1
|
Feng C, Chen X, Yin X, Jiang Y, Zhao C. Matrix Metalloproteinases on Skin Photoaging. J Cosmet Dermatol 2024; 23:3847-3862. [PMID: 39230065 PMCID: PMC11626319 DOI: 10.1111/jocd.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Skin aging is characterized by an imbalance between the generation and degradation of extracellular matrix molecules (ECM). Matrix metalloproteinases (MMPs) are the primary enzymes responsible for ECM breakdown. Intrinsic and extrinsic stimuli can induce different MMPs. However, there is limited literature especially on the summary of skin MMPs and potential inhibitors. OBJECTIVE We aim to focus on the upregulation of MMP expression or activity in skin cells following exposure to UV radiation. We also would like to offer valuable insights into potential clinical applications of MMP inhibitors for mitigating skin aging. METHODS This article presents the summary of prior research, which involved an extensive literature search across diverse academic databases including Web of Science and PubMed. RESULTS Our findings offer a comprehensive insight into the effects of MMPs on skin aging after UV irradiation, including their substrate preferences and distinct roles in this process. Additionally, a comprehensive list of natural plant and animal extracts, proteins, polypeptides, amino acids, as well as natural and synthetic compounds that serve as inhibitors for MMPs is compiled. CONCLUSION Skin aging is a complex process influenced by environmental factors and MMPs. Research focuses on UV-induced skin damage and the formation of Advanced Glycosylation End Products (AGEs), leading to wrinkles and impaired functionality. Inhibiting MMPs is crucial for maintaining youthful skin. Natural sources of MMP inhibitor substances, such as extracts from plants and animals, offer a safer approach to obtain inhibitors through dietary supplements. Studying isolated active ingredients can contribute to developing targeted MMP inhibitors.
Collapse
Affiliation(s)
- Chao Feng
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Xianglong Chen
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Xiuqing Yin
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| |
Collapse
|
2
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
3
|
Garcia-Sampedro A, Prieto-Castañeda A, Agarrabeitia AR, Bañuelos J, García-Moreno I, Villanueva A, de la Moya S, Ortiz MJ, Acedo P. A highly fluorescent and readily accessible all-organic photosensitizer model for advancing image-guided cancer PDT. J Mater Chem B 2024; 12:7618-7625. [PMID: 38994651 PMCID: PMC11305095 DOI: 10.1039/d4tb00385c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The potential of using image-guided photodynamic therapy (ig-PDT) for cancer, especially with highly biocompatible fluorescent agents free of heavy atoms, is well recognized. This is due to key advantages related to minimizing adverse side effects associated with standard cancer chemotherapy. However, this theragnostic approach is strongly limited by the lack of synthetically-accessible and easily-modulable chemical scaffolds, enabling the rapid design and construction of advanced agents for clinical ig-PDT. In fact, there are still very few ig-PDT agents clinically approved. Herein we report a readily accessible, easy-tunable and highly fluorescent all-organic small photosensitizer, as a model design for accelerating the development and translation of advanced ig-PDT agents for cancer. This scaffold is based on BODIPY, which assures high fluorescence, accessibility, and ease of performance adaptation by workable chemistry. The optimal PDT performance of this BODIPY dye, tested in highly resistant pancreatic cancer cells, despite its high fluorescent behavior, maintained even after fixation and cancer cell death, is based on its selective accumulation in mitochondria. This induces apoptosis upon illumination, as evidenced by proteomic studies and flow cytometry. All these characteristics make the reported BODIPY-based fluorescent photosensitizer a valuable model for the rapid development of ig-PDT agents for clinical use.
Collapse
Affiliation(s)
- Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, UK.
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Departamento de Química-Física, Universidad del País Vasco-EHU, 48080 Bilbao, Spain
| | - Antonia R Agarrabeitia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Sección Departamental de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, 28037 Madrid, Spain
| | - Jorge Bañuelos
- Departamento de Química-Física, Universidad del País Vasco-EHU, 48080 Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Química-Física de Materiales, Instituto de Química-Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - María J Ortiz
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
4
|
Ji M, Wang Y, Su W, Chen L, Liu Y, Yang Y, Fei Y, Ma J, Chen Y, Mi L. Enhancing the photodynamic effect of curcumin through modification with TiO 2 nanoparticles and cationic polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112851. [PMID: 38306801 DOI: 10.1016/j.jphotobiol.2024.112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Curcumin (CUR), a natural compound extracted from turmeric, has shown potential as a photosensitizer in photodynamic therapy (PDT). The aim of this work was to enhance the efficacy of CUR by modifying it using titanium dioxide (TiO2) nanoparticles and a cationic polymer called Sofast to create a nanocomposite TiO2-CUR-Sofast (TCS). Compared to unmodified CUR, TCS exhibited a broadening toward longer wavelength in the absorption wavelength within the 400-550 nm range, leading to improved CUR absorption. Cellular uptake efficiency of TCS was also enhanced, and it demonstrated nearly 4.7-fold higher reactive oxygen species (ROS) generation than CUR. Furthermore, TCS displayed the ability to attach to the cell membrane and enter cells within a 30-min incubation period. Upon irradiation, TCS exhibited remarkable cytotoxicity, resulting in a significant reduction in the viability of various cancer cells. Autofluorescence lifetime imaging of intracellular reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) enzymes indicated that cancer cells treated with TCS and irradiation undergo a metabolic pathway shift from oxidative phosphorylation to glycolysis. These findings highlight the potential of TCS as an effective PDT agent for cancer treatment.
Collapse
Affiliation(s)
- Mingmei Ji
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yulan Wang
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, Hubei 430014, China
| | - Wenhua Su
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Liwen Chen
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuzhe Liu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuwei Yang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Ying Chen
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, Hubei 430014, China.
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Imran M, Saeed F, Alsagaby SA, Imran A, Ahmad I, El Ghorab AH, Abdelgawad MA, Qaisrani TB, Mehmood T, Umar M, Mumtaz MA, Sajid A, Manzoor Q, Hussain M, Al Abdulmonem W, Al Jbawi E. Curcumin: recent updates on gastrointestinal cancers. CYTA - JOURNAL OF FOOD 2023; 21:502-513. [DOI: 10.1080/19476337.2023.2245009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/26/2023] [Indexed: 01/04/2025]
Affiliation(s)
- Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, FAPT, Ravi Campus, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Ahmad H. El Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Tahir Mehmood
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | | - Arfaa Sajid
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Qaisar Manzoor
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | |
Collapse
|
6
|
Ali Mohammad S, Hak A, Pogu SV, Rengan AK. Radiotherapy, photodynamic therapy, and cryoablation-induced abscopal effect: Challenges and future prospects. CANCER INNOVATION 2023; 2:323-345. [PMID: 38090387 PMCID: PMC10686191 DOI: 10.1002/cai2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 10/15/2024]
Abstract
Local therapy modalities such as radiation therapy, photodynamic therapy, photothermal therapy, and cryoablation have been used to treat localized tumors for decades. The discovery of the abscopal effect causes a paradigm shift where local therapy also causes systemic effects and leads to the remission of nonirradiated tumors. The abscopal effect of radiation therapy, alone or in combination with other treatments, has been extensively studied over the last six decades. However, the results are unsatisfactory in producing robust, reproducible, and long-lasting systemic effects. Although immunotherapy and radiation therapy are promising in producing the abscopal effect, the abscopal effect's mechanism is still unclear, owing to various factors such as irradiation type and dose and cancer type. This article reviews the research progress, clinical and preclinical evidence of the abscopal effect by various local therapies alone and in combination with chemotherapy and immunotherapy, case reports, and the current challenges in producing the abscopal effect by various local therapies, focusing on radiotherapy, photodynamic therapy, cryoablation, and the prospects for obtaining a robust, reproducible, and long-lasting abscopal effect.
Collapse
Affiliation(s)
| | - Arshadul Hak
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Sunil V. Pogu
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Aravind K. Rengan
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| |
Collapse
|
7
|
Thapa Magar TB, Mallik SK, Gurung P, Lim J, Kim YT, Shrestha R, Kim YW. Chlorin E6-Curcumin-Mediated Photodynamic Therapy Promotes an Anti-Photoaging Effect in UVB-Irradiated Fibroblasts. Int J Mol Sci 2023; 24:13468. [PMID: 37686273 PMCID: PMC10487708 DOI: 10.3390/ijms241713468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Skin photoaging due to ultraviolet B (UVB) exposure generates reactive oxygen species (ROS) that increase matrix metalloproteinase (MMP). Chlorin e6-photodynamic therapy (Ce6-PDT), in addition to being the first-line treatment for malignancies, has been shown to lessen skin photoaging, while curcumin is well known for reducing the deleterious effects of ROS. In the current study, PDT with three novel Ce6-curcumin derivatives, a combination of Ce6 and curcumin with various linkers, including propane-1,3-diamine for Ce6-propane-curcumin; hexane-1,6-diamine for Ce6-hexane-curcumin; and 3,3'-((oxybis(ethane-2,1-diyl))bis(oxy))bis(propan-1-amine) for Ce6-dipolyethylene glycol (diPEG)-curcumin, were studied for regulation of UVB-induced photoaging on human skin fibroblast (Hs68) and mouse embryonic fibroblast (BALB/c 3T3) cells. We assessed the antiphotoaging effects of Ce6-curcumin derivatives on cell viability, antioxidant activity, the mechanism of matrix metalloproteinase-1 and 2 (MMP-2) expression, and collagen synthesis in UVB-irradiated in vitro models. All three Ce6-curcumin derivatives were found to be non-phototoxic in the neutral red uptake phototoxicity test. We found that Ce6-hexane-curcumin-PDT and Ce6-propane-curcumin-associated PDT exhibited less cytotoxicity in Hs68 and BALB/c 3T3 fibroblast cell lines compared to Ce6-diPEG-curcumin-PDT. Ce6-diPEG-curcumin and Ce6-propane-curcumin-associated PDT showed superior antioxidant activity in Hs68 cell lines. Further, in UVB-irradiated in vitro models, the Ce6-diPEG-curcumin-PDT greatly attenuated the expression levels of MMP-1 and MMP-2 by blocking mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and tumor necrosis factor-α (NF-κB) signaling. Moreover, Ce6-diPEG-curcumin effectively inhibited inflammatory molecules, such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, while accelerating collagen synthesis. These results demonstrate that Ce6-diPEG-curcumin may be a potential therapy for treating skin photoaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| |
Collapse
|
8
|
Jain R, Paul M, Padaga SG, Dubey SK, Biswas S, Singhvi G. Dual-Drug-Loaded Topical Delivery of Photodynamically Active Lipid-Based Formulation for Combination Therapy of Cutaneous Melanoma. Mol Pharm 2023. [PMID: 37262335 DOI: 10.1021/acs.molpharmaceut.3c00280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Topical administration of anti-cancer drugs along with photodynamically active molecules is a non-invasive approach, which stands to be a promising modality for treating aggressive cutaneous melanomas with the added advantage of high patient compliance. However, the efficiency of delivering drugs topically is limited by several factors, such as penetration of the drug across skin layers at the tumor site and limited light penetrability. In this study, curcumin, an active anti-cancer agent, and chlorin e6, a photoactivable molecule, were encapsulated into lipidic nanoparticles that produced reactive oxygen species (ROS) when activated at 665 nm by near-infrared (NIR) light. The optimized lipidic nanoparticle containing curcumin and chlorin e6 exhibited a particle size of less than 100 nm. The entrapment efficiency for both molecules was found to be 81%. The therapeutic efficacy of the developed formulation was tested on B16F10 and A431 cell lines via cytotoxicity evaluation, combination index, cellular uptake, nuclear staining, DNA fragmentation, ROS generation, apoptosis, and cell cycle assays under NIR irradiation (665 nm). Co-delivering curcumin and chlorin e6 exhibited higher cellular uptake, better cancer growth inhibition, and pronounced apoptotic events compared to the formulation having the free drug alone. The study results depicted that topical application of this ROS-generating dual-drug-loaded lipidic nanoparticles incorporated in SEPINEO gel achieved better permeation (80 ± 2.45%) across the skin, and exhibited the improved skin retention and a synergistic effect as well. The present work introduces photo-triggered ROS-generating dual-drug-based lipidic nanoparticles, which are simple and efficient to develop and exhibit synergistic therapeutic effects against cutaneous melanoma.
Collapse
Affiliation(s)
- Rupesh Jain
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sri Ganga Padaga
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
9
|
Thapa Magar TB, Lee J, Lee JH, Jeon J, Gurung P, Lim J, Kim YW. Novel Chlorin e6-Curcumin Derivatives as a Potential Photosensitizer: Synthesis, Characterization, and Anticancer Activity. Pharmaceutics 2023; 15:1577. [PMID: 37376026 DOI: 10.3390/pharmaceutics15061577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Novel series of chlorin e6-curcumin derivatives were designed and synthesized. All the synthesized compounds 16, 17, 18, and 19 were tested for their photodynamic treatment (PDT) efficacy against human pancreatic cancer cell lines: AsPC-1, MIA-PaCa-2, and PANC-1. The cellular uptake study was performed in the aforementioned cell lines using fluorescence-activated cell sorting (FACS). 17, among the synthesized compounds with IC50 values of 0.27, 0.42, and 0.21 µM against AsPC-1, MIA PaCa-2, and PANC-1 cell lines, respectively, demonstrated excellent cellular internalization capability and exhibited higher phototoxicity relative to the parent Ce6. The quantitative analyses using Annexin V-PI staining revealed that the 17-PDT-induced apoptosis was dose-dependent. In pancreatic cell lines, 17 reduced the expression of the anti-apoptotic protein, Bcl-2, and increased the pro-apoptotic protein, cytochrome C, which indicates the activation of intrinsic apoptosis, the primary cause of cancer cell death. Structure-activity relationship studies have shown that the incorporation of additional methyl ester moiety and conjugation to the enone moiety of curcumin enhances cellular uptake and PDT efficacy. Moreover, in vivo PDT testing in melanoma mouse models revealed that 17-PDT greatly reduced tumor growth. Therefore, 17 might be an effective photosensitizer for PDT anticancer therapy.
Collapse
Affiliation(s)
| | - Jusuk Lee
- A&J Science Co., Ltd., Daegu 41061, Republic of Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Juhee Jeon
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Pallavi Gurung
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Junmo Lim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| |
Collapse
|
10
|
Conjugates of Tetrapyrrolic Macrocycles as Potential Anticancer Target-Oriented Photosensitizers. Top Curr Chem (Cham) 2023; 381:10. [PMID: 36826755 DOI: 10.1007/s41061-023-00421-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023]
Abstract
Photodynamic therapy is a minimally invasive treatment of tumors using photosensitizers, light, and reactive oxygen species, which can destroy cellular structures. With the development of photodynamic therapy, significant efforts have been made to create new efficient photosensitizers with improved delivery to cells, stability, and selectivity against cancer tissues. Naturally occurring tetrapyrrolic macrocycles, such as porphyrins and chlorins, are very attractive as photosensitizers, and their structural modification and conjugation with other biologically active molecules are promising approaches for creating new photosensitizers specifically targeting cancer cells. The present review aims to highlight recent developments in the design, preparation, and investigation of complex conjugates of tetrapyrrolic macrocycles, which can potentially be used as sensitizers for target-oriented photodynamic therapy of cancer. In this review, we discuss the structure, photodynamic effect, and anticancer activity of the following conjugates of tetrapyrrolic macrocycles: (1) conjugates obtained by modifying peripheral substituents in porphyrins and chlorins; (2) conjugates of porphyrins and chlorins with lipids, carbohydrates, steroids, and peptides; (3) conjugates of porphyrins and chlorins with anticancer drugs and some other biologically active molecules; (4) metal-containing conjugates. The question of how the conjugate structure affects its specificity, internalization, localization, and photoinduced toxicity within cancer cells is the focus of this review.
Collapse
|
11
|
Ju R, Wu F, Tian Y, Chu J, Peng X, Wang X. Dual Sensitization Anti-Resistant Nanoparticles for Treating Refractory Breast Cancers via Apoptosis-Inducing. Drug Des Devel Ther 2023; 17:403-418. [PMID: 36798807 PMCID: PMC9926987 DOI: 10.2147/dddt.s387788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Purpose Current chemotherapy fails to offer a desirable efficacy in clinical treatment against breast cancer due to the extensive multi-drug resistance. In this study, we developed dual sensitization anti-resistant nanoparticles to treat refractory breast cancer, aiming to benefit from photodynamic therapy and chemotherapy. Methods Hyaluronic acid (HA) derivative and photosensitizer chlorin e6 (Ce6) derivative were synthesized and confirmed by mass spectrometry. These derivatives and the chemotherapy agent paclitaxel were incorporated into nanoparticles by an emulsion-solvent evaporation method. The prepared nanoparticles were characterized by dynamic laser scattering, atomic force microscopy, and high performance liquid chromatography (HPLC). The efficacy and mechanisms of the nanoparticles, both in vitro and in vivo, were investigated by flow cytometry, confocal/fluorescence microscopy, and a high-content screening system. Results The prepared dual sensitization anti-resistant nanoparticles were round with a diameter of ~ 100 nm, exhibiting high encapsulation efficiency for the anticancer agent paclitaxel. The nanoparticles demonstrated a robust inhibitory effect against drug-resistant breast cancer cells by enhanced uptake, synergistic effect of photodynamic therapy and chemotherapy, and apoptosis-inducing via multiple pathways. In vivo efficacy, biocompatibility and safety were further confirmed acceptable in tumor-bearing mice. Conclusion The prepared dual sensitization anti-resistant nanoparticles were promising to treat refractory breast cancer with a controllable treatment site and minimal side effects.
Collapse
Affiliation(s)
- Ruijun Ju
- Pharmacy Department, the 967 Hospital of PLA Joint Logistics Support Force, Dalian, People’s Republic of China,Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Faliang Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Yanzhao Tian
- Pharmacy Department, the 967 Hospital of PLA Joint Logistics Support Force, Dalian, People’s Republic of China
| | - Jiahao Chu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Xiaoming Peng
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Xiaobo Wang
- Pharmacy Department, the 967 Hospital of PLA Joint Logistics Support Force, Dalian, People’s Republic of China,Correspondence: Xiaobo Wang, Pharmacy Department, the 967 Hospital of PLA Joint Logistics Support Force, Dalian, People’s Republic of China, Tel/Fax +86-0411-85847131, Email
| |
Collapse
|
12
|
Pandurang TP, Kumar B, Verma N, Dastidar DG, Yamada R, Nishihara T, Tanabe K, Kumar D. Synthesis of Red-Light-Responsive Pheophorbide-a Tryptamine Conjugated Photosensitizers for Photodynamic Therapy. ChemMedChem 2023; 18:e202200405. [PMID: 36317820 DOI: 10.1002/cmdc.202200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Six methyl pheophorbide-a derivatives were prepared by linking a tryptamine side chain at the C-131 , C-152 and C-173 positions of pheophorbide-a. Prepared conjugates were characterized and evaluated for their photocytotoxicity against A549 cells. The conjugate 6 a with strong absorption at 413 nm (Soret band), 663-671 nm (Q bands) and comparable fluorescence quantum yield (0.26) was found to exhibit significant cytotoxicity (659 nM). Molecular integration of pheophorbide-a and tryptamines showed synergistic effects as the most potent conjugate 6 a was identified with enhanced photocytotoxicity when compared to methyl pheophorbide-a. The conjugate 6 a was smoothly taken up by A549 cells and exhibited intracellular localization predominantly to lysosome in the cytoplasm. Upon photoirradiation 6 a generated singlet oxygen to show potent cytotoxicity toward A549 cells.
Collapse
Affiliation(s)
- Taur Prakash Pandurang
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Bintu Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Narshimha Verma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, West Bengal, India
| | - Risa Yamada
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Tatsuya Nishihara
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Kazuhito Tanabe
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| |
Collapse
|
13
|
Effect of Photodynamic Therapy with Chlorin e6 on Canine Tumors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122102. [PMID: 36556469 PMCID: PMC9782963 DOI: 10.3390/life12122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
This work aims to prepare pure Chlorin e6 (Ce6) and establish Ce6-mediated photodynamic therapy (Ce6-PDT) as a better therapy option for canine tumors as well as mouse tumor models. Five dogs suffering from various cancers were treated with Ce6-PDT from one to several times. After receiving the Ce6 (2.5 mg/kg) for 3 h, tumors were illuminated superficially or interstitially with 660 nm light. Two dogs underwent Ce6-guided fluorescence imaging by photodynamic diagnosis (PDD). Cell proliferation and apoptosis were detected by the 4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and western blot assay, respectively. Ce6-PDT efficacy was also determined using melanoma and pancreatic cancer mouse models. Two veterinary patients with mammary carcinoma and histiocytic sarcoma had their tumors significantly diminished and showed improved health after receiving Ce6-PDT. Moreover, in the cases of canine tumors, the adjunctive use of Ce6-PDD revealed cancers that were not visible with white light viewing and provided a visual contrast from surrounding tissues. Also, in vivo, Ce6-PDT remarkably reduced melanoma and pancreatic tumors in the mouse model. These findings could pave the way for a better understanding of the underlying processes of Ce6-PDT, making it an effective and safe candidate for use in human and veterinary applications to abolish various cancers.
Collapse
|
14
|
Husain A, Ganesan A, Salah L, Kubát P, Ghazal B, Makhseed S. Synthesis, Characterization, and Physicochemical Studies Of Orientation-Controlled Multi-Arm PEG Zn(II)/Mg(II) (Aza)Phthalocyanines. Chempluschem 2022; 87:e202200275. [PMID: 36420868 DOI: 10.1002/cplu.202200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Tuning the amphiphilicity of (aza)phthalocyanine hydrophobic cores by introducing multiple polyethylene glycol (PEG) moieties with controlled orientations of their (non)peripheral positions is an innovative approach to fabricating water-soluble macrocyclic materials. Although many water-soluble PEGylated macrocycles have been produced in this way, the ability to generate substances with PEG tails oriented outward from the macrocyclic plane in order to obtain non-aggregated, water soluble forms remains a challenge. In this study, we resolved this issue by developing a methods for the synthesis of four new dual directional PEG containing Zn(II)/Mg(II) amphiphiles (ZnPc-PEG, MgPc-PEG, ZnAzaPc-PEG and MgAzaPc-PEG). In addition, the non-aggregating behaviour, and photophysical and photochemical properties of these PEG-complexes were elucidated.
Collapse
Affiliation(s)
- A Husain
- Department of Chemistry, Kuwait University P.O. Box 5969, Safat, 13060, Kuwait
| | - A Ganesan
- Department of Chemistry, Kuwait University P.O. Box 5969, Safat, 13060, Kuwait
| | - L Salah
- Department of Chemistry, Kuwait University P.O. Box 5969, Safat, 13060, Kuwait
| | - P Kubát
- J.Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 182 23, Prague 8, Czech Republic
| | - B Ghazal
- Department of Organometallic and Organometalloid Chemistry Division, National Research Centre Dokki, 12622, Giza, Egypt
| | - S Makhseed
- Department of Chemistry, Kuwait University P.O. Box 5969, Safat, 13060, Kuwait
| |
Collapse
|
15
|
Hur GH, Ryu AR, Kim YW, Lee MY. The Potential Anti-Photoaging Effect of Photodynamic Therapy Using Chlorin e6-Curcumin Conjugate in UVB-Irradiated Fibroblasts and Hairless Mice. Pharmaceutics 2022; 14:pharmaceutics14050968. [PMID: 35631555 PMCID: PMC9143416 DOI: 10.3390/pharmaceutics14050968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Photodynamic therapy (PDT) has been used to treat cancers and non-malignant skin diseases. In this study, a chlorin e6–curcumin conjugate (Ce6-PEG-Cur), a combination of chlorin e6 (Ce6) and curcumin via a PEG linker, was used as a photosensitizer. The in vitro and in vivo effects of PDT using Ce6-PEG-Cur were analyzed in UVB-irradiated fibroblasts and hairless mice. The UVB-induced expression of MMPs was reduced in Hs68 fibroblast cells, and procollagen type Ⅰ expression was enhanced by Ce6-PEG-Cur-mediated PDT on a Western blotting gel. Moreover, UVB-induced collagen levels were restored upon application of Ce6-PEG-Cur-mediated PDT. Ce6-PEG-Cur-mediated PDT inhibited the expression of phosphorylated p38 in the MAPK signaling pathway, and it reduced the expression of phosphorylated NF-κB. In animal models, Ce6-PEG-Cur-mediated PDT inhibited the expression of MMPs, whereas procollagen type Ⅰ levels were enhanced in the dorsal skin of UVB-irradiated mice. Moreover, UVB-induced dorsal roughness was significantly reduced following Ce6-PEG-Cur-mediated PDT treatment. H&E staining and Masson’s trichrome staining showed that the thickness of the epidermal region was reduced, and the density of collagen fibers increased. Taken together, Ce6-PEG-Cur-mediated PDT might delay and improve skin photoaging by ultraviolet light, suggesting its potential for use as a more effective photo-aging treatment.
Collapse
Affiliation(s)
- Ga-Hee Hur
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - A-Reum Ryu
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
| | - Yong-Wan Kim
- Dongsung Bio Pharmaceutical Co., Ltd., Seoul 01340, Korea;
| | - Mi-Young Lee
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
- Correspondence: ; Tel.: +82-41-530-1355
| |
Collapse
|
16
|
Marinho MAG, Marques MDS, Cordeiro MF, de Moraes Vaz Batista Filgueira D, Horn AP. Combination of Curcumin and Photodynamic Therapy Based on the Use of Red Light or Near-Infrared Radiation in Cancer: a Systematic Review. Anticancer Agents Med Chem 2022; 22:2985-2997. [PMID: 35469576 DOI: 10.2174/1871520622666220425093657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a therapeutic intervention that can be applied to the treatment of cancer. The interaction between a photosensitizer (PS), ideal wavelength radiation and tissue molecular oxygen, triggers a series of photochemical reactions that are responsible for the production of reactive oxygen species. These highly reactive species can decrease proliferation and induce tumor cell death. The search for PS of natural origin extracted from plants becomes relevant, as they have photoactivation capacity, preferentially targeting tumor cells and because they do not present any or little toxicity to healthy cells. OBJECTIVE Our work aimed to carry out a qualitative systematic review to investigate the effects of curcumin (CUR), a molecule considered as PS of natural origin, on PDT, using red light or near infrared radiation, in tumor models. METHODS A systematic search was performed in three databases (PubMed, Scopus, and Web of Science) using the PICOT method, retrieving a total of 1,373 occurrences. At the end of the peer screening, using inclusion, exclusion, and eligibility criteria, 25 eligible articles were included in this systematic review. RESULTS CUR, whether in its free state, associated with metal complexes or other PS, and in a nanocarrier system, was considered a relevant PS for PDT using red light or near-infrared against tumoral models in vitro and in vivo, acting by increasing cytotoxicity, inhibiting proliferation, inducing cell death mainly by apoptosis, and changing oxidative parameters. CONCLUSION The results found in this systematic review suggest the potential use of CUR as a PS of natural origin to be applied in PDT against many neoplasms, encouraging further search in the field of PDT against cancer and serving as an investigative basis for upcoming pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Marcelo Augusto Germani Marinho
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil
| | - Magno da Silva Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina-UNOESC, Joaçaba, SC, 89600-000, Brasil
| | - Daza de Moraes Vaz Batista Filgueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil.,Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, 96210-900, Brasil
| |
Collapse
|
17
|
Yadav P, Mimansa, Kailasam K, Shanavas A. Nontoxic Metal-Free Visible Light-Responsive Carbon Nitride Quantum Dots Cause Oxidative Stress and Cancer-Specific Membrane Damage. ACS APPLIED BIO MATERIALS 2022; 5:1169-1178. [DOI: 10.1021/acsabm.1c01219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pranjali Yadav
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Mimansa
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Kamalakannan Kailasam
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| |
Collapse
|
18
|
Otvagin VF, Kuzmina NS, Kudriashova ES, Nyuchev AV, Gavryushin AE, Fedorov AY. Conjugates of Porphyrinoid-Based Photosensitizers with Cytotoxic Drugs: Current Progress and Future Directions toward Selective Photodynamic Therapy. J Med Chem 2022; 65:1695-1734. [DOI: 10.1021/acs.jmedchem.1c01953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vasilii F. Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Natalia S. Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S. Kudriashova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Alexander V. Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | | | - Alexey Yu. Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
19
|
Loonat A, Pellow J, Abrahamse H, Chandran R. Can Nanoparticles in Homeopathic Remedies Enhance Phototherapy of Cancer? A Hypothetical Model. HOMEOPATHY 2021; 111:217-225. [PMID: 34788870 DOI: 10.1055/s-0041-1735581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The continuous rise in cancer incidence places a massive burden on the health sector to increase efforts in the fight against cancer. As a holistic complementary medicine modality, homeopathy has the potential to assist in the supportive and palliative treatment of cancer patients. Recent empirical studies demonstrate the presence of silica and original source nanoparticles in ultra-high dilutions of several homeopathic medicines. Recent studies have also demonstrated the efficacy of phototherapy in inducing the ablation of cancer cells through laser-activated nanoparticle photosensitizers. A new hypothetical research model is presented herein, in an attempt to investigate and compare the phototherapeutic effects of homeopathic source nanoparticles with photosensitizing nanoparticle agents that have previously been tested.
Collapse
Affiliation(s)
- Ayesha Loonat
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.,Department of Complementary Medicine, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Janice Pellow
- Department of Complementary Medicine, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
20
|
Akhtar F, Khan AU. Antimicrobial photodynamic therapy (aPDT) against vancomycin resistant Staphylococcus aureus (VRSA) biofilm disruption: A putative role of phagocytosis in infection control. Photodiagnosis Photodyn Ther 2021; 36:102552. [PMID: 34597830 DOI: 10.1016/j.pdpdt.2021.102552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Biofilm mediated infections have major clinical impact. Staphylococcus aureus is a pathogen that frequently causes biofilm forming infections, such as those associated with medical devices and persistent wounds. Microorganisms embedded in biofilm are impervious to antibiotics and other antimicrobial agents, thus they are difficult to eliminate. The upsurge of multi-drug resistant strains makes treating such illnesses even more difficult. Therefore, new strategies are required to combat such type of infections. In this work, we have proposed an alternative therapeutic option to eradicate preformed biofilm of vancomycin resistant Staphylococcus aureus (VRSA) and enhanced phagocytosis by neutrophils in fresh human blood using curcumin mediated antimicrobial photodynamic therapy (aPDT).At sub-MIC of curcumin, different anti-biofilm assays and microscopic examinations were performed, followed by 20 J/cm2 of blue laser light irradiation which corresponds to 52 s only. The result showed significant disruption of VRSA biofilm. Moreover, when curcumin-aPDT treated VRSA biofilm was exposed to whole blood from healthy donors, it was nearly completely eradicated. The present study suggests that curcumin-aPDT enhanced phagocytosis may be a useful strategy for inactivating VRSA biofilms adhering to medical implant surfaces.
Collapse
Affiliation(s)
- Farheen Akhtar
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
21
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Castro KADF, Ramos L, Mesquita M, Biazzotto JC, Moura NMM, Mendes RF, Almeida Paz FA, Tomé AC, Cavaleiro JAS, Simões MMQ, Faustino MAF, Jager AV, Nakagaki S, P M S Neves MG, da Silva RS. Comparison of the Photodynamic Action of Porphyrin, Chlorin, and Isobacteriochlorin Derivatives toward a Melanotic Cell Line. ACS APPLIED BIO MATERIALS 2021; 4:4925-4935. [PMID: 35007041 DOI: 10.1021/acsabm.1c00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Melanoma is the most dangerous form of skin cancer, with an abrupt growth of its incidence over the last years. It is extremely resistant to traditional treatments such as chemotherapy and radiotherapy, but therapies for this cancer are gaining attention. Photodynamic therapy (PDT) is considered an effective modality to treat several types of skin cancers and can offer the possibility to treat one of the most aggressive ones: melanoma. In this work, the effect of PDT on a melanotic cell line (B16F10 cells) was assessed by exposing cultured cells to 5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)porphyrin (PS1) and to its chlorin (PS2) and isobacteriochlorin (PS3) corresponding derivatives and red LED light (λ = 660 ± 20 nm). The PDT effect in the cells' viability was measured using the MTT assay. The cell apoptosis was quantified by flow cytometry, and the subcellular localization of the photosensitizer was determined by fluorescence microscopy. In addition, the ability of PS2 to generate superoxide radicals was qualitatively assessed by tyrosine nitration. The results show that the efficiency of the PDT process is dependent on the structure of the PS and on their ability to produce singlet oxygen. Besides that, the photoactivation efficiency is highly dependent on the cellular sublocalization of the PS and on its cellular uptake and singlet oxygen production. We also found that the resistant cell line B16F10 has distinctive chlorin, isobacteriochlorin, or porphyrin-specific resistance profiles. Furthermore, it is shown that the highly fluorescent chlorin derivative PS2 can also be considered in imaging diagnostics.
Collapse
Affiliation(s)
- Kelly A D F Castro
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Loyanne Ramos
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil
| | - Mariana Mesquita
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Juliana Cristina Biazzotto
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil
| | - Nuno M M Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F Mendes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário M Q Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alessandra Vincenzi Jager
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil
| | - Shirley Nakagaki
- Laboratory of Bioinorganic and Catalysis, Department of Chemistry, Federal University of Paraná, 81531-980 Paraná, Brazil
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto S da Silva
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil
| |
Collapse
|
23
|
Zhang L, Jin T, Sun J, Chen X. Self-assembly supramolecular drug delivery system for combination of photodynamic therapy and chemotherapy. J Microencapsul 2021; 38:81-88. [PMID: 32964772 DOI: 10.1080/02652048.2020.1826591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
AIMS To construct a self-assembly supramolecular drug delivery system (DDS) to co-deliver chlorin e6 (Ce6) and tripeptide tyroseroleutide (YSL) and evaluate the anti-tumour effects. METHODS A supramolecular DDS was constructed via self-assembly of Ce6 and YSL based on π-π stacking and hydrogen-bond interaction. The size, morphology, stability, in vitro drug release, cellular uptake, cytotoxicity, pharmacokinetics analysis and pharmacodynamics analysis were respectively studied. RESULTS Ce6-YSL nanoparticles with a uniform size of 75 ± 3.5 nm (PDI = 0.128) and monodispersed spherical morphology were constructed. The nanoparticles exhibited good stability with zeta potential -21.2 ± 1.73 mV. Under the weak acidic conditions, the accumulative drug release was 82.8% (w/w) (pH = 6.0) and 91.5% (w/w) (pH = 5.0), respectively, indicating that nanoparticles performed smart responsive properties and achieved controlled release characteristics in acidic tumour microenvironment. In addition, nanoparticles could easily enter the tumour cells and induce ROS production and inhibit cell proliferation in SMMCC-7721 cells with IC50 value 3.4 ± 0.023 μg/mL under laser irradiation. Furthermore, the nanoparticles could retain a much higher blood concentration in vivo and displayed excellent antitumor effect in tumour-bearing mice, showing no influence on body weight. CONCLUSIONS This self-assembly supramolecular DDS can be used for combination of photodynamic therapy and chemotherapy in future research.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Taiyu Jin
- Department of Pharmacy, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Jing Sun
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoyu Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
24
|
Yang H, Liu R, Xu Y, Qian L, Dai Z. Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment. NANO-MICRO LETTERS 2021; 13:35. [PMID: 34138222 PMCID: PMC8187547 DOI: 10.1007/s40820-020-00561-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/31/2020] [Indexed: 05/13/2023]
Abstract
Patients with pancreatic cancer (PCa) have a poor prognosis apart from the few suitable for surgery. Photodynamic therapy (PDT) is a minimally invasive treatment modality whose efficacy and safety in treating unresectable localized PCa have been corroborated in clinic. Yet, it suffers from certain limitations during clinical exploitation, including insufficient photosensitizers (PSs) delivery, tumor-oxygenation dependency, and treatment escape of aggressive tumors. To overcome these obstacles, an increasing number of researchers are currently on a quest to develop photosensitizer nanoparticles (NPs) by the use of a variety of nanocarrier systems to improve cellular uptake and biodistribution of photosensitizers. Encapsulation of PSs with NPs endows them significantly higher accumulation within PCa tumors due to the increased solubility and stability in blood circulation. A number of approaches have been explored to produce NPs co-delivering multi-agents affording PDT-based synergistic therapies for improved response rates and durability of response after treatment. This review provides an overview of available data regarding the design, methodology, and oncological outcome of the innovative NPs-based PDT of PCa.
Collapse
Affiliation(s)
- Huanyu Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China.
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| |
Collapse
|
25
|
Oliveira H, Correia P, Pereira AR, Araújo P, Mateus N, de Freitas V, Oliveira J, Fernandes I. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. Int J Mol Sci 2020; 21:E7464. [PMID: 33050431 PMCID: PMC7589295 DOI: 10.3390/ijms21207464] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their physical and chemical characteristics, anthocyanins are amongst the most versatile groups of natural compounds. Such unique signature makes these compounds a focus in several different areas of research. Anthocyanins have well been reported as bioactive compounds in a myriad of health disorders such as cardiovascular diseases, cancer, and obesity, among others, due to their anti-inflammatory, antioxidant, anti-diabetic, anti-bacterial, and anti-proliferative capacities. Such a vast number of action mechanisms may be also due to the number of structurally different anthocyanins plus their related derivatives. In this review, we highlight the recent advances on the potential use of anthocyanins in biological systems with particular focus on their photoprotective properties. Topics such as skin aging and eye degenerative diseases, highly influenced by light, and the action of anthocyanins against such damages will be discussed. Photodynamic Therapy and the potential role of anthocyanins as novel photosensitizers will be also a central theme of this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joana Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (P.C.); (A.R.P.); (P.A.); (N.M.); (V.d.F.)
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (P.C.); (A.R.P.); (P.A.); (N.M.); (V.d.F.)
| |
Collapse
|
26
|
Ryu AR, Kim YW, Lee MY. Chlorin e6-mediated photodynamic therapy modulates adipocyte differentiation and lipogenesis in 3T3-L1 cells. Photodiagnosis Photodyn Ther 2020; 31:101917. [DOI: 10.1016/j.pdpdt.2020.101917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022]
|
27
|
Min Z, Zhu Y, Hong X, Yu Z, Ye M, Yuan Q, Hu X. Synthesis and Biological Evaluations of Monocarbonyl Curcumin Inspired Pyrazole Analogues as Potential Anti-Colon Cancer Agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2517-2534. [PMID: 32636614 PMCID: PMC7334020 DOI: 10.2147/dddt.s244865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
Purpose The monocarbonyl analogs of curcumin (MCACs) have been widely studied for their promising antitumor activity. Pyrazole is a five-membered aromatic heterocyclic system with various bioactivities incorporated frequently in drugs. However, few of MCACs inspired pyrazole analogues were investigated. To search for more potent cytotoxic agents based on MCACs, a series of new 1,5-diaryl/heteroaryl-1,4-pentadien-3-ones inspired pyrazole moiety was synthesized and evaluated on their anti-colon cancer activities. Methods Fifteen new compounds were synthesized and characterized by spectral datum, and then they were tested preliminarily by MTT assay for their cytotoxic activities against a panel of four human cancer cell lines, namely, gastric (SGC-7901), liver (HepG2), lung (A549), and colon (SW620) cancer cells. Compound 7h exhibited excellent selectivity and outstanding anti-proliferation activity against SW620 cells among these 15 compounds. Further, the mechanisms were investigated by transwell migration and invasion assay, clonogenic assay, cell apoptosis analysis, cell cycle analysis, Western blot analysis. Results The IC50 value of 7h against SW620 cells was 12 nM, being more potent than curcumin (IC50 = 9.36 μM), adriamysin (IC50 = 3.28 μM) and oxaliplatin (IC50 = 13.33 μM). Further assays showed that 7h inhibited SW620 cell migration, invasion and colony formation obviously, which was due to its ability to induce cell cycle arrest in the G2/M and S phases and apoptosis. Western blot assay revealed that 7h decreased the protein expression of ATM gene, which may primarily contribute to its anticancer activity against SW620 cells. Conclusion A new MCACs 7h was synthesized and found to exhibit excellent anti-proliferation activity against SW620 cells. Further studies indicated that 7h exerted its anticancer activity against SW620 cells probably via decreasing the ATM protein expression. The present study suggested that 7h was a promising candidate as an anti-colon cancer drug for future development.
Collapse
Affiliation(s)
- Zhenli Min
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yue Zhu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,Stem Cell Lab, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Xing Hong
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Zhijun Yu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Min Ye
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Qiong Yuan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Guo X, Fang Z, Zhang M, Yang D, Wang S, Liu K. A Co-Delivery System of Curcumin and p53 for Enhancing the Sensitivity of Drug-Resistant Ovarian Cancer Cells to Cisplatin. Molecules 2020; 25:molecules25112621. [PMID: 32512936 PMCID: PMC7321199 DOI: 10.3390/molecules25112621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
In order to enhance the sensitivity of drug-resistant ovarian cancer cells to cisplatin (DDP), a co-delivery system was designed for simultaneous delivery of curcumin (CUR) and p53 DNA. Firstly, the bifunctional peptide K14 composed of tumor targeting peptide (tLyP-1) and nuclear localization signal (NLS) was synthesized. A nonviral carrier (PEI-K14) was synthesized by cross-linking low molecular weight polyethyleneimine (PEI) with K14. Then, CUR was coupled to PEI-K14 by matrix metalloproteinase 9 (MMP9)-cleavable peptide to prepare CUR-PEI-K14. A co-delivery system, named CUR-PEI-K14/p53, was obtained by CUR-PEI-K14 and p53 self-assembly. Furthermore, the physicochemical properties and gene transfection efficiency were evaluated. Finally, ovarian cancer cisplatin-resistant (SKOV3-DDP) cells were selected to evaluate the effect of CUR-PEI-K14/p53 on enhancing the sensitivity of drug-resistant cells to DDP. The CUR-PEI-K14/DNA complexes appeared uniformly dispersed and spherical. The particle size was around 20-150 nm and the zeta potential was around 18-37 mV. It had good stability, high transfection efficiency, and low cytotoxicity. CUR-PEI-K14/p53 could significantly increase the sensitivity of SKOV3-DDP cells to DDP, and this effect was better as combined with DDP. The sensitizing effect might be related to the upregulation of p53 messenger RNA (mRNA), the downregulation of P-glycoprotein (P-gp) mRNA, and the upregulation of BCL2-Associated X (bax) mRNA. CUR-PEI-K14/p53 can be used as an effective strategy to enhance the sensitivity of drug-resistant ovarian cancer cells to DDP.
Collapse
Affiliation(s)
| | | | | | | | | | - Kehai Liu
- Correspondence: ; Tel.: +86-216-190-0388
| |
Collapse
|
29
|
Shen Y, Li M, Sun F, Zhang Y, Qu C, Zhou M, Shen F, Xu L. Low-dose photodynamic therapy-induced increase in the metastatic potential of pancreatic tumor cells and its blockade by simvastatin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111889. [DOI: 10.1016/j.jphotobiol.2020.111889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/03/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
|
30
|
Yang QQ, Farha AK, Kim G, Gul K, Gan RY, Corke H. Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Liu D, Zhang Q, Zhang L, Yu W, Long H, He J, Liu Y. Novel photosensitizing properties of porphyrin–chrysin derivatives with antitumor activity in vitro. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820907248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photodynamic therapy is a promising cancer treatment with the advantages of low toxicity, high efficiency, and noninvasiveness. In this study, 23 novel porphyrin–chrysin derivatives are synthesized using alkyl carbon chains as bridges. We use human gastric cancer cells (MGC-803) and human cervical cancer cells to evaluate the in vitro antitumor activity of all the porphyrin–chrysin derivatives, with 5-fluorouracil (5-Fu) as a positive control. Several of the prepared compounds showed effective photodynamic killing effects, among which 5-hydroxy-2-phenyl-7-(2-(4-(10,15,20-tris(4-hydroxyphenyl)porphyrin-5-yl)phenoxy)ethoxy)-4 H-chromen-4-one shows the highest antiproliferation activity on human cervical cancer cells, with a half maximal inhibitory concentration of 26.51 ± 1.15 µM. Flow cytometry analysis showed that human cervical cancer cell apoptosis might be induced by G1 phase arrest.
Collapse
Affiliation(s)
- Ding Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Lang Zhang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, P.R. China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Huizhi Long
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, P.R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| |
Collapse
|
32
|
Karuppusamy S, Hyejin K, Kang HW. Nanoengineered chlorin e6 conjugated with hydrogel for photodynamic therapy on cancer. Colloids Surf B Biointerfaces 2019; 181:778-788. [PMID: 31238210 DOI: 10.1016/j.colsurfb.2019.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/21/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
The aim of the present study is to fabricate hydrogel as a photosensitizer (PS) for photodynamic therapy. Chlorin e6 (Ce6)-fucoidan/alginates@gellam gum (Ce6-Fu/AL@GG)-based hydrogel was fabricated and characterised in terms of morphology and functional groups. MTT assay was used to check toxicity and also performed scratch assay for wound healing property of Ce6-Fu/AL@GGH. Fourier transform infrared spectroscopy (FT-IR) confirmed the existence of physical interactions between polysaccharides. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) analysis confirmed a decrease in the thermal stability of the fabricated hydrogel. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) images demonstrated porous matrixes representing homogeneous dispersion of nanoparticles in the hydrogel. Cytotoxicity tests revealed that a decrease in the cell viability occurred in PDT after 48 h treatment. Both Ce6 and laser irradiation induced the HT-29 apoptotic effect that was mediated by intracellular ROS generation and mitochondrial damage. The laser-treated hydrogel was effective in inhibiting HT-29 cell growth. Ce6-Fu/AL@GG hydrogel can be a promising platform for PDT on cancer treatment.
Collapse
Affiliation(s)
- Shanmugapriya Karuppusamy
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea
| | - Kim Hyejin
- Interdisciplinary program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, South Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea; Interdisciplinary program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, South Korea.
| |
Collapse
|
33
|
Juneja R, Lyles Z, Vadarevu H, Afonin KA, Vivero-Escoto JL. Multimodal Polysilsesquioxane Nanoparticles for Combinatorial Therapy and Gene Delivery in Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12308-12320. [PMID: 30844224 DOI: 10.1021/acsami.9b00704] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional hybrid nanoparticles are being developed to carry a wide variety of therapeutic and imaging agents for multiple biomedical applications. Polysilsesquioxane (PSilQ) nanoparticles are a promising hybrid platform with numerous advantages to be used as a delivery system. In this report, we demonstrate the ability of a stimuli-responsive PSilQ-based platform to transport and deliver simultaneously protoporphyrin IX, curcumin, and RNA interference inducers inside human cells. This multimodal delivery system shows a synergistic performance for the combined phototherapy and chemotherapy of triple-negative breast cancer and can be used for efficient transfection of therapeutic nucleic acids. The current work represents the first report of using the PSilQ platform for the combined phototherapy and chemotherapy and gene delivery.
Collapse
|
34
|
Ghazal B, Kaya EN, Husain A, Ganesan A, Durmuş M, Makhseed S. Biotinylated-cationic zinc(II) phthalocyanine towards photodynamic therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424618501158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Targeting biotin receptors in cancer cells can improve specifying of photosensitizers (PSs) for cancer treatment by photodynamic therapy (PDT) applications. Consequently, there has been extensive research focusing mainly on the design of PSs with optimized pharmaceutical properties and better targeting toward cancer cells. Herein a tailored mono-biotinylated zinc(II) phthalocyanine (Pc-1) substituted with six phenoxy-bis(triazolyl) substituents has been synthesized. This Pc-1 has been further modified to its cationic version (Pc-2) through quaternizing of the triazole moiety to gain water solubility. Both non-ionic zinc(II) phthalocyanine (Pc-1) and its cationic derivative (Pc-2) were characterized by standard spectroscopic techniques, namely; FT-IR, 1H and [Formula: see text]C NMR, UV-Vis and MALDI-TOF, and by elemental analysis. The photophysical and photochemical properties were evaluated in DMSO for the non-ionic Pc-1 and in both DMSO and water for the cationic Pc-2.
Collapse
Affiliation(s)
- Basma Ghazal
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Esra Nur Kaya
- Gebze Technical University, Department of Chemistry, 41400 Gebze-Kocaeli, Turkey
| | - Ali Husain
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Asaithampi Ganesan
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, 41400 Gebze-Kocaeli, Turkey
| | - Saad Makhseed
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| |
Collapse
|
35
|
Buzzá HH, Fialho de Freitas LC, Moriyama LT, Teixeira Rosa RG, Bagnato VS, Kurachi C. Vascular Effects of Photodynamic Therapy with Curcumin in a Chorioallantoic Membrane Model. Int J Mol Sci 2019; 20:E1084. [PMID: 30832361 PMCID: PMC6429090 DOI: 10.3390/ijms20051084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Photodynamic Therapy (PDT) is a treatment that requires light, a photosensitizing agent, and molecular oxygen. The photosensitizer is activated by light and it interacts with the oxygen that is present in the cellular microenvironment. The molecular oxygen is transformed into singlet oxygen, which is highly reactive and responsible for the cell death. Therefore, PS is an important element for the therapy happens, including its concentration. Curcumin is a natural photosensitizer and it has demonstrated its anti-inflammatory and anti-oxidant effects that inhibit several signal transduction pathways. PDT vascular effects of curcumin at concentrations varying from 0.1 to 10 mM/cm² and topical administration were investigated in a chick Chorioallantoic Membrane (CAM) model. The irradiation was performed at 450 nm, irradiance of 50 mW/cm² during 10 min, delivering a total fluence of 30 J/cm². The vascular effect was followed after the application of curcumin, with images being obtained each 30 min in the first 3 h, 12 h, and 24 h. Those images were qualitatively and quantitatively analyzed with a MatLAB®. Curcumin was expected to exhibit a vascular effect due to its angio-inhibitory effect. Using curcumin as photosensitizer, PDT induced a higher and faster vascular effect when compared to the use of this compound alone.
Collapse
Affiliation(s)
- Hilde Harb Buzzá
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Lucas Cruz Fialho de Freitas
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Lilian Tan Moriyama
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Ramon Gabriel Teixeira Rosa
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| |
Collapse
|
36
|
The photodynamic activity and toxicity evaluation of 5,10,15-tris(ethoxylcarbonyl)corrole phosphorus(V) in vivo and in vitro. Eur J Med Chem 2019; 163:779-786. [DOI: 10.1016/j.ejmech.2018.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
|
37
|
Purushothaman B, Choi J, Park S, Lee J, Samson AAS, Hong S, Song JM. Biotin-conjugated PEGylated porphyrin self-assembled nanoparticles co-targeting mitochondria and lysosomes for advanced chemo-photodynamic combination therapy. J Mater Chem B 2019; 7:65-79. [DOI: 10.1039/c8tb01923a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, the chemo-drug doxorubicin (DOX) was successfully encapsulated in PEG–biotin conjugated porphyrin SANs (DOX@TPP–PEG–biotin) and had synergistic effects after PDT action.
Collapse
Affiliation(s)
| | - Jinhyeok Choi
- College of Pharmacy
- Seoul National University
- Seoul 08826
- South Korea
| | - Solji Park
- College of Pharmacy
- Seoul National University
- Seoul 08826
- South Korea
| | - Jeongmin Lee
- College of Pharmacy
- Seoul National University
- Seoul 08826
- South Korea
| | | | - Sera Hong
- College of Pharmacy
- Seoul National University
- Seoul 08826
- South Korea
| | - Joon Myong Song
- College of Pharmacy
- Seoul National University
- Seoul 08826
- South Korea
| |
Collapse
|
38
|
Chien YH, Chan KK, Anderson T, Kong KV, Ng BK, Yong KT. Advanced Near-Infrared Light-Responsive Nanomaterials as Therapeutic Platforms for Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yi-Hsin Chien
- School of Electrical and Electronic Engineering; Nanyang Technological University; Singapore 639798
- Department of Materials Science and Engineering; Feng Chia University; Taichung 40724 Taiwan
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering; Nanyang Technological University; Singapore 639798
| | - Tommy Anderson
- School of Electrical and Electronic Engineering; Nanyang Technological University; Singapore 639798
| | - Kien Voon Kong
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Beng Koon Ng
- School of Electrical and Electronic Engineering; Nanyang Technological University; Singapore 639798
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering; Nanyang Technological University; Singapore 639798
| |
Collapse
|
39
|
Novel curcumin analogue hybrids: Synthesis and anticancer activity. Eur J Med Chem 2018; 156:493-509. [PMID: 30025345 DOI: 10.1016/j.ejmech.2018.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
Abstract
In this study, twenty curcumin analogue hybrids as potential anticancer agents through regulation protein of TrxR were designed and synthesized. Results of anticancer activity showed that 5,7-dimethoxy-3-(3-(2-((1E, 4E)-3-oxo-5-(pyridin-2-yl)penta-1,4-dien-1- yl)phenoxy)propoxy)-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (compound 7d) could induce gastric cancer cells apoptosis by arresting cell cycle, break mitochondria function and inhibit TrxR activity. Meanwhile, western blot revealed that this compound could dramatically up expression of Bax/Bcl-2 ratio and high expression of TrxR oxidation. These results preliminarily show that the important role of ROS mediated activation of ASK1/MAPK signaling pathways by this title compound.
Collapse
|