core-based potent α-glucosidase inhibitors: Synthesis, kinetic study, molecular docking, and in vivo anti-hyperglycemic evaluation. Bioorg Chem 2021; 117:105423. [PMID: 34717239 DOI: 10.1016/j.bioorg.2021.105423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022]
Abstract
In the present study, a series of 2-phenyl-1H-benzo[d]imidazole-based α-glucosidase inhibitors were synthesized and evaluated for their in vitro and in vivo anti-diabetic potential. Screening of an in-house library revealed a moderated α-glucosidase inhibitor, 6a with 3-(1H-benzo[d]imidazol-2-yl)aniline core, and then the structural optimization was performed to obtain more efficient derivatives. Most of these derivatives showed increased activity than 6a, and the most promising inhibitors were found to be compounds 15o and 22d with IC50 values of 2.09 ± 0.04 and 0.71 ± 0.02 µM, respectively. Fluorescence quenching experiment confirmed the direct binding of compounds 15o and 22d with α-glucosidase. Kinetic study revealed that both compounds were non-competitive inhibitors, that was consistent with the result of molecular docking studies where they located at the allosteric site of the enzyme. Cell viability evaluation demonstrated the non-cytotoxicity of 15o and 22d against LO2 cells. Furthermore, the in vivo pharmacodynamic study revealed that compound 15o showed significant hypoglycemic activity and improved oral sucrose tolerance, comparable to the positive control acarbose.
Collapse
Affiliation(s)
- Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Ling Song
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
43
|
Chedupaka R, Papisetti V, Sangolkar AA, Vedula RR. A Facile One-Pot Synthesis of Benzimidazole-Linked Pyrrole Structural Motifs via Multicomponent Approach: Design, Synthesis, and Molecular Docking Studies. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1995010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Raju Chedupaka
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Venkatesham Papisetti
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | | | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
44
|
Antibacterial and molecular docking studies of newly synthesized nucleosides and Schiff bases derived from sulfadimidines. Sci Rep 2021; 11:17953. [PMID: 34504157 PMCID: PMC8429437 DOI: 10.1038/s41598-021-97297-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/23/2021] [Indexed: 11/15/2022] Open
Abstract
A new series of nucleosides, moieties, and Schiff bases were synthesized from sulfadimidine. Infrared (IR), 1HNMR, 13C NMR, and mass spectrometry techniques and elemental analysis were employed to elucidate the synthesized compounds. The prepared analogues were purified by different chromatographic techniques (preparative TLC and column chromatography). Molecular docking studies of synthesized compounds 3a, 4b, 6a, and 6e demonstrated the binding mode involved in the active site of DNA gyrase. Finally, all synthesized compounds were tested against selected bacterial strains. The most effective synthesized compounds against S. aureus were 3a, 4d, 4b, 3b, 3c, 4c, and 6f, which exhibited inhibition zones of inhibition of 24.33 ± 1.528, 24.67 ± 0.577, 23.67 ± 0.577, 22.33 ± 1.528, 18.67 ± 1.528 and 19.33 ± 0.577, respectively. Notably, the smallest zones were observed for 4a, 6d, 6e and 6g (6.33 ± 1.528, 11.33 ± 1.528, 11.67 ± 1.528 and 14.66 ± 1.155, respectively). Finally, 6b and 6c gave negative zone values. K. pneumoniae was treated with the same compounds and the following results were obtained. The most effective compounds were 4d, 4c, 4b and 3c, which showed inhibition zones of 29.67 ± 1.528, 24.67 ± 0.577, 23.67 ± 1.155 and 19.33 ± 1.528, respectively, followed by 4a and 3d (15.33 ± 1.528 for both), while moderate results (13.67 ± 1.155 and 11.33 ± 1.528) were obtained for 6f and 6g, respectively. Finally, 6a, 6b, 6c, 3a, and 3b did not show any inhibition. The most effective compounds observed for the treatment of E. coli were 4d, 4b, 4c, 3d, 6e and 6f (inhibition zones of 26.33 ± 0.577, 21.67 ± 1.528, 21.67 ± 1.528, 19.67 ± 1.528, 17.67 ± 1.155 and 16.67 ± 1.155, respectively). Compounds 3b, 3c, 6a, 6c, and 6g gave moderate results (13.67 ± 1.528, 12.67 ± 1.528, 11.33 ± 0.577, 15.33 ± 1.528 and 12.67 ± 1.528, respectively), while 6b showed no effect. The MIC values against S. aureus ranged from 50 to 3.125 mg, while those against E. coli and K. pneumoniae ranged from 50 to 1562 mg. In vitro, the antibacterial effects were promising. Further research is required to study the in vivo antibacterial effects of these compounds and determine therapeutic doses.
Collapse
|
45
|
Bheemanaboina RRY, Wang J, Hu YY, Meng JP, Guan Z, Zhou CH. A facile reaction to access novel structural sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents. Bioorg Med Chem Lett 2021; 47:128198. [PMID: 34119615 DOI: 10.1016/j.bmcl.2021.128198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
A novel type of sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents was constructed via the unique ring-opened reaction of oxiranes by imidazoles for the first time. Some developed target hybrids showed potential antimicrobial potency against the tested microbes. Especially, imidazole derivative 5f could strongly suppressed the growth of MRSA (MIC = 4 μg/mL), which was 2-fold and 16-fold more potent than the positive control sulfathiazole and norfloxacin. This compound exhibited quite low propensity to induce bacterial resistance. Antibacterial mechanism exploration indicated that compound 5f could embed in MRSA DNA to form steady 5f-DNA complex, which possibly hinder DNA replication to exert antimicrobial behavior. Molecular docking showed that molecule 5f could bind with dihydrofolate synthetase through hydrogen bonds. These results implied that imidazole derivative 5f could be served as a promising molecule for the exploration of novel antibacterial candidates.
Collapse
Affiliation(s)
- Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi Guan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
46
|
Sun C, Zhang S, Qian P, Li Y, Deng H, Ren W, Jiang L. Synthesis and fungicidal activity of novel 2-(2-alkylthio-6-phenylpyrimidin-4-yl)-1H-benzimidazoles. Bioorg Med Chem Lett 2021; 47:128210. [PMID: 34157391 DOI: 10.1016/j.bmcl.2021.128210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
With the aim of exploring new benzimidazole derivative with high fungicidal activity, a series of novel 2-(2-(alkylthio)-6-phenylpyrimidin-4-yl)-1H-benzimidazoles were designed and synthesized, and their in vitro fungicidal activities were evaluated. Compounds 5a, 5f, 5g, 5h, 5i and 5l exhibited excellent fungicidal activities against Botrytis cinerea, and 5c, 5f, 5h, 5i and 5l displayed notable fungicidal activities against Sclerotinia sclerotiorum. Among them, compound 5i (R1 = fluorine, R2 = benzyl) displayed the best activity towards the two tested fungi. Docking study of 5i with β-tubulin protein revealed that the NH moiety of benzimidazole ring generated a hydrogen bond with Gln-11 residue, and the fluorine atom of benzene ring formed a hydrogen bond with Tyr-208 residue, respectively; the benzene ring of Tyr-222 and the pyrimidine ring of 5i yielded a π-π interaction. The molecular electrostatic potential analysis elucidated the nitrogen atom of benzimidazole ring, fluorine atom of benzene ring and sulfur atom of thioether moiety were located in the negative potential regions, whereas some hydrogen atoms of benzene, benzimidazole and pyrimidine rings were located in the positive potential regions. This analysis demonstrated the reason why 5i can form hydrogen bonds with amino acid residues of target protein.
Collapse
Affiliation(s)
- Changxing Sun
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Shuai Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Ping Qian
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Hao Deng
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Wansheng Ren
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Lin Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
47
|
Sharghi H, Mashhadi E, Aberi M, Aboonajmi J. Synthesis of novel benzimidazoles and benzothiazoles via furan‐2‐carboxaldehydes,
o
‐phenylenediamines, and 2‐aminothiophenol using Cu(II) Schiff‐base@SiO
2
as a nanocatalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| | - Elahe Mashhadi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| | - Mahdi Aberi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Shiraz Branch Technical and Vocational University (TVU) Shiraz Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| |
Collapse
|
48
|
Marinescu M. Synthesis of Antimicrobial Benzimidazole-Pyrazole Compounds and Their Biological Activities. Antibiotics (Basel) 2021; 10:1002. [PMID: 34439052 PMCID: PMC8389006 DOI: 10.3390/antibiotics10081002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
The synthesis of new compounds with antimicrobial and antiviral properties is a central objective today in the context of the COVID-19 pandemic. Benzimidazole and pyrazole compounds have remarkable biological properties, such as antimicrobial, antiviral, antitumor, analgesic, anti-inflammatory, anti-Alzheimer's, antiulcer, antidiabetic. Moreover, recent literature mentions the syntheses and antimicrobial properties of some benzimidazole-pyrazole hybrids, as well as other biological properties thereof. In this review, we aim to review the methods of synthesis of these hybrids, the antimicrobial activities of the compounds, their correlation with various groups present on the molecule, as well as their pharmaceutical properties.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
49
|
Das S, Maity S, Ghosh P, Dutta A. The ninhydrin core as carbonyl source to access 2-(2′-hydroxyaryl)benzimidazoles exploiting the ortho selectivity of ninhydrin-phenol adducts. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1960379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, India
| | - Suvendu Maity
- Department of Chemistry, R K Mission Residential College, Narendrapur, Kolkata, India
| | - Prasanta Ghosh
- Department of Chemistry, R K Mission Residential College, Narendrapur, Kolkata, India
| | - Arpita Dutta
- Department of Chemistry, Rishi Bankim Chandra Evening College, Naihati, India
| |
Collapse
|
50
|
Sun H, Ansari MF, Fang B, Zhou CH. Natural Berberine-Hybridized Benzimidazoles as Novel Unique Bactericides against Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7831-7840. [PMID: 34228443 DOI: 10.1021/acs.jafc.1c02545] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural berberine-hybridized benzimidazoles as potential antibacterial agents were constructed to treat Staphylococcus aureus infection in the livestock industry. Bioassay showed that some new berberine-benzimidazole hybrids exhibited potent antibacterial efficacies, especially, the 2,4-dichlorobenzyl derivative 7d not only showed strong activity against S. aureus ATCC 29213 with the MIC value of 0.006 mM but also effectively eradicated bacterial biofilm and exhibited low toxicity toward mammalian cells. The drug combination experiments showed that compound 7d together with norfloxacin could enhance the antibacterial efficacy. Moreover, the 2,4-dichlorobenzyl derivative 7d did not show obvious propensity to develop bacterial resistance. Preliminary mechanism studies revealed that the active molecule 7d could damage the membrane integrity, stimulate ROS generation, and bind with DNA as well as S. aureus sortase A, thus exerting powerful antibacterial ability. In light of these facts, berberine-benzimidazole hybrid 7d showed a large potentiality as a new bactericide for treating S. aureus in the livestock industry.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|