1
|
Tsedilin A, Schmidtke M, Monakhova N, Leneva I, Falynskova I, Khrenova M, Lane TR, Ekins S, Makarov V. Indole-core inhibitors of influenza a neuraminidase: iterative medicinal chemistry and molecular modeling. Eur J Med Chem 2024; 277:116768. [PMID: 39163780 DOI: 10.1016/j.ejmech.2024.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Influenza viruses that cause seasonal and pandemic flu are a permanent health threat. The surface glycoprotein, neuraminidase, is crucial for the infectivity of the virus and therefore an attractive target for flu drug discovery campaigns. We have designed and synthesized more than 40 3-indolinone derivatives. We mainly investigated the role of substituents at the 2 position of the core as well as the introduction of substituents or a nitrogen atom in the fused phenyl ring of the core for inhibition of influenza virus neuraminidase activity and replication in vitro and in vivo. After evaluating the compounds for their ability to inhibit the viral neuraminidase, six potent inhibitors 3c, 3e, 7c, 12o, 12v, 18d were progressed to evaluate for cytotoxicity and inhibition of influenza virus A/PR/8/34 replication in in MDCK cells. Two hit compounds 3e and 12o were tested in an animal model of influenza virus infection. Molecular mechanism of the 3-indolinone derivatives interactions with the neuraminidase was revealed in molecular dynamic simulations. Proposed inhibitors bind to the 430-cavity that is different from the conventional binding site of commercial compounds. The most promising 3-indolinone inhibitors demonstrate stronger interactions with the neuraminidase in molecular models that supports proposed binding site.
Collapse
Affiliation(s)
- Andrey Tsedilin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia
| | - Michaela Schmidtke
- Institute of Medical Microbiology, Section of Experimental Virology, Jena University Hospital, Hans-Knöll-Straße 2, 07745, Jena, Germany
| | - Natalia Monakhova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia
| | - Irina Leneva
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology, 105064, Moscow, Russia
| | - Irina Falynskova
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology, 105064, Moscow, Russia
| | - Maria Khrenova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia.
| |
Collapse
|
2
|
Romeo R, Legnani L, Chiacchio MA, Giofrè SV, Iannazzo D. Antiviral Compounds to Address Influenza Pandemics: An Update from 2016-2022. Curr Med Chem 2024; 31:2507-2549. [PMID: 37691217 DOI: 10.2174/0929867331666230907093501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
In recent decades, the world has gained experience of the dangerous effects of pandemic events caused by emerging respiratory viruses. In particular, annual epidemics of influenza are responsible for severe illness and deaths. Even if conventional influenza vaccines represent the most effective tool for preventing virus infections, they are not completely effective in patients with severe chronic disease and immunocompromised and new small molecules have emerged to prevent and control the influenza viruses. Thus, the attention of chemists is continuously focused on the synthesis of new antiviral drugs able to interact with the different molecular targets involved in the virus replication cycle. To date, different classes of influenza viruses inhibitors able to target neuraminidase enzyme, hemagglutinin protein, Matrix-2 (M2) protein ion channel, nucleoprotein or RNAdependent RNA polymerase have been synthesized using several synthetic strategies comprising the chemical modification of currently used drugs. The best results, in terms of inhibitory activity, are in the nanomolar range and have been obtained from the chemical modification of clinically used drugs such as Peramivir, Zanamivir, Oseltamir, Rimantadine, as well as sialylated molecules, and hydroxypyridinone derivatives. The aim of this review is to report, covering the period 2016-2022, the most recent routes related to the synthesis of effective influenza virus inhibitors.
Collapse
Affiliation(s)
- Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Salvatore V Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Messina, 98166, Italy
| |
Collapse
|
3
|
Zhang J, Liu C, Jia R, Zhang X, Zhang J, Bertagnin C, Bonomini A, Guizzo L, Jiang Y, Jia H, Jia S, Ma X, Loregian A, Huang B, Zhan P, Liu X. A novel N-heterocycles substituted oseltamivir derivatives as potent inhibitors of influenza virus neuraminidase: discovery, synthesis and biological evaluation. J Enzyme Inhib Med Chem 2023; 38:2277135. [PMID: 37955306 PMCID: PMC10653643 DOI: 10.1080/14756366.2023.2277135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Our previous studies have shown that the introduction of structurally diverse benzyl side chains at the C5-NH2 position of oseltamivir to occupy 150-cavity contributes to the binding affinity with neuraminidase and anti-influenza activity. To obtain broad-spectrum neuraminidase inhibitors, we designed and synthesised a series of novel oseltamivir derivatives bearing different N-heterocycles substituents that have been proved to induce opening of the 150-loop of group-2 neuraminidases. Among them, compound 6k bearing 4-((r)-2-methylpyrrolidin-1-yl) benzyl group exhibited antiviral activities similar to or weaker than those of oseltamivir carboxylate against H1N1, H3N2, H5N1, H5N6 and H5N1-H274Y mutant neuraminidases. More encouragingly, 6k displayed nearly 3-fold activity enhancement against H3N2 virus over oseltamivir carboxylate and 2-fold activity enhancement over zanamivir. Molecular docking studies provided insights into the explanation of its broad-spectrum potency against wild-type neuraminidases. Overall, as a promising lead compound, 6k deserves further optimisation by fully considering the ligand induced flexibility of the 150-loop.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Jian Zhang
- Institute of Medical Sciences, The Second Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Laura Guizzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Yuanmin Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Shuzhen Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, PR China
| |
Collapse
|
4
|
Yadav Y, Tyagi R, Kumar R, Sagar R. Conformationally locked sugar derivatives and analogues as potential neuraminidase inhibitors. Eur J Med Chem 2023; 255:115410. [PMID: 37120995 DOI: 10.1016/j.ejmech.2023.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
The influenza virus remains a major health concern for mankind because it tends to mutate frequently and cause high morbidity. Influenza prevention and treatment are greatly aided by the use of antivirals. One such class of antivirals is neuraminidase inhibitors (NAIs), effective against influenza viruses. A neuraminidase on the virus's surface serves a vital function in viral propogation by assisting in the release of viruses from infected host cells. Neuraminidase inhibitors are the backbone in stoping such virus propagation thus helps in the treatment of influenza viruses infections. Two NAI medicines are licensed globally: Oseltamivir (Tamiflu™) and Zanamivir (Relanza™). There are two molecules that have acquired Japanese approval recently: Peramivir and Laninamivir, whereas Laninamivir octanoate is in Phase III clinical trials. The need for novel NAIs is due to frequent mutations in viruses and the rise in resistance against existing medication. The NA inhibitors (NAIs) are designed to have (oxa)cyclohexene scaffolds (a sugar scaffold) to mimic the oxonium transition state in the enzymatic cleavage of sialic acid. This review discusses in details and comprises all such conformationally locked (oxa)cyclohexene scaffolds and their analogues which have been recently designed and synthesized as potential neuraminidase inhibitors, thus as antiviral molecules. The structure-activity relationship of such diverese molecules has also been discussed in this review.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Haryana, 136119, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Wang K, Zhang H, Tian Y. The current strategies of optimization of oseltamivir against mutant neuraminidases of influenza A:A review. Eur J Med Chem 2022; 243:114711. [DOI: 10.1016/j.ejmech.2022.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
|
6
|
Synthesis and anti-influenza virus activity evaluation of novel andrographolide derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Abstract
The neuraminidase (NA) of influenza A and B viruses plays a distinct role in viral replication and has a highly conserved catalytic site. Numerous sialic (neuraminic) acid analogs that competitively bind to the NA active site and potently inhibit enzyme activity have been synthesized and tested. Four NA inhibitors are now licensed in various parts of the world (zanamivir, oseltamivir, peramivir, and laninamivir) to treat influenza A and B infections. NA changes, naturally occurring or acquired under selective pressure, have been shown to reduce drug binding, thereby affecting the effectiveness of NA inhibitors. Drug resistance and other drawbacks have prompted the search for the next-generation NA-targeting therapeutics. One of the promising approaches is the identification of monoclonal antibodies (mAbs) targeting the conserved NA epitopes. Anti-NA mAbs demonstrate Fab-based antiviral activity supplemented with Fc-mediated immune effector functions. Antiviral Fc-conjugates offer another cutting-edge strategy that is based on a multimodal mechanism of action. These novel antiviral agents are composed of a small-molecule NA inhibitor and an Fc-region that simultaneously engages the immune system. The significant advancements made in recent years further support the value of NA as an attractive target for the antiviral development.
Collapse
Affiliation(s)
- Larisa Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| | - Teena Mohan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| |
Collapse
|
8
|
Yu W, Ping Cheng L, Pang W, Ling Guo L. Design, Synthesis and Biological Evaluation of Novel 1, 3, 4-Oxadiazole Derivatives as Potent Neuraminidase Inhibitors. Bioorg Med Chem 2022; 57:116647. [DOI: 10.1016/j.bmc.2022.116647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
|
9
|
Ju H, Murugan NA, Hou L, Li P, Guizzo L, Zhang Y, Bertagnin C, Kong X, Kang D, Jia R, Ma X, Du R, Poongavanam V, Loregian A, Huang B, Liu X, Zhan P. Identification of C5-NH 2 Modified Oseltamivir Derivatives as Novel Influenza Neuraminidase Inhibitors with Highly Improved Antiviral Activities and Favorable Druggability. J Med Chem 2021; 64:17992-18009. [PMID: 34735766 DOI: 10.1021/acs.jmedchem.1c01366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous efforts have proved that modifications targeting the 150-cavity of influenza neuraminidase can achieve more potent and more selective inhibitors. In this work, four subseries of C5-NH2 modified oseltamivir derivatives were designed and synthesized to explore every region inside the 150-cavity. Among them, compound 23d was exceptionally potent against the whole panel of Group-1 NAs with IC50 values ranging from 0.26 to 0.73 nM, being 15-53 times better than oseltamivir carboxylate (OSC) and 7-11 times better than zanamivir. In cellular assays, 23d showed more potent or equipotent antiviral activities against corresponding virus strains compared to OSC with no cytotoxicity. Furthermore, 23d exhibited high metabolic stability in human liver microsomes (HLM) and low inhibitory effect on main cytochrome P450 enzymes. Notably, 23d displayed favorable druggability in vivo and potent antiviral efficacy in the embryonated egg model and mice model. Overall, 23d appears to be a promising candidate for the treatment of influenza virus infection.
Collapse
Affiliation(s)
- Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm SE-10044 , Sweden
| | - Lingxin Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Laura Guizzo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, Padova 35121, Italy
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, Padova 35121, Italy
| | - Xiujie Kong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, Jinan, Shandong 250100, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, Padova 35121, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, Jinan, Shandong 250100, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
10
|
Deng X, Wang Q, Liu M, Zheng Q, Wu F, Huang J. Tetrameric Neuraminidase of Influenza A Virus Is Required to Induce Protective Antibody Responses in Mice. Front Microbiol 2021; 12:729914. [PMID: 34671330 PMCID: PMC8521146 DOI: 10.3389/fmicb.2021.729914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza neuraminidase (NA) is able to induce cross-subtype immunity and is considered as a promising target for the development of universal influenza vaccines. However, commercial influenza vaccines only induced low NA-specific immune responses due to the low amounts and the denatured conformation of NA proteins in current inactivated or split influenza vaccines. Here we investigated the protective efficacy of recombinant tetrameric and monomeric NA proteins to determine whether the conformation contributed to induce protective immunity. We found that H1N1PR8NA tetramer (NAtet) could provide complete homologous protection against A/PR8 (H1N1) virus infection in mice, while the protection of H1N1PR8NA monomer (NAmono) was moderate. Higher levels of NA-reactive binding and inhibition antibodies and less weight loss were observed in the H1N1PR8NAtet-vaccinated group. Similarly, H5N1VNNAtet immunization exhibited a preferable heterologous protection than H5N1VNNAmono, but neither H7N9SHNAtet nor H7N9SHNAmono vaccination showed heterosubtypic protection. We also compared the effect of three adjuvants, aluminum, 3′3′-cGAMP (cGAMP), and Poly(I:C), on the humoral response and protective efficacy induced by H1N1PR8NAtet. H1N1PR8NAtet protein adjuvanted with aluminum was observed to exhibited better capacity in inducing NA-specific humoral immunity and preventing weight loss than with cGAMP or Poly(I:C). In conclusion, our data demonstrate that tetrameric NA with natural conformation is required to induce protective anti-NA immunity. The NA tetramer could provide homologous protection and subtype-specific cross-protection. In addition, the aluminum adjuvant is preferable in recombinant NA protein vaccination.
Collapse
Affiliation(s)
- Xiren Deng
- Shanghai Public Health Clinical Center and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qimin Wang
- Shanghai Public Health Clinical Center and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mei Liu
- Shanghai Public Health Clinical Center and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinwen Zheng
- Shanghai Public Health Clinical Center and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Wu
- Shanghai Public Health Clinical Center and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinghe Huang
- Shanghai Public Health Clinical Center and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Bowles WHD, Gloster TM. Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Front Mol Biosci 2021; 8:705133. [PMID: 34395532 PMCID: PMC8358268 DOI: 10.3389/fmolb.2021.705133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Sialidases (SAs) and sialyltransferases (STs), the enzymes responsible for removing and adding sialic acid to other glycans, play essential roles in viruses, bacteria, parasites, and humans. Sialic acid is often the terminal sugar on glycans protruding from the cell surface in humans and is an important component for recognition and cell function. Pathogens have evolved to exploit this and use sialic acid to either “cloak” themselves, ensuring they remain undetected, or as a mechanism to enable release of virus progeny. The development of inhibitors against SAs and STs therefore provides the opportunity to target a range of diseases. Inhibitors targeting viral, bacterial, or parasitic enzymes can directly target their pathogenicity in humans. Excellent examples of this can be found with the anti-influenza drugs Zanamivir (Relenza™, GlaxoSmithKline) and Oseltamivir (Tamiflu™, Roche and Gilead), which have been used in the clinic for over two decades. However, the development of resistance against these drugs means there is an ongoing need for novel potent and specific inhibitors. Humans possess 20 STs and four SAs that play essential roles in cellular function, but have also been implicated in cancer progression, as glycans on many cancer cells are found to be hyper-sialylated. Whilst much remains unknown about how STs function in relation to disease, it is clear that specific inhibitors of them can serve both as tools to gain a better understanding of their activity and form the basis for development of anti-cancer drugs. Here we review the recent developments in the design of SA and ST inhibitors against pathogens and humans.
Collapse
Affiliation(s)
- William H D Bowles
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
12
|
Anwar F, Naqvi S, Al-Abbasi FA, Neelofar N, Kumar V, Sahoo A, Kamal MA. Targeting COVID-19 in Parkinson's Patients: Drugs Repurposed. Curr Med Chem 2021; 28:2392-2408. [PMID: 32881656 DOI: 10.2174/0929867327666200903115138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
Abstract
The last couple of months have witnessed the world in a state of virtual standstill. The SARS-CoV-2 virus has overtaken the globe to economic and social lockdown. Many patients with COVID-19 have compromised immunity, especially in an aged population suffering from Parkinson 's disease (PD). Alteration in dopaminergic neurons and deficiency of dopamine in PD patients are the most common symptoms affecting 1% population above the age of 60 years. The compromised immune system and inflammatory manifestation in PD patients make them an easy target. The most common drugs under trial for COVID-19 are remdesivir, favipiravir, chloroquine and hydroxychloroquine, azithromycin along with adjunct drugs like amantadine with some monoclonal antibodies. Presently, clinically US FDA approved drugs in PD include Levodopa, catechol-O-methyl transferase (COMT) inhibitors, (Entacapone and Tolcapone), dopamine agonists (Bromocriptine, Ropinirole, Pramipexole, and Rotigotine), monoamine oxidase B (MAO-B) inhibitors (Selegiline and Rasagiline), amantadine and antimuscarinic drugs. The drugs have established mechanisms of action on PD patients with known pharmacodynamics and pharmacokinetic properties along with dose and adverse effects. Conclusion and relevance of this review focus on the drugs that can be tried on PD patients with SAR CoV-2 infection, in particular, amantadine that has been approved by all the developed countries as a common drug possessing both antiviral properties by downregulation of CTSL, lysosomal pathway disturbance and change in pH necessary to uncoat the viral proteins and anti- Parkinson properties. To deal with the significant prognostic adverse effect of SARS-CoV-2 on PD, the present-day treatment options, clinical presentation and various mechanisms are the need of the hour.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nauroz Neelofar
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehra Dun, Uttarakhand, India
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Naini, Prayagraj, India
| | - Ankit Sahoo
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Wang P, Oladejo BO, Li C, Fu L, Zhang S, Qi J, Lv X, Li X. Structure-based design of 5'-substituted 1,2,3-triazolylated oseltamivir derivatives as potent influenza neuraminidase inhibitors. RSC Adv 2021; 11:9528-9541. [PMID: 35423449 PMCID: PMC8696196 DOI: 10.1039/d1ra00472g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Resistant viruses containing mutant neuraminidases (NAs) with diminished drug affinity continue to emerge, and new anti-influenza agents are urgently required. Several potent inhibitors targeting the hydrophobic 150-cavity of viral NAs have been developed by modifying the antiviral drugs, oseltamivir carboxylate (OSC) and zanamivir, with hydrophobic groups. Here, we describe a different strategy for exploring novel and efficient NA inhibitors by targeting the charged amino acid residues around the entrance to the 150-cavity. We synthesized a C5-substituted OSC derivative (1e) with a 4'-phenyl-1,2,3-triazolyl group capable of entering the 150-cavity, and solved the crystal structure of 1e in complex with influenza A virus N5 NA. Using the resulting structural information, we next designed and synthesized two series of OSC derivatives carrying various polar substituents at the triazolyl group of 1e and 2e, with 2e being a 5'-phenyl-1,2,3-triazole regioisomer of 1e. The NA inhibition assays demonstrated that the 2 series (2e-n) generally had superior activity compared with the 1 series (1e-n). Compound 2j, bearing a 3-phenylamino group on the triazole ring, was the most potent inhibitor of all tested NAs including an N2 NA containing the E119V OSC-resistant mutation. Moreover, 2j potently inhibited viral replication in vitro, and molecular docking studies revealed that its phenylamino group can form an additional strong hydrogen bond with residue D151 near the entrance of the 150-cavity. The design method described in this study provides useful insights into the development of novel NA inhibitors. Compound 2j warrants further structural optimization to obtain a candidate for clinical use.
Collapse
Affiliation(s)
- Pengfei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) Chaoyang District Beijing 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences Huairou District Beijing 101408 China
| | - Babayemi O Oladejo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) Chaoyang District Beijing 100101 China
- Department of Microbiology, Federal University of Technology PMB 704 Akure Nigeria
| | - Chenning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) Chaoyang District Beijing 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences Huairou District Beijing 101408 China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) Chaoyang District Beijing 100101 China
- Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE) Chaoyang District Beijing 100101 China
| | - Shanshan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) Chaoyang District Beijing 100101 China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) Chaoyang District Beijing 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences Huairou District Beijing 101408 China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) Chaoyang District Beijing 100101 China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) Chaoyang District Beijing 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences Huairou District Beijing 101408 China
- Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE) Chaoyang District Beijing 100101 China
| |
Collapse
|
14
|
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM. Influenza Viruses: Harnessing the Crucial Role of the M2 Ion-Channel and Neuraminidase toward Inhibitor Design. Molecules 2021; 26:880. [PMID: 33562349 PMCID: PMC7916051 DOI: 10.3390/molecules26040880] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
As a member of the Orthomyxoviridae family of viruses, influenza viruses (IVs) are known causative agents of respiratory infection in vertebrates. They remain a major global threat responsible for the most virulent diseases and global pandemics in humans. The virulence of IVs and the consequential high morbidity and mortality of IV infections are primarily attributed to the high mutation rates in the IVs' genome coupled with the numerous genomic segments, which give rise to antiviral resistant and vaccine evading strains. Current therapeutic options include vaccines and small molecule inhibitors, which therapeutically target various catalytic processes in IVs. However, the periodic emergence of new IV strains necessitates the continuous development of novel anti-influenza therapeutic options. The crux of this review highlights the recent studies on the biology of influenza viruses, focusing on the structure, function, and mechanism of action of the M2 channel and neuraminidase as therapeutic targets. We further provide an update on the development of new M2 channel and neuraminidase inhibitors as an alternative to existing anti-influenza therapy. We conclude by highlighting therapeutic strategies that could be explored further towards the design of novel anti-influenza inhibitors with the ability to inhibit resistant strains.
Collapse
Affiliation(s)
- Sphamadla E. Mtambo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Daniel G. Amoako
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Anou M. Somboro
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Clement Agoni
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Monsurat M. Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Nelisiwe S. Gumede
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| |
Collapse
|
15
|
Mahal A, Duan M, Zinad DS, Mohapatra RK, Obaidullah AJ, Wei X, Pradhan MK, Das D, Kandi V, Zinad HS, Zhu Q. Recent progress in chemical approaches for the development of novel neuraminidase inhibitors. RSC Adv 2021; 11:1804-1840. [PMID: 35424082 PMCID: PMC8693540 DOI: 10.1039/d0ra07283d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/22/2020] [Indexed: 12/28/2022] Open
Abstract
Influenza virus is the main cause of an infectious disease called influenza affecting the respiratory system including the throat, nose and lungs. Neuraminidase inhibitors are reagents used to block the enzyme called neuraminidase to prevent the influenza infection from spreading. Neuraminidase inhibitors are widely used in the treatment of influenza infection, but still there is a need to develop more potent agents for the more effective treatment of influenza. Complications of the influenza disease lead to death, and one of these complications is drug resistance; hence, there is an urgent need to develop more effective agents. This review focuses on the recent advances in chemical synthesis pathways used for the development of new neuraminidase agents along with the medicinal aspects of chemically modified molecules, including the structure-activity relationship, which provides further rational designs of more active small molecules.
Collapse
Affiliation(s)
- Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil Erbil Kurdistan Region Iraq
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences South China Botanical Garden Guangzhou 510650 People's Republic of China
- Guangzhou HC Pharmaceutical Co., Ltd Guangzhou 510663 People's Republic of China
| | - Meitao Duan
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515 People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics Guangzhou 510515 People's Republic of China
| | - Dhafer S Zinad
- Applied Science Department, University of Technology Baghdad 10001 Iraq
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering Keonjhar Odisha 758002 India
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences South China Botanical Garden Guangzhou 510650 People's Republic of China
| | - Manoj K Pradhan
- Department of Chemistry, Government College of Engineering Keonjhar Odisha 758002 India
| | - Debadutta Das
- Department of Chemistry, Sukanti Degree College Subarnapur Odisha 767017 India
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences Karimnagar Telangana India
| | - Hany S Zinad
- Biosciences Institute, Faculty of Medical Science, Newcastle University NE2 4HH Newcastle upon Tyne UK
- Iraq Natural History Museum and Research Centre (INHM), University of Baghdad Baghdad Iraq
| | - Quanhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515 People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics Guangzhou 510515 People's Republic of China
| |
Collapse
|
16
|
Jia R, Zhang J, Bertagnin C, Cherukupalli S, Ai W, Ding X, Li Z, Zhang J, Ju H, Ma X, Loregian A, Huang B, Zhan P, Liu X. Discovery of highly potent and selective influenza virus neuraminidase inhibitors targeting 150-cavity. Eur J Med Chem 2020; 212:113097. [PMID: 33385836 DOI: 10.1016/j.ejmech.2020.113097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Encouraged by our earlier discovery of N1-selective inhibitors, the 150-cavity of influenza virus neuraminidases (NAs) could be further exploited to yield more potent oseltamivir derivatives. Herein, we report the design, synthesis and biological evaluation of a series of novel oseltamivir derivatives via the structural modifications at C5-NH2 of oseltamivir targeting 150-cavity. Among them, compound 5c bearing 4-(3-methoxybenzyloxy)benzyl group exhibited the most potent activity, which was lower or modestly improved activities than oseltamivir carboxylate (OSC) against N1 (H1N1), N1 (H5N1) and N1 (H5N1-H274Y). Specifically, there was 30-fold loss of activity against the wild-type strain H1N1. However, 5c displayed 4.85-fold more potent activity than OSC against H5N1-H274Y NA. Also, 5c demonstrated low cytotoxicity in vitro and no acute toxicity in mice. Molecular docking studies provided insights into the high potency of 5c against N1 and N1-H274Y mutant NAs. Besides, the in silico prediction of physicochemical properties and CYP enzymatic inhibitory ability of representative compounds were conducted to evaluate their drug-like properties.
Collapse
Affiliation(s)
- Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jian Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, PR China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121, Padova, Italy
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Wei Ai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhuo Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan, Shandong, 250023, PR China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121, Padova, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan, Shandong, 250023, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
17
|
Li M, Cheng LP, Pang W, Zhong ZJ, Guo LL. Design, Synthesis, and Biological Evaluation of Novel Acylhydrazone Derivatives as Potent Neuraminidase Inhibitors. ACS Med Chem Lett 2020; 11:1745-1750. [PMID: 32944142 DOI: 10.1021/acsmedchemlett.0c00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022] Open
Abstract
Neuraminidase (NA) is an important target for current research on anti-influenza drugs. The acylhydrazone derivatives containing the -CONHN=CH- framework have been shown to have good NA inhibitory activity. In this paper, a series of novel acylhydrazone NA inhibitors (9a-9n) were designed and synthesized, and the inhibitory activities against NA were evaluated in vitro. The NA inhibition results showed that compound 9j has the most potent inhibitory activity (IC50 = 0.6 μM) against NA, which is significantly lower than that of the positive control oseltamivir carboxylic acid (OSC) (IC50 = 17.00 μM). Molecular docking analysis indicates that the acylhydrazone group plays an important role in compound 9j, which can bind well to the residues Arg371 and Arg292 in the S1 subsite of NA. The good potency of 9j may be also ascribed to the extending of morpholinyl ring into the 430-cavity. The results of this work may contribute to the development of more potent NA inhibitors to against mutant influenza viruses.
Collapse
Affiliation(s)
- Meng Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Li Ping Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wan Pang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi Jian Zhong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ling Ling Guo
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
18
|
Kumar S, Goicoechea S, Kumar S, Pearce CM, Durvasula R, Kempaiah P, Rathi B, Poonam. Oseltamivir analogs with potent anti-influenza virus activity. Drug Discov Today 2020; 25:1389-1402. [PMID: 32554062 DOI: 10.1016/j.drudis.2020.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
19
|
Kiss L, Benke Z, Remete AM, Fülöp F. Diversity-oriented Functionalization of Cyclodienes Through Selective Cycloaddition/Ring-opening/Cross-metathesis Protocols; Transformation of a "Flatland" into Three-dimensional Scaffolds With Stereo- and Regiocontrol. CHEM REC 2020; 20:1129-1141. [PMID: 32720742 DOI: 10.1002/tcr.202000070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023]
Abstract
This article presents selective transformations of some readily available cyclodienes through simple chemical procedures into novel functionalized small-molecular entities. The syntheses hereby described involved selective cycloadditions, followed by ring-opening metathesis of the resulting β-lactam or isoxazoline derivatives and selective cross-metathesis by differentiation of the olefin bonds on the alkenylated heterocycles. The cross-metathesis transformations have been detailed, which were performed under various experimental conditions with the aim of exploring chemodiscrimination of the olefin bonds and delivering the corresponding functionalized β-lactam or isoxazoline derivatives.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, I, nterdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, I, nterdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, I, nterdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, I, nterdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
20
|
Sun X, Zhang L, Cao Y, Li J, Atanasov AG, Huang L. Anti-neuraminidase activity of chemical constituents of Balanophora involucrata. Biomed Chromatogr 2020; 34:e4949. [PMID: 32678491 DOI: 10.1002/bmc.4949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Balanophora involucrata J. D. Hooker has been known to possess potential anti-inflammatory and antibacterial activities; however, its antiviral activity has not been evaluated so far. In order to find new neuraminidase inhibitors (NAIs), the neuraminidase (NA) inhibition activity of different B. involucrata extracts was evaluated. In this study, an in vitro NA inhibition assay was performed to identify which extract of B. involucrata exhibits (maximal) inhibitory activity against NA. Ultra high performance liquid chromatography/quadrupole time-of-flight-tandem mass spectroscopy (MS/MS) and molecular docking techniques were used to identify the specific compounds responsible for the anti-influenza activity of the extract, and to explore the potential natural NAIs. The ethyl acetate extract of B. involucrata exhibited significant inhibitory activity against NA with 50% inhibitory concentration (IC50 ) value of 159.5 μg/mL. Twenty compounds were identified according to the MS/MS spectra; among them two compounds (quercitrin and phloridzin) showed obvious inhibitory activity against NA, with IC50 of 311.76 and 347.32 μmol/L, respectively. This study suggested that B. involucrata can be a potential natural source of NAIs and may be useful in the fight against ferocious influenza viruses.
Collapse
Affiliation(s)
- Xiao Sun
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Zhang
- College of Science, Sichuan Agriculture University, Ya'an, China
| | - Yu Cao
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinhua Li
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Atanas G Atanasov
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Linfang Huang
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Limbani B, Bera S, Mondal D. Synthetic Advancement of Neuraminidase Inhibitor “Tamiflu”. ChemistrySelect 2020. [DOI: 10.1002/slct.202000675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bhagirath Limbani
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| |
Collapse
|
22
|
Nonn M, Binder A, Volk B, Kiss L. Stereo- and regiocontrolled synthesis of highly functionalized cyclopentanes with multiple chiral centers. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1733612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Adrienn Binder
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., Budapest, Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Discovery of novel “Dual-site” binding oseltamivir derivatives as potent influenza virus neuraminidase inhibitors. Eur J Med Chem 2020; 191:112147. [DOI: 10.1016/j.ejmech.2020.112147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022]
|
24
|
Discovery of novel 1,2,3-triazole oseltamivir derivatives as potent influenza neuraminidase inhibitors targeting the 430-cavity. Eur J Med Chem 2020; 187:111940. [DOI: 10.1016/j.ejmech.2019.111940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
|
25
|
Yu R, Cheng LP, Li M, Pang W. Discovery of Novel Neuraminidase Inhibitors by Structure-Based Virtual Screening, Structural Optimization, and Bioassay. ACS Med Chem Lett 2019; 10:1667-1673. [PMID: 31857844 DOI: 10.1021/acsmedchemlett.9b00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022] Open
Abstract
Neuraminidase (NA) is a significant therapeutic target for treating influenza. In this study, a new lead NA inhibitor AN-329/10738021 was discovered by structure-based virtual screening, molecular dynamics simulations, and bioassay validation. Optimization of lead AN-329/10738021, which holds a novel scaffold of N'-benzylidene benzohydrazone, leads to discovery of some novel NA inhibitors Y-1-Y-11. Compound Y-1 exerts the best inhibition activity (IC50 = 0.21 μM) against NA, which is better than oseltamivir carboxylate (OSC) (IC50 = 3.04 μM) and lead AN-329/10738021 (IC50 = 1.92 μM). Molecular docking analysis indicates that the good potency of Y-1 may be ascribed to the elongation of the benzylidene moiety of the molecule to the 430-cavity. The results of this study may offer useful reference for development of novel NA inhibitors.
Collapse
Affiliation(s)
- Rao Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Li Ping Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wan Pang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
26
|
Jia R, Zhang J, Ai W, Ding X, Desta S, Sun L, Sun Z, Ma X, Li Z, Wang D, Huang B, Zhan P, Liu X. Design, synthesis and biological evaluation of "Multi-Site"-binding influenza virus neuraminidase inhibitors. Eur J Med Chem 2019; 178:64-80. [PMID: 31176096 DOI: 10.1016/j.ejmech.2019.05.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/22/2019] [Accepted: 05/27/2019] [Indexed: 11/27/2022]
Abstract
Encouraged by our earlier discovery of neuraminidase inhibitors targeting 150-cavity or 430-cavity, herein, to yield more potent inhibitors, we designed, synthesized, and biologically evaluated a series of novel oseltamivir derivatives via modification of C-1 and C5-NH2 of oseltamivir by exploiting 150-cavity and/or 430-cavity. Among the synthesized compounds, compound 15e, the most potent N1-selective inhibitor targeting 150-cavity, showed 1.5 and 1.8 times greater activity than oseltamivir carboxylate (OSC) against N1 (H5N1) and N1 (H5N1-H274Y). In cellular assays, 15e also exhibited greater potency than OSC against H5N1 with EC50 of 0.66 μM. In addition, 15e demonstrated low cytotoxicity in vitro and low acute toxicity in mice. Molecular docking studies provided insights into the high potency of 15e against N1 and N1-H274Y mutant NA. Overall, we envisioned that the significant breakthrough in the discovery of potent group-1-specific neuraminidase inhibitors may lead to further investigation of more potent anti-influenza agents.
Collapse
Affiliation(s)
- Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Wei Ai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Samuel Desta
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhuosen Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan, Shandong, 250023, PR China
| | - Zhong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Defeng Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan, Shandong, 250023, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
27
|
Wang B, Wang K, Meng P, Hu Y, Yang F, Liu K, Lei Z, Chen B, Tian Y. Design, synthesis, and evaluation of carboxyl-modified oseltamivir derivatives with improved lipophilicity as neuraminidase inhibitors. Bioorg Med Chem Lett 2018; 28:3477-3482. [DOI: 10.1016/j.bmcl.2018.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/01/2022]
|