1
|
Zhang K, Xing T, Ding L, Pannecouque C, De Clercq E, Corona A, Dettori L, Tramontano E, Wang S, Chen FE. Deuteration Strategy-Inspired Design of Novel Diarylpyrimidine Derivatives as Potent Non-Nucleoside Reverse Transcriptase Inhibitors Featuring Improved Efficacy, Selectivity, and Druggability. J Med Chem 2025; 68:8564-8577. [PMID: 40186564 DOI: 10.1021/acs.jmedchem.5c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Deuteration strategy holds significant importance in the field of drug development. In this study, the deuteration strategy was applied to incorporate deuterated methyl groups at the metabolic sites where methyl groups were originally present, with the expectation of improving the anti-HIV activity, safety, and druggability. Among the deuterated compounds, the exemplary compound 5a (ZK-316) exhibited potent and broad-spectrum activity against wild-type and clinically observed mutant strains, with EC50 values ranging from 0.99 to 75.1 nM, surpassing that of the hit compound 3 (EC50 = 1.86-795.76 nM). Moreover, low cytotoxicity was exhibited by ZK-316 (CC50 > 225 nM), which was over 36.8 times lower than that of compound 3, and high selectivity was also shown. Not only was there no apparent inhibition of cytochrome P450 (CYP) enzymes, but also low human ether-à-go-go-related gene (hERG) toxicity was found. And favorable pharmacokinetic profiles were shown as well, with a bioavailability of 29%, all of which indicated its promising druggability. Additionally, the identification of the metabolites of ZK-316 was carried out to verify the stability of the deuterated methyl groups within human liver microsomes. These results offer valuable insights into the development of deuterated non-nucleoside reverse transcriptase inhibitors (NNRTIs) for human immunodeficiency virus (HIV) therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianhao Xing
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li Ding
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Angela Corona
- Department of Life and Environmetal Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Laura Dettori
- Department of Life and Environmetal Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmetal Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Rahman SMA, Singh G, Khan MS, Balasubramaniam AK, Monga V. Recent developments of pyrimidine appended HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Chem 2025; 157:108273. [PMID: 40037028 DOI: 10.1016/j.bioorg.2025.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is an ailment that progressively weakens the immune system and is responsible for being the sole cause of 630,000 deaths worldwide in 2023. It is a potentially fatal condition that promotes the growth of malignancies and secondary infection. Viruses like Human Immunodeficiency Virus (HIV-1) and Hepatitis B virus (HBV) employ an enzyme, reverse transcriptase (RT), to replicate their genomes and spread across the host genome. RT has proved to be one of the most important therapeutic targets for the treatment of AIDS as well as for the development of new HIV-1 medications. The pyrimidine nucleus has been described as a dynamic cornerstone in developing new anti-HIV-1 medications and represents a familiar motif found in various marketed anti-HIV-1 drugs, such as diaryl pyrimidines (DAPYs). The rapid emergence of drug-resistant viral strains due to mutations in the HIV-1 RT structure along with their unfavourable pharmacokinetics present new challenges. Recent years have witnessed tremendous progress in the design and discovery of new substituted pyrimidines as potent and selective non-nucleoside reverse transcriptase inhibitors (NNRTIs). Further, the current developments in the field of X-ray crystallography and molecular modeling have remarkably augmented the design strategies, with simultaneous improvement in the resistance profiles. This article comprehensively reviews recent trends in the design and development of pyrimidine-based HIV-1 NNRTIs. The study emphasizes their biological activities, structure-activity relationship, and docking studies to guide the rational design of NNRTIs with desired potency, safety, and efficacy.
Collapse
Affiliation(s)
- S Maheen Abdul Rahman
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, India
| | - Mhd Shabbu Khan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Arun Kumar Balasubramaniam
- Department of Pharmaceutical Sciences, Joan M. Lafleur College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas 77004, USA
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
3
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2025; 45:426-483. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Kale MA, Jain MV. Drug Discovery and Exploration of Heterocycles for the Development of Anti-HIV Agents. Infect Disord Drug Targets 2025; 25:e18715265290911. [PMID: 39185647 DOI: 10.2174/0118715265290911240611072422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 08/27/2024]
Abstract
It is a known fact that HIV infection remains a serious public health problem throughout the world, and the need to constantly develop new antiretroviral drugs to combat HIV emerges from the fact that repetitive mutations occurring in viral enzymes make this virus resistant to antiretroviral drugs. This resistance causes failure of treatment, and hence, for many years, extensive research has been to discover newer possibilities for fighting this disease at a molecular level, along with many long-standing and expensive clinical trials. Many scientific research programs have either been discarded or unsuccessful. However, the research has not stopped, and in the process, many heterocyclic scaffolds have been used to build up novel drug molecules to combat this disease. A literature survey reveals that many heterocycles have been explored and were found to be very useful in treating different types of viral infections. This concise and rigorous literature explains the journey and highlights the various strategies to develop new anti-HIV drug candidates.
Collapse
Affiliation(s)
- Mayura A Kale
- Government College of Pharmacy, Karad, Maharashtra, India
| | - Mamata V Jain
- Government College of Pharmacy, Aurangabad, Maharashtra, India
| |
Collapse
|
5
|
Nie MZ, Zhang SS, Gu SX, Long J, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors (2019-2023). Eur J Med Chem 2024; 280:116973. [PMID: 39432934 DOI: 10.1016/j.ejmech.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a vital cornerstone of highly active antiretroviral therapy (HAART) regimens, owing to their unique antiviral activity, low toxicity and high specificity. Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine and rilpivirine, have attracted extensive attention due to their high anti-HIV potency. However, rapid emergence of resistant mutations, suboptimal pharmacokinetics (PK), and toxicity remain significant challenges. Recent structural modifications of DAPY analogues have focused on improving resistance profiles, optimizing PK properties (such as half-life and bioavailability), diversifying core structures through scaffold hopping, refining side-chain structures to enhance activity and selectivity, and reducing toxicity and side effects. Moreover, developing new DAPY analogues with broad-spectrum antiviral activity has become a key research priority. This review provides a comprehensive overview of the evolution of DAPYs from 2019 to 2023, including scaffold hopping and structural modifications of the right wing, left wing, central pyrimidine core, and linker, affording valuable insights for the future development of effective HIV-1 inhibitors.
Collapse
Affiliation(s)
- Mu-Zi Nie
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
6
|
Li J, Ye B, Gao S, Liu X, Zhan P. The latest developments in the design and discovery of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of HIV. Expert Opin Drug Discov 2024; 19:1439-1456. [PMID: 39397419 DOI: 10.1080/17460441.2024.2415309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION This review encapsulates the recent strides in the development of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, focusing on the novel structural designs that promise to overcome limitations of existing therapies, such as drug resistance and toxicity. AREAS COVERED We underscore the application of computational chemistry and structure-based drug design in refining NNRTIs with enhanced potency and safety. EXPERT OPINION Highlighting the emergence of diverse chemical scaffolds like diarylpyrimidines, indoles, DABOs and HEPTs, the review reveals compounds with nanomolar efficacy and improved pharmacokinetics. The integration of artificial intelligence in drug discovery is poised to accelerate the evolution of NNRTIs, laying the foundation for addressing drug resistance in the era of anti-HIV therapy through innovative designs and multi-target strategies.
Collapse
Affiliation(s)
- Junyi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
7
|
Dorababu A. Development of diarylpyrimidine derivatives (& other heterocycles) as HIV-1 and WT RT inhibitors. RSC Med Chem 2024:d4md00697f. [PMID: 39659445 PMCID: PMC11626402 DOI: 10.1039/d4md00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Reverse transcriptase (RT) is an enzyme encoded by the genetic material of retroviruses. Viruses such as HIV and hepatitis B employ an enzyme reverse transcriptase (RT) to generate complementary DNA from the RNA template during reverse transcription. Thus, viruses replicate their genomes and proliferate within the host genome. In particular, researchers are concerned about the pathogenic viruses that cause numerous diseases through this mechanism. The retroviruses that cause diseases in humans include human immunodeficiency virus (HIV), which causes AIDS, and human T-cell lymphotropic virus I (HTLV-1), which causes leukemia. HIV has been the most devastating health problem for decades. The number of recorded HIV cases was found to be approximately 39 million worldwide in 2022. Acquired immune deficiency syndrome (AIDS), most devastating disease caused by HIV-1 needs potent antiretroviral therapy for treatment. Among the effective treatments for AIDS, NNRTIs are key drugs in highly active antiretroviral therapy (HAART). Heterocyclic small molecules play an important role in drug discovery for treatment of HIV-1 infection. Particularly, diarylpyrimidines class of drugs have shown promising activity. In this review, anti-HIV-1 activity and RT inhibitory activity of heterocycle small molecules focusing mostly on diarylpyrimidines was discussed. Furthermore, structure-activity relationship was discussed emphasizing most potent molecules.
Collapse
|
8
|
Huang WJ, Pannecouque C, De Clercq E, Wang S, Chen FE. Structure-based discovery of novel piperidine-biphenyl-DAPY derivatives as non-nucleoside reverse transcriptase inhibitors featuring improved potency, safety, and selectivity: From piperazine-biphenyl-DAPYs to piperidine-biphenyl-DAPYs. Eur J Med Chem 2024; 276:116668. [PMID: 38996652 DOI: 10.1016/j.ejmech.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Starting from our previously reported nonnucleoside reverse transcriptase inhibitor (NNRTI, 3), continuous efforts were made to enhance its potency and safety through a structure-based drug design strategy. This led to the discovery of a series of novel piperidine-biphenyl-diarylpyrimidines (DAPYs). Compound 10p, the most active compound in this series, exhibited an EC50 value of 6 nM against wide-type HIV-1 strain, which was approximately 560-fold more potent than the initial compound 3 (EC50 = 3.36 μM). Furthermore, significant improvements were observed in cytotoxicity and selectivity (CC50 > 202.17 μM, SI > 33144) compared to compound 3 (CC50 = 14.84 μM, SI = 4). Additionally, compound 10p demonstrated increased inhibitory activity against clinically mutant virus strains (EC50 = 7-63 nM). Further toxicity evaluation revealed that compound 10p exhibited minimal CYP enzyme and hERG inhibition. Importantly, single-dose acute toxicity testing did not result in any fatalities or noticeable pathological damage in mice. Therefore, compound 10p can be regarded as a lead candidate for guiding further development of biphenyl-diarylpyrimidine NNRTIs with favorable druggability for HIV therapy.
Collapse
Affiliation(s)
- Wen-Juan Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
| |
Collapse
|
9
|
Wang JS, Zhao KX, Zhang K, Pannecouque C, De Clercq E, Wang S, Chen FE. Structure-guided design of novel biphenyl-quinazoline derivatives as potent non-nucleoside reverse transcriptase inhibitors featuring improved anti-resistance, selectivity, and solubility. Bioorg Chem 2024; 147:107340. [PMID: 38593532 DOI: 10.1016/j.bioorg.2024.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.
Collapse
Affiliation(s)
- Jin-Si Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Ke-Xin Zhao
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Kun Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49 B-3000, Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| | - Fen-Er Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| |
Collapse
|
10
|
Sang Z, Zhang T, Wang Z, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Design and synthesis of Fsp 3-enriched spirocyclic-substituted diarylpyrimidine derivatives as novel HIV-1 NNRTIs. Chem Biol Drug Des 2024; 103:e14510. [PMID: 38519265 DOI: 10.1111/cbdd.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
In this study, a novel series of diarylpyrimidine derivatives with Fsp3-enriched spirocycles were designed and synthesized to further explore the chemical space of the hydrophobic channel of the NNRTI-binding pocket. The biological evaluation results showed that most of the compounds displayed effective inhibitory potency against the HIV-1 wild-type strain, with EC50 values ranging from micromolar to submicromolar levels. Among them, TT6 turned out to be the most effective inhibitor with an EC50 value of 0.17 μM, demonstrating up to 47 times more active than that of reference drug 3TC (EC50 = 8.01 μM). More encouragingly, TT6 was found to potently inhibit the HIV-1 mutant strain K103N with an EC50 value of 0.69 μM, being about 6-fold more potent than 3TC (EC50 = 3.68 μM) and NVP (EC50 = 4.62 μM). Furthermore, TT6 exhibited the most potent inhibitory activity toward HIV-1 reverse transcriptase with an IC50 value of 0.33 μM. Additionally, molecular simulation studies were conducted to investigate the binding modes between TT6 and NNRTI-binding pocket, which may provide valuable clues for the follow-up structural optimizations.
Collapse
Affiliation(s)
- Zihao Sang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
11
|
Yadav Y, Singh K, Sharma S, Mishra VK, Sagar R. Recent Efforts in Identification of Privileged Scaffolds as Antiviral Agents. Chem Biodivers 2023; 20:e202300921. [PMID: 37589569 DOI: 10.1002/cbdv.202300921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
Viral infections are the most important health concern nowadays to mankind, which is unexpectedly increasing the health complications and fatality rate worldwide. The recent viral infection outbreak developed a pressing need for small molecules that can be quickly deployed for the control/treatment of re-emerging or new emerging viral infections. Numerous viruses, including the human immunodeficiency virus (HIV), hepatitis, influenza, SARS-CoV-1, SARS-CoV-2, and others, are still challenging due to emerging resistance to known drugs. Therefore, there is always a need to search for new antiviral small molecules that can combat viral infection with new modes of action. This review highlighted recent progress in developing new antiviral molecules based on natural product-inspired scaffolds. Herein, the structure-activity relationship of the FDA-approved drugs along with the molecular docking studies of selected compounds have been discussed against several target proteins. The findings of new small molecules as neuraminidase inhibitors, other than known drug scaffolds, Anti-HIV and SARS-CoV are incorporated in this review paper.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
12
|
Vanangamudi M, Palaniappan S, Kathiravan MK, Namasivayam V. Strategies in the Design and Development of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). Viruses 2023; 15:1992. [PMID: 37896769 PMCID: PMC10610861 DOI: 10.3390/v15101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
AIDS (acquired immunodeficiency syndrome) is a potentially life-threatening infectious disease caused by human immunodeficiency virus (HIV). To date, thousands of people have lost their lives annually due to HIV infection, and it continues to be a big public health issue globally. Since the discovery of the first drug, Zidovudine (AZT), a nucleoside reverse transcriptase inhibitor (NRTI), to date, 30 drugs have been approved by the FDA, primarily targeting reverse transcriptase, integrase, and/or protease enzymes. The majority of these drugs target the catalytic and allosteric sites of the HIV enzyme reverse transcriptase. Compared to the NRTI family of drugs, the diverse chemical class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has special anti-HIV activity with high specificity and low toxicity. However, current clinical usage of NRTI and NNRTI drugs has limited therapeutic value due to their adverse drug reactions and the emergence of multidrug-resistant (MDR) strains. To overcome drug resistance and efficacy issues, combination therapy is widely prescribed for HIV patients. Combination antiretroviral therapy (cART) includes more than one antiretroviral agent targeting two or more enzymes in the life cycle of the virus. Medicinal chemistry researchers apply different optimization strategies including structure- and fragment-based drug design, prodrug approach, scaffold hopping, molecular/fragment hybridization, bioisosterism, high-throughput screening, covalent-binding, targeting highly hydrophobic channel, targeting dual site, and multi-target-directed ligand to identify and develop novel NNRTIs with high antiviral activity against wild-type (WT) and mutant strains. The formulation experts design various delivery systems with single or combination therapies and long-acting regimens of NNRTIs to improve pharmacokinetic profiles and provide sustained therapeutic effects.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, Madhya Pradesh, India;
| | - Senthilkumar Palaniappan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India;
- Center for Active Pharmaceutical Ingredients, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India
| | - Muthu Kumaradoss Kathiravan
- Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India;
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India
| | - Vigneshwaran Namasivayam
- Pharmaceutical Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
- LIED, University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
13
|
Carter ZJ, Hollander K, Spasov KA, Anderson KS, Jorgensen WL. Design, synthesis, and biological testing of biphenylmethyloxazole inhibitors targeting HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2023; 84:129216. [PMID: 36871704 PMCID: PMC10278203 DOI: 10.1016/j.bmcl.2023.129216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
We report non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) using a biphenylmethyloxazole pharmacophore. A crystal structure of benzyloxazole 1 was obtained and suggested the potential viability of biphenyl analogues. In particular, 6a, 6b, and 7 turned out to be potent NNRTIs with low-nanomolar activity in enzyme inhibition and infected T-cell assays, and with low cytotoxicity. Though modeling further suggested that analogues with fluorosulfate and epoxide warheads might provide covalent modification of Tyr188, synthesis and testing did not find evidence for this outcome.
Collapse
Affiliation(s)
- Zachary J Carter
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Klarissa Hollander
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Krasimir A Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| | | |
Collapse
|
14
|
Sang YL, Pannecouque C, De Clercq E, Wang S, Chen FE. Picomolar inhibitor of reverse transcriptase featuring significantly improved metabolic stability. Acta Pharm Sin B 2023. [PMID: 37521857 PMCID: PMC10372819 DOI: 10.1016/j.apsb.2023.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Considering the undesirable metabolic stability of our recently identified NNRTI 5 (t1/2 = 96 min) in human liver microsomes, we directed our efforts to improve its metabolic stability by introducing a new favorable hydroxymethyl side chain to the C-5 position of pyrimidine. This strategy provided a series of novel methylol-biphenyl-diarylpyrimidines with excellent anti-HIV-1 activity. The best compound 9g was endowed with remarkably improved metabolic stability in human liver microsomes (t1/2 = 2754 min), which was about 29-fold longer than that of 5 (t1/2 = 96 min). This compound conferred picomolar inhibition of WT HIV-1 (EC50 = 0.9 nmol/L) and low nanomolar activity against five clinically drug-resistant mutant strains. It maintained particularly low cytotoxicity (CC50 = 264 μmol/L) and good selectivity (SI = 256,438). Molecular docking studies revealed that compound 9g exhibited a more stable conformation than 5 due to the newly constructed hydrogen bond of the hydroxymethyl group with E138. Also, compound 9g was characterized by good safety profiles. It displayed no apparent inhibition of CYP enzymes and hERG. The acute toxicity assay did not cause death and pathological damage in mice at a single dose of 2 g/kg. These findings paved the way for the discovery and development of new-generation anti-HIV-1 drugs.
Collapse
|
15
|
Aly AA, Alshammari MB, Ahmad A, A. M. Gomaa H, G. M. Youssif B, Bräse S, A. A. Ibrahim M, Mohamed AH. Design, synthesis, docking, and mechanistic studies of new thiazolyl/thiazolidinylpyrimidine-2,4-dione antiproliferative agents. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
16
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. Current scenario on non-nucleoside reverse transcriptase inhibitors (2018-present). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
17
|
Chapala VL, Paidikondala K, M GP, Katari NK, Kerru N, Jonnalagadda SB. A New Method for Preparation of Rilpivirine Intermediate. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1933105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vijaya Lakshmi Chapala
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Kalyani Paidikondala
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Giri Prasad M
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Naresh Kumar Katari
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Nagaraju Kerru
- Department of Chemistry. GITAM School of Sciences, GITAM Deemed to be University, Bengaluru, India
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Jin X, Wang S, Zhao L, Huang W, Zhang Y, Pannecouque C, De Clercq E, Meng G, Piao H, Chen F. Development of fluorine-substituted NH2-biphenyl-diarylpyrimidines as highly potent non-nucleoside reverse transcriptase inhibitors: Boosting the safety and metabolic stability. Acta Pharm Sin B 2022; 13:1192-1203. [PMID: 36970200 PMCID: PMC10031149 DOI: 10.1016/j.apsb.2022.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Our recent studies for nonnucleoside reverse transcriptase inhibitors identified a highly potent compound JK-4b against WT HIV-1 (EC50 = 1.0 nmol/L), but the poor metabolic stability in human liver microsomes (t 1/2 = 14.6 min) and insufficient selectivity (SI = 2059) with high cytotoxicity (CC50 = 2.08 μmol/L) remained major issues associated with JK-4b. The present efforts were devoted to the introduction of fluorine into the biphenyl ring of JK-4b, leading to the discovery of a novel series of fluorine-substituted NH2-biphenyl-diarylpyrimidines with noticeable inhibitory activity toward WT HIV-1 strain (EC50 = 1.8-349 nmol/L). The best compound 5t in this collection (EC50 = 1.8 nmol/L, CC50 = 117 μmol/L) was 32-fold in selectivity (SI = 66,443) compared to JK-4b and showed remarkable potency toward clinically multiple mutant strains, such as L100I, K103N, E138K, and Y181C. The metabolic stability of 5t was also significantly improved (t 1/2 = 74.52 min), approximately 5-fold higher than JK-4b in human liver microsomes (t 1/2 = 14.6 min). Also, 5t possessed good stability in both human and monkey plasma. No significant in vitro inhibition effect toward CYP enzyme and hERG was observed. The single-dose acute toxicity test did not induce mice death or obvious pathological damage. These findings pave the way for further development of 5t as a drug candidate.
Collapse
|
19
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
20
|
Abo-Bakr AM, Alsoghier HM, Abdelmonsef AH. Molecular docking, modeling, semiempirical calculations studies and in vitro evaluation of new synthesized pyrimidin-imide derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Ding L, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Discovery of Novel Pyridine-Dimethyl-Phenyl-DAPY Hybrids by Molecular Fusing of Methyl-Pyrimidine-DAPYs and Difluoro-Pyridinyl-DAPYs: Improving the Druggability toward High Inhibitory Activity, Solubility, Safety, and PK. J Med Chem 2022; 65:2122-2138. [DOI: 10.1021/acs.jmedchem.1c01676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Li Ding
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, China
| |
Collapse
|
22
|
Ding L, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Improving Druggability of Novel Diarylpyrimidine NNRTIs by a Fragment-Based Replacement Strategy: From Biphenyl-DAPYs to Heteroaromatic-Biphenyl-DAPYs. J Med Chem 2021; 64:10297-10311. [PMID: 34197708 DOI: 10.1021/acs.jmedchem.1c00708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of novel heteroaromatic-difluoro-biphenyl-diarylpyrimidines were designed as non-nucleoside anti-HIV inhibitors targeting reverse transcriptase by a fragment-based replacement strategy with the purpose of improving the druggability. Hopping five- or six-membered heterocycle groups on the biphenyl moiety as bioisosterism for intrinsically cyanophenyl gave 23 derivatives. All of these compounds possessed excellent HIV-1 inhibitory activity in the nanomolar range. Among them, 12g with a 4-pyridine group displayed excellent inhibitory activity toward WT and mutant HIV virus possessing significant selectivity. Moreover, this compound exhibited a decent improvement in druggability than etravirine and rilpivirine: (1) The hydrochloric acid salt of 12g exhibited significantly improved water solubility in different pH conditions. (2) 12g did not show apparent CYP enzymatic inhibitory activity or acute toxicity. (3) Excellent oral bioavailability was also revealed (F = 126%, rats) in 12g. Collectively, these novel heteroaromatic-biphenyl-DAPYs represent promising drug candidates for HIV clinical therapy.
Collapse
Affiliation(s)
- Li Ding
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, China
| |
Collapse
|
23
|
Sang Y, Pannecouque C, De Clercq E, Zhuang C, Chen F. Chemical space exploration of novel naphthyl-carboxamide-diarylpyrimidine derivatives with potent anti-HIV-1 activity. Bioorg Chem 2021; 111:104905. [PMID: 33895602 DOI: 10.1016/j.bioorg.2021.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Fifteen naphthyl-carboxamide-DAPYs were generated to explore chemical space in reverse transcriptase (RT) binding site via lead optimization strategy. They displayed up to single-digit nanomolar activity against wild-type (WT) and rilpivirine-associated resistant mutant E138K viruses, as well as potent inhibitory ability toward the RT enzyme. Compound a1 showed exceptionally inhibitory effects with an EC50 value of 3.7 nM against HIV-1 wt strain, and an EC50 of 11 nM targeting mutant E138K. The structure-activity relationships (SARs) of the newly obtained DAPYs were also investigated. Molecular docking analysis elucidated the biological activity and offered a structural insight for follow-up research.
Collapse
Affiliation(s)
- Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.
| |
Collapse
|
24
|
Ding L, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Hydrophobic Pocket Occupation Design of Difluoro-Biphenyl-Diarylpyrimidines as Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors: from N-Alkylation to Methyl Hopping on the Pyrimidine Ring. J Med Chem 2021; 64:5067-5081. [PMID: 33851529 DOI: 10.1021/acs.jmedchem.1c00128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Considering the nonideal metabolic stability of the difluoro-biphenyl-diarylpyrimidine lead compound 4, a series of novel alkylated difluoro-biphenyl-diarylpyrimidines were designed and synthesized based on their structure. Introducing alkyl or substituted alkyl groups on the linker region to block the potential metabolic sensitive sites generated 22 derivatives. Among them, compound 12a with an N-methyl group displayed excellent anti-HIV-1 activity and selectivity. The methyl group was hopped to the central pyrimidine to occupy the small linker region and maintain the water-mediated hydrogen bond observed in the binding of compound 4 with RT. The resulting compound 16y exhibited an improved anti-HIV-1 activity, much lower cytotoxicity, and nanomolar activity toward multiple mutants. In addition, 16y has a better stability in human liver microsomes than 4. Moreover, no apparent in vivo acute toxicity was observed in 16y-treated female, especially pregnant mice. This series of alkylated compounds with highly potency and safety represent a promising lead template for future discovery.
Collapse
Affiliation(s)
- Li Ding
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, 310014 Hangzhou, China
| |
Collapse
|
25
|
Ding L, Zhuang C, Chen F. Druggability modification strategies of the diarylpyrimidine-type non-nucleoside reverse transcriptase inhibitors. Med Res Rev 2021; 41:1255-1290. [PMID: 33497504 DOI: 10.1002/med.21760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
Drug discovery of human immunodeficiency virus (HIV) is a hot field in medicinal chemistry community for many years. The diarylpyrimidines (DAPYs) are the second-generation non-nucleoside reverse transcriptase inhibitors (NNRTIs) targeting reverse transcriptase, playing a great irreplaceable role in HIV transcriptional therapy. However, fast-growing drug-resistant mutations as nonnegligible challenge are still unpredictably appeared in the clinical practice, leading to deactivate or reduce the existing drugs. In the last 20 years, more and more novel DAPY derivatives have developed with the purpose to counter the mutants. Nevertheless, most of them have dissatisfactory pharmacokinetics (PK) or poor antiviral activity toward resistant mutant strains. In this article, we will analyze the NNRTI derivatives with promising druggability, and summarize a series of druggability modification strategies to improve the antiviral activity, reduce toxicity and improve the PK properties in recent years. The prospects of DAPYs and the directions for future efforts will be discussed.
Collapse
Affiliation(s)
- Li Ding
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fener Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
BHARDWAJ N, CHOUDHARY D, PATHANIA A, BARANWAL S, KUMAR P. Synthesis and molecular docking studies of quinoline derivatives as HIV non-nucleoside reverse transcriptase inhibitors. Turk J Chem 2020; 44:1623-1641. [PMID: 33488258 PMCID: PMC7772092 DOI: 10.3906/kim-2004-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Quinoline moiety is an important scaffold in the field of drug discovery and drug development, with a wide range of pharmacological activities. Quinoline derivatives are potent inhibitors for reverse transcriptase, which is responsible for the conversion of single-stranded viral RNA into double-stranded viral DNA.In the present study, we have designed and synthesized 2 series, namely pyrazoline and pyrimidine containing quinoline derivatives as non nucleoside reverse transcriptase inhibitors (NNRTIs). Eleven compounds were synthesized and characterized by 1H and 13C NMR and mass spectrophotometry. The synthesized compounds were also docked on an HIV reverse transcriptase binding site (PDB: 4I2P); most of these compounds showed good binding interactions with the active domain of the receptor. Most of the compounds displayed a docking score higher than those of standard drugs. Among the synthesized quinoline derivatives, compound 4 exhibited the highest docking score (-10.675).
Collapse
Affiliation(s)
- Nivedita BHARDWAJ
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, BathindaIndia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), VaranasiIndia
| | - Diksha CHOUDHARY
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, BathindaIndia
| | - Akashdeep PATHANIA
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, BathindaIndia
| | - Somesh BARANWAL
- Department of Microbiology, Central University of Punjab, BathindaIndia
| | - Pradeep KUMAR
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, BathindaIndia
| |
Collapse
|
27
|
Gu SX, Zhu YY, Wang C, Wang HF, Liu GY, Cao S, Huang L. Recent discoveries in HIV-1 reverse transcriptase inhibitors. Curr Opin Pharmacol 2020; 54:166-172. [PMID: 33176248 DOI: 10.1016/j.coph.2020.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
HIV-1 reverse transcriptase inhibitors (RTIs) are indispensable components of highly active antiretroviral therapy (HAART), which has achieved great success in controlling AIDS epidemic in reducing drastically the morbidity and mortality of HIV-infected patients. RTIs are divided into two categories, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). In this review, the recent discoveries in NRTIs and NNRTIs, including approved anti-HIV drugs and noteworthy drug candidates in different development stages, are summarized, and their future direction is prospected.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Yuan-Yuan Zhu
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chao Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hai-Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Gen-Yan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lu Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
28
|
Chen X, Ding L, Tao Y, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Bioisosterism-based design and enantiomeric profiling of chiral hydroxyl-substituted biphenyl-diarylpyrimidine nonnucleoside HIV-1 reverse transcriptase inhibitors. Eur J Med Chem 2020; 202:112549. [DOI: 10.1016/j.ejmech.2020.112549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
|
29
|
Yang Y, Pannecouque C, Clercq ED, Zhuang C, Chen FE. Privileged scaffold inspired design of novel oxime-biphenyl-DAPYs in treatment of HIV-1. Bioorg Chem 2020; 99:103825. [DOI: 10.1016/j.bioorg.2020.103825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 11/24/2022]
|
30
|
Zhuang C, Pannecouque C, De Clercq E, Chen F. Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): our past twenty years. Acta Pharm Sin B 2020; 10:961-978. [PMID: 32642405 PMCID: PMC7332669 DOI: 10.1016/j.apsb.2019.11.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/08/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the primary infectious agent of acquired immunodeficiency syndrome (AIDS), and non-nucleoside reverse transcriptase inhibitors (NNRTIs) are the cornerstone of HIV treatment. In the last 20 years, our medicinal chemistry group has made great strides in developing several distinct novel NNRTIs, including 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT), thio-dihydro-alkoxy-benzyl-oxopyrimidine (S-DABO), diaryltriazine (DATA), diarylpyrimidine (DAPY) analogues, and their hybrid derivatives. Application of integrated modern medicinal strategies, including structure-based drug design, fragment-based optimization, scaffold/fragment hopping, molecular/fragment hybridization, and bioisosterism, led to the development of several highly potent analogues for further evaluations. In this paper, we review the development of NNRTIs in the last two decades using the above optimization strategies, including their structure–activity relationships, molecular modeling, and their binding modes with HIV-1 reverse transcriptase (RT). Future directions and perspectives on the design and associated challenges are also discussed.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- Bioisosterism
- DAPY, diarylpyrimidine
- DAPYs
- DATA, diaryltriazine
- DATAs
- DLV, delavirdine
- DOR, doravirine
- ECD, electronic circular dichroism
- EFV, efavirenz
- ETR, etravirine
- FDA, U.S. Food and Drug Administration
- Fragment-based drug design
- HAART, highly active antiretroviral therapy
- HENT, napthyl-HEPT
- HENTs
- HEPT, 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine
- HIV, human immunodeficiency virus
- HIV-1
- INSTI, integrase inhibitor
- Molecular hybridization
- NNIBP, NNRTI binding pocket
- NNRTI, non-nucleoside reverse transcriptase inhibitor
- NNRTIs
- NRTI, nucleoside reverse transcriptase inhibitor
- NVP, nevirapine
- PI, protease inhibitor
- PK, pharmacokinetic
- PROTAC, proteolysis targeting chimera
- RPV, rilpivirine
- RT, reverse transcriptase
- S-DABO, thio-dihydro-alkoxy-benzyl-oxopyrimidine
- S-DABOs
- SAR, structure–activity relationship
- SBDD, structure-based drug design
- SFC, supercritical fluid chromatography
- SI, selectivity index
- Structure-based optimization
- UNAIDS, the Joint United Nations Programme on HIV/AIDS
- ee, enantiomeric excess
Collapse
Affiliation(s)
- Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven B-3000, Belgium
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Corresponding author.
| |
Collapse
|
31
|
Li TT, Pannecouque C, De Clercq E, Zhuang CL, Chen FE. Scaffold Hopping in Discovery of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: From CH(CN)-DABOs to CH(CN)-DAPYs. Molecules 2020; 25:E1581. [PMID: 32235557 PMCID: PMC7180830 DOI: 10.3390/molecules25071581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/15/2023] Open
Abstract
Scaffold hopping is a frequently-used strategy in the development of non-nucleoside reverse transcriptase inhibitors. Herein, CH(CN)-DAPYs were designed by hopping the cyano-methylene linker of our previous published CH(CN)-DABOs onto the etravirine (ETR). Eighteen CH(CN)-DAPYs were synthesized and evaluated for their anti-HIV activity. Most compounds exhibited promising activity against wild-type (WT) HIV-1. Compounds B4 (EC50 = 6 nM) and B6 (EC50 = 8 nM) showed single-digit nanomolar potency against WT HIV-1. Moreover, these two compounds had EC50 values of 0.06 and 0.08 μM toward the K103N mutant, respectively, which were comparable to the reference efavirenz (EFV) (EC50 = 0.08 μM). The preliminary structure-activity relationship (SAR) indicated that introducing substitutions on C2 of the 4-cyanophenyl group could improve antiviral activity. Molecular docking predicted that the cyano-methylene linker was positioned into the hydrophobic cavity formed by Y181/Y188 and V179 residues.
Collapse
Affiliation(s)
- Ting-Ting Li
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Chun-Lin Zhuang
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
32
|
Ferreira Pimentel LC, Cunha AC, Boas Hoelz LV, Canzian HF, Leite Firmino Marinho DI, Boechat N, Bastos MM. Phenylamino-pyrimidine (PAP) Privileged Structure: Synthesis and Medicinal Applications. Curr Top Med Chem 2020; 20:227-243. [DOI: 10.2174/1568026620666200124094949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 12/23/2022]
Abstract
The phenylamino-pyrimidine (PAP) nucleus has been demonstrated to be useful for the development of new drugs and is present in a wide variety of antiretroviral agents and tyrosine kinase inhibitors (TKIs). This review aims to evaluate the application of PAP derivatives in drugs and other bioactive compounds. It was concluded that PAP derivatives are still worth exploring, as they may provide highly competitive ATP TKI’s with nano/picomolar activity.
Collapse
Affiliation(s)
- Luiz Claudio Ferreira Pimentel
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Anna Claudia Cunha
- Universidade Federal Fluminense, Departamento de Quimica Organica, Campus do Valonguinho, CEP 24020-150, Niteroi, RJ, Brazil
| | - Lucas Villas Boas Hoelz
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Henayle Fernandes Canzian
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Debora Inacio Leite Firmino Marinho
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Monica Macedo Bastos
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Monteiro AFM, de Oliveira Viana J, Muratov E, Scotti MT, Scotti L. In Silico Studies against Viral Sexually Transmitted Diseases. Curr Protein Pept Sci 2020; 20:1135-1150. [PMID: 30854957 DOI: 10.2174/1389203720666190311142747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Sexually Transmitted Diseases (STDs) refer to a variety of clinical syndromes and infections caused by pathogens that can be acquired and transmitted through sexual activity. Among STDs widely reported in the literature, viral sexual diseases have been increasing in a number of cases globally. This emphasizes the need for prevention and treatment. Among the methods widely used in drug planning are Computer-Aided Drug Design (CADD) studies and molecular docking which have the objective of investigating molecular interactions between two molecules to better understand the three -dimensional structural characteristics of the compounds. This review will discuss molecular docking studies applied to viral STDs, such as Ebola virus, Herpes virus and HIV, and reveal promising new drug candidates with high levels of specificity to their respective targets.
Collapse
Affiliation(s)
- Alex F M Monteiro
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Jessika de Oliveira Viana
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Engene Muratov
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Beard Hall 301, CB#7568, Chapel Hill, NC, 27599, United States
| | - Marcus T Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil.,Teaching and Research Management - University Hospital, Federal University of Paraíba, Campus I, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
34
|
Lei Y, Han S, Yang Y, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Design of Biphenyl-Substituted Diarylpyrimidines with a Cyanomethyl Linker as HIV-1 NNRTIs via a Molecular Hybridization Strategy. Molecules 2020; 25:E1050. [PMID: 32111013 PMCID: PMC7179183 DOI: 10.3390/molecules25051050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
The key problems of human immunodeficiency virus (HIV) therapy are the rapid emergence of drug-resistant mutant strains and significant cumulative drug toxicities. Therefore, there is an urgent demand for new anti-HIV agents with low toxicity and broad-spectrum antiviral potency. A series of biphenyl-substituted diarylpyrimidines with a cyanomethyl linker were designed using a molecular hybridization strategy. The cell-based anti-HIV assay showed that most of the compounds exhibited moderate to good activities against wild-type HIV-1 and clinically relevant mutant strains with a more favorable toxicity, and the enzymatic assay showed they had nanomolar activity against reverse transcriptase (RT). Compound 10p exhibited the best activity against wild-type HIV-1 with an EC50 (50% HIV-1 replication inhibitory concentration) value of 0.027 µM, an acceptable CC50 (50% cytotoxic concentration) value of 36.4 µM, and selectivity index of 1361, with moderate activities against the single mutants (EC50: E138K, 0.17 µM; Y181C, 0.87 µM; K103N, 0.9 µM; L100I, 1.21 µM, respectively), and an IC50 value of 0.059 µM against the RT enzyme, which was six-fold higher than nevirapine (NVP). The preliminary structure-activity relationship (SAR) of these new compounds was concluded. The molecular modeling predicted the binding modes of the new compounds with RT, providing molecular insight for further drug design.
Collapse
Affiliation(s)
- Yuan Lei
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (Y.L.); (Y.Y.)
| | - Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China;
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yang Yang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (Y.L.); (Y.Y.)
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China;
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (Y.L.); (Y.Y.)
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China;
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
35
|
Improving the positional adaptability: structure-based design of biphenyl-substituted diaryltriazines as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Acta Pharm Sin B 2020; 10:344-357. [PMID: 32082978 PMCID: PMC7016291 DOI: 10.1016/j.apsb.2019.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/08/2019] [Accepted: 09/20/2019] [Indexed: 02/05/2023] Open
Abstract
In order to improve the positional adaptability of our previously reported naphthyl diaryltriazines (NP-DATAs), synthesis of a series of novel biphenyl-substituted diaryltriazines (BP-DATAs) with a flexible side chain attached at the C-6 position is presented. These compounds exhibited excellent potency against wild-type (WT) HIV-1 with EC50 values ranging from 2.6 to 39 nmol/L and most of them showed low nanomolar anti-viral potency against a panel of HIV-1 mutant strains. Compounds 5j and 6k had the best activity against WT, single and double HIV-1 mutants and reverse transcriptase (RT) enzyme comparable to two reference drugs (EFV and ETR) and our lead compound NP-DATA (1). Molecular modeling disclosed that the side chain at the C-6 position of DATAs occupied the entrance channel of the HIV-1 reverse transcriptase non-nucleoside binding pocket (NNIBP) attributing to the improved activity. The preliminary structure–activity relationship and PK profiles were also discussed.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- BP-DATA, biphenyl-substituted diaryltriazine
- BP-DATAs
- CC50, 50% cytotoxicity concentration
- DAPY, diarylpyrimidine
- DATA, diaryltriazine
- EC50, the concentration causing 50% inhibition of antiviral activity
- EFV, efavirenz
- ETR, etravirine
- HEPT, 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine
- HIV, human immunodeficiency virus
- HIV-1
- MD, molecular dynamic
- Molecular modeling
- NNIBP, non-nucleoside inhibitor binding pocket
- NNRTI, non-nucleoside reverse transcriptase inhibitor
- NNRTIs
- NP-DATA, naphthyl diaryltriazine
- NP-DATAs
- NVP, nevirapine
- PK, pharmacokinetics
- Positional adaptability
- RMSD, root-mean square deviation
- RPV, rilpivirine
- RT, reverse transcriptase
- SAR, structure–activity relationship
- SI, selectivity index
- TSAO, tert-butyldimethylsilyl-spiroaminooxathioledioxide
- WT, wild-type
Collapse
|
36
|
Sang Y, Pannecouque C, De Clercq E, Zhuang C, Chen F. Pharmacophore-fusing design of pyrimidine sulfonylacetanilides as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Chem 2020; 96:103595. [PMID: 32006797 DOI: 10.1016/j.bioorg.2020.103595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/28/2022]
Abstract
Twenty-seven derivatives (40-66) were generated by pharmacophore fusing of sulfonylacetanilide-diarylpyrimidine (1) with rilpivirine or biphenyl-diarylpyrimidines. They displayed up to single-digit nanomolar activity against wild-type (WT) virus and various drug-resistant mutant strains in HIV-1-infected MT-4 cells, thereby targeting the reverse transcriptase (RT) enzyme. Compound 51 displayed exceptionally potent activity against WT virus (EC50 = 6 nM) and several mutant strains (L100I, EC50 = 8 nM, K103N, EC50 = 6 nM, Y181C, EC50 = 26 nM, Y188L, EC50 = 122 nM, E138K, EC50 = 26 nM). The structure-activity relationships of the newly obtained pyrimidine sulfonylacetanilides were also elucidated. Molecular docking analysis explained the activity and provided a structural insight for follow-up research.
Collapse
Affiliation(s)
- Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China; Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, 310014 Hangzhou, People's Republic of China.
| |
Collapse
|
37
|
Huang L, Huang R, Pang F, Li A, Huang G, Zhou X, Li Q, Li F, Ma X. Synthesis and biological evaluation of dehydroabietic acid-pyrimidine hybrids as antitumor agents. RSC Adv 2020; 10:18008-18015. [PMID: 35517208 PMCID: PMC9053630 DOI: 10.1039/d0ra02432e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
A series of novel dehydroabietic acid derivatives containing pyrimidine moieties were designed and synthesized. Some of them displayed more potent inhibitory activities compared with 5-FU.
Collapse
Affiliation(s)
- Lin Huang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Rong Huang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Fuhua Pang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Anke Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Guobao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin
- PR China
| | - Xiaoqun Zhou
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Qian Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Fangyao Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
| | - Xianli Ma
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| |
Collapse
|
38
|
Sang Y, Han S, Pannecouque C, De Clercq E, Zhuang C, Chen F. Ligand-Based Design of Nondimethylphenyl-Diarylpyrimidines with Improved Metabolic Stability, Safety, and Oral Pharmacokinetic Profiles. J Med Chem 2019; 62:11430-11436. [PMID: 31714780 DOI: 10.1021/acs.jmedchem.9b01446] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of nondimethylphenyl-diarylpyrimidines with much lower cytotoxicities than their dimethyl analogues were developed. Compound B13 with a difluorobiphenyl moiety showed the highest antiviral activity against WT, mutant strains, and RT. The hydrochloride form of B13 exhibited an improved water solubility of 5.6 μg/mL compared with ETR (≪1 μg/mL), better stability in human and rat liver microsomes, and a great oral bioavailability of 44%, making it promising as a drug candidate. In addition, no apparent toxicity was observed in the acute toxicity assay (2 g/kg) and HE staining.
Collapse
Affiliation(s)
- Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , People's Republic of China
| | - Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , People's Republic of China
| | - Christophe Pannecouque
- Rega Institute for Medical Research , KU Leuven , Herestraat 49 , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research , KU Leuven , Herestraat 49 , B-3000 Leuven , Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , People's Republic of China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , People's Republic of China.,Institute of Pharmaceutical Science and Technology , Zhejiang University of Technology , 18 Chao Wang Road , 310014 Hangzhou , China
| |
Collapse
|
39
|
Sang Y, Han S, Pannecouque C, De Clercq E, Zhuang C, Chen F. Conformational restriction design of thiophene-biphenyl-DAPY HIV-1 non-nucleoside reverse transcriptase inhibitors. Eur J Med Chem 2019; 182:111603. [DOI: 10.1016/j.ejmech.2019.111603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
40
|
Wang Y, Chang J, Wang J, Zhong P, Zhang Y, Lai CC, He Y. 3D-QSAR Studies of S-DABO Derivatives as Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180810112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
S-dihydro-alkyloxy-benzyl-oxopyrimidines (S-DABOs) as non-nucleoside
reverse transcriptase inhibitors have received considerable attention during the last decade due to
their high potency against HIV-1.
Methods:
In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) of
a series of 38 S-DABO analogues developed in our lab was studied using Comparative Molecular
Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). The
Docking/MMFF94s computational protocol based on the co-crystallized complex (PDB ID: 1RT2)
was used to determine the most probable binding mode and to obtain reliable conformations for
molecular alignment. Statistically significant CoMFA (q2=0.766 and r2=0.949) and CoMSIA
(q2=0.827 and r2=0.974) models were generated using the training set of 30 compounds on the basis
of hybrid docking-based and ligand-based alignment.
Results:
The predictive ability of CoMFA and CoMSIA models was further validated using a test
set of eight compounds with predictive r2
pred values of 0.843 and 0.723, respectively.
Conclusion:
The information obtained from the 3D contour maps can be used in designing new SDABO
derivatives with improved HIV-1 inhibitory activity.
Collapse
Affiliation(s)
- Yueping Wang
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jie Chang
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jiangyuan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| | - Peng Zhong
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yufang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| | - Christopher Cong Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Yanping He
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| |
Collapse
|
41
|
Follow on-based optimization of the biphenyl-DAPYs as HIV-1 nonnucleoside reverse transcriptase inhibitors against the wild-type and mutant strains. Bioorg Chem 2019; 89:102974. [DOI: 10.1016/j.bioorg.2019.102974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 11/24/2022]
|
42
|
Frey KM, Tabassum T. Current structure-based methods for designing non-nucleoside reverse transcriptase inhibitors. Future Virol 2019. [DOI: 10.2217/fvl-2019-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In 2019, structure-based methods continue to guide the design of novel antiretroviral therapies targeting HIV reverse transcriptase. This Review summarizes key findings from reverse transcriptase–non-nucleoside reverse transcriptase inhibitor analog crystal structure complexes reported from 2015 to 2019. Results from the literature and structure analysis have informed new ideas for structure-guided non-nucleoside reverse transcriptase inhibitor drug design.
Collapse
Affiliation(s)
- Kathleen M Frey
- Fairleigh Dickinson University, Division of Pharmaceutical Sciences, School of Pharmacy & Health Sciences, 230 Park Avenue, M-SP1-01, Florham Park, NJ 07932, USA
| | - Tasnim Tabassum
- Long Island University, Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy & Health Sciences, 75 Dekalb Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
43
|
Ahmed NM, Youns M, Soltan MK, Said AM. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma. J Enzyme Inhib Med Chem 2019; 34:1110-1120. [PMID: 31117890 PMCID: PMC6537702 DOI: 10.1080/14756366.2019.1612889] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New anticancer agents are highly needed to overcome cancer cell resistance. A novel series of pyrimidine pyrazoline-anthracene derivatives (PPADs) (4a-t) were designed and synthesised. The anti-liver cancer activity of all compounds was screened in vitro against two hepatocellular carcinoma (HCC) cell lines (HepG2 and Huh-7) as well as normal fibroblast cells by resazurin assay. The designed compounds 4a-t showed a broad-spectrum anticancer activity against the two cell lines and their activity was more prominent on cancer compared to normal cells. Compound 4e showed high potency against HepG2 and Huh-7 cell lines ((IC50=5.34 and 6.13 μg/mL, respectively) comparable to that of doxorubicin (DOX) activities. A structure activity relationship (SAR) has been investigated and compounds 4e, 4i, 4m, and 4q were the most promising anticancer agents against tested cell lines. These compounds induced apoptosis in HepG2 and Huh-7 cells through significant activation of caspase 3/7 at all tested concentrations. In conclusion, 4e could be a potent anticancer drug.
Collapse
Affiliation(s)
- Naglaa Mohamed Ahmed
- a Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Mahmoud Youns
- b Biochemistry Department, Faculty of Pharmacy , Helwan University , Cairo , Egypt.,c Department of Functional Genome Analysis , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Moustafa Khames Soltan
- d Medicinal Chemistry Department, Faculty of Pharmacy , Zagazig University , Zagazig , Egypt.,e Oman College of Health Sciences , Muscat , Sultanate of Oman
| | - Ahmed Mohammed Said
- a Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy , Helwan University , Cairo , Egypt.,f Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| |
Collapse
|
44
|
Shirvani P, Fassihi A, Saghaie L. Recent Advances in the Design and Development of Non-nucleoside Reverse Transcriptase Inhibitor Scaffolds. ChemMedChem 2018; 14:52-77. [PMID: 30417561 DOI: 10.1002/cmdc.201800577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/04/2018] [Indexed: 12/31/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have always been an important part of the anti-HIV-1 combination therapy known as combination antiretroviral therapy (cART) since 1996. The use of NNRTIs for about 22 years has led to some mutations in the residues that compose the reverse transcriptase active site, resulting in the emergence of drug-resistant viruses. Thus, the search for new potent NNRTIs with an improved safety profile and activity against drug-resistant HIV strains is indispensable, and many hit and lead NNRTIs have been discovered in the last decade. This review provides an overview of the development in this field from 2013 to August 2018.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| |
Collapse
|
45
|
Battini L, Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type‐1 non‐nucleoside reverse transcriptase inhibitors. Med Res Rev 2018; 39:1235-1273. [DOI: 10.1002/med.21544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| |
Collapse
|
46
|
Jin K, Sang Y, De Clercq E, Pannecouque C, Meng G. Design and synthesis of a novel series of non-nucleoside HIV-1 inhibitors bearing pyrimidine and N-substituted aromatic piperazine. Bioorg Med Chem Lett 2018; 28:3491-3495. [PMID: 30318436 DOI: 10.1016/j.bmcl.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 01/26/2023]
Abstract
A novel series of substituted piperazine-1-yl-pyrimidine derivatives were designed and synthesized as a new type of HIV-1 non-nucleoside inhibitors. Various N-substituted aromatic groups were incorporated into the piperazine ring through a simple and practical route to investigate the biological activity of these target compounds against wild-type and resistant strains of HIV-1. All of the target compounds were also evaluated as HIV-1 reverse transcriptase inhibitors in MT-4 cell cultures. The biological results showed that six of these compounds displayed inhibitory activities against the wild-type strain, among of which 7q and 7t were found to be the two most active analogues possessing EC50 values of 31.50 μM and 3.36 μM, respectively. Molecular modeling studies of 7q provide valuable information for developing new anti-HIV-1 inhibitors.
Collapse
Affiliation(s)
- KaiJun Jin
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - YaLi Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | - Ge Meng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.
| |
Collapse
|
47
|
Gu SX, Lu HH, Liu GY, Ju XL, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors. Eur J Med Chem 2018; 158:371-392. [PMID: 30223123 DOI: 10.1016/j.ejmech.2018.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs) have been playing an important role in the fight against acquired immunodeficiency syndrome (AIDS). Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine (TMC125) and rilpivirine (TMC278), have attracted extensive attention due to their extraordinary potency, high specificity and low toxicity. However, the rapid emergence of drug-resistant virus strains and dissatisfactory pharmacokinetics of DAPYs present new challenges. In the past two decades, an increasing number of novel DAPY derivatives have emerged, which significantly enriched the structure-activity relationship of DAPYs. Studies of crystallography and molecular modeling have afforded a lot of useful information on structural requirements of NNRTIs, which contributes greatly to the improvement of their resistance profiles. In this review, we reviewed the discovery history and their evolution of DAPYs including their structural modification, derivatization and scaffold hopping in continuous pursuit of excellent anti-HIV drugs. And also, we discussed the prospect of DAPYs and the directions of future efforts.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Huan-Huan Lu
- Yichang Humanwell Pharmaceutical Co., Ltd, Yichang, 443005, PR China
| | - Gen-Yan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Xiu-Lian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
48
|
Tarasova O, Poroikov V, Veselovsky A. Molecular Docking Studies of HIV-1 Resistance to Reverse Transcriptase Inhibitors: Mini-Review. Molecules 2018; 23:molecules23051233. [PMID: 29883406 PMCID: PMC6100360 DOI: 10.3390/molecules23051233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Currently, millions of people are living with human immunodeficiency virus type 1 (HIV-1), which causes acquired immunodeficiency syndrome. However, the spread of the HIV-1 resistance to antiviral agents is the major problem in the antiretroviral therapy and medical management of HIV-infected patients. HIV-1 reverse transcriptase (RT) is one of the key viral targets for HIV-1 inhibition. Therefore, the studies on the combatting the HIV resistance that occurs due to the structural changes in RT, are in great demand. This work aims to provide an overview of the state-of-the-art molecular docking approaches applied to the studies of the HIV-1 resistance, associated with RT structure changes. We have reviewed recent studies using molecular docking with mutant forms of RT. The work discusses the modifications of molecular docking, which have been developed to find the novel molecules active against resistance mutants of RT and/or recombinant strains of HIV-1. The perspectives of the existing algorithms of molecular docking to the studies on molecular mechanisms of resistance and selection of the correct binding poses for the reverse transcriptase inhibitors are discussed.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia.
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia.
| | - Alexander Veselovsky
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia.
| |
Collapse
|