1
|
Ravichandiran P, Martyna A, Kochanowicz E, Maroli N, Kubiński K, Masłyk M, Boguszewska-Czubara A, Ramesh T. In Vitro and In Vivo Biological Evaluation of Novel 1,4-Naphthoquinone Derivatives as Potential Anticancer Agents. ChemMedChem 2024; 19:e202400495. [PMID: 39136593 DOI: 10.1002/cmdc.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Indexed: 10/16/2024]
Abstract
A novel library of naphthoquinone derivatives (3-5 aa) was synthesized and evaluated for their anticancer properties. Specifically, compounds 5 i, 5 l, 5 o, 5 q, 5 r, 5 s, 5 t, and 5 v demonstrated superior cytotoxic activity against the cancer cell lines that were studied. All the studied compounds exhibited a higher selectivity index (SI) and a favourable safety profile than the standard drug doxorubicin. Notably, compound 5 v displayed a greater cytotoxic effect on MCF-7 cells (IC50=1.2 μM, and 0.9 μM at 24 h and 48 h, respectively) compared to the standard drug doxorubicin (IC50=2.4 μM, and 2.1 μM at 24 h and 48 h, respectively). To further investigate the mechanism of cytotoxic effect, additional anticancer studies were conducted with 5 v in MCF-7 cells. The studies are including morphological changes, AO/EB (acridine orange/ethidium bromide) double staining, apoptosis analysis, cell colony assay, SDS-PAGE and Western blotting, cell cycle analysis, and detecting reactive oxygen species (ROS) assay. The findings showed that 5 v triggered cytotoxic effects in MCF-7 cells through the initiation of cell cycle arrest at the G1/S phase and necrosis. In vivo ecotoxicity studies indicated that 5 v had lower toxicity towards zebrafish larvae (LC50=50.15 μM) and had an insignificant impact on cardiac functions. In vivo xenotransplantation of MCF-7 cells in zebrafish larvae demonstrated a significant reduction in tumour volume in the xenograft. Approximately 95 % of the zebrafish larvae with 5 v xenografts survived after 10 days of the treatment. Finally, a computational modelling study was conducted on four protein receptors, namely ER, EFGR, BRCA1, and VEFGR2. The findings highlight the importance of the aminonaphthoquinone moiety, amide linkage, and propyl thio moiety in enhancing the anticancer properties. 5 v exhibited superior drug-likeness features and docking scores (-9.1, -7.1, -8.9, and -10.9 kcal/mol) compared to doxorubicin (-7.2, -6.1, -6.9, and -7.3 kcal/mol) against ER, EFGR, BRCA1, and VEGFR2 receptors, respectively. Therefore, the notable antitumor effects of naphthoquinone derivatives (3-5 aa) suggest that these molecular frameworks may play a role in the development of promising anticancer agents for cancer treatment.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Present Address: Analytical, HP Green R & D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, Karnataka, 562114, India
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Ul. Chodźki 4 A, 20-093, Lublin, Poland
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
2
|
Wang X, Wang X, Yao H, Shen C, Geng K, Xie H. A comprehensive review on Schisandrin and its pharmacological features. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:783-794. [PMID: 37658213 DOI: 10.1007/s00210-023-02687-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Schisandrin stands as one of the primary active compounds within the widely used traditional medicinal plant Schisandra chinensis (Turcz.) Baill. This compound exhibits sedative, hypnotic, anti-aging, antioxidant, and immunomodulatory properties, showcasing its effectiveness across various liver diseases while maintaining a favorable safety profile. However, the bioavailability of schisandrin is largely affected by hepatic and intestinal first-pass metabolism, which limits the clinical efficacy of schisandrin. In this paper, we review the various pharmacological effects and related mechanisms of schisandrin, in order to provide reference for subsequent drug research and promote its medicinal value.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Hui Yao
- Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
3
|
Zaim Ö, Doğanlar O, Banu Doğanlar Z, Özcan H, Zreigh MM, Kurtdere K. Novel synthesis naringenin-benzyl piperazine derivatives prevent glioblastoma invasion by inhibiting the hypoxia-induced IL6/JAK2/STAT3 axis and activating caspase-dependent apoptosis. Bioorg Chem 2022; 129:106209. [DOI: 10.1016/j.bioorg.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
|
4
|
Wang G, Wang D, Mei X, Huang M, Zhang L, Li X. Effects of electron beam irradiation on microbial contamination and quality of Shengmai Yin. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Venkateswara Rao B, Pavan Kumar P, Ramalingam V, Karthik G, Andugulapati SB, Suresh Babu K. Piperazine tethered bergenin heterocyclic hybrids: design, synthesis, anticancer activity, and molecular docking studies. RSC Med Chem 2022; 13:978-985. [PMID: 36092140 PMCID: PMC9383709 DOI: 10.1039/d2md00116k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 09/29/2023] Open
Abstract
In an attempt to develop natural product-based anticancer agents, a series of novel piperazine-linked bergenin heterocyclic hybrids bearing arylthiazolyl (5a-e), benzothiazolyl (10a-i), and arylsulfonyl (13a-o) were synthesized using the classical Mannich reaction and evaluated for their anticancer activity. All the synthesized derivatives were assessed for in vitro cytotoxic activity against a panel of human cancer and normal cell lines and the results showed that most of the compounds exhibited significant cytotoxic activity against cancer cells and mild cytotoxicity against normal cells. In particular, the compounds 5a, 5c, 10f, and 13o showed potent cytotoxic activity against tongue and oral cancer cell lines compared to the parent compound (<100 μM). Considering the efficacy, the compounds 5a, 5c, 10f, and 13o were subjected to cell cycle analysis and the results indicated that the compounds mitigated the cell cycle progression at the G0/G1 phase in the tongue and oral cancer cell lines. Subsequently, the annexin V/PI staining assay demonstrated that the compounds 5a, 5c, 10f, and 13o induced early and late apoptosis against tongue cancer and necrosis against oral cancer. Further, gene expression analysis revealed that 5a, 5c, and 13o treatment regulated the BAX and BcL-2 expression and also the selected compounds significantly reduced the expression level of vimentin, oct-4, and nanog. In addition, molecular docking studies revealed that the selected derivatives have strong binding energy with the BcL2 protein and downregulates the expression. Taken together, the study results implied that these compounds are promising anticancer candidates by modulating the epithelial to mesenchymal transition axis and could be considered for further development of novel anticancer drugs.
Collapse
Affiliation(s)
- Banoth Venkateswara Rao
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - P Pavan Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Vaikundamoorthy Ramalingam
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - G Karthik
- Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
- Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| |
Collapse
|
6
|
Manga B, VenkateswaraRao B, Sudeshnakopparapu, Balaji AS, Jadav SS, Ramalingam V, Babu KS. Design, synthesis and cytotoxic activity studies of alkyne linked analogues of Nimbolide. Fitoterapia 2022; 161:105246. [PMID: 35760229 DOI: 10.1016/j.fitote.2022.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
A series of novel nimbolide derivatives bearing various substitutions on 28th position was designed and synthesized using Sonogashira (2a-2p) and Glaser coupling (3a-3e) reactions. The synthesized derivatives were assessed for in vitro cytotoxic activity against four different human cancer cell lines (A549 cells, MCF-7 cells, MDA-MB-231 cells, and HCT15 cells) and normal cell line (HEK cells) using MTT assay. Among the screened derivatives, the compound 3a showed potent activity against A549 cells with IC50 value of 0.23 μM as comparing with parent molecule 1 (1.48 μM) and the standard drug doxorubicin (0.82 μM). As well, the flow cytometry analysis confirmed that the compounds 1 and 3a arrest the cell cycle progress at S phase and induce the early apoptosis in the lung cancer. The qRT-PCR analysis revealed that the compounds 1 and 3a downregulate the BcL2 expression and upregulates the Bax gene expression level in A549 cells. The strong binding affinity of the compounds 1 and 3a with BcL2 was also confirmed using molecular docking analysis. Together, the results suggested that the compound 3a is a promising anticancer agent against lung cancer is deserved for further investigation.
Collapse
Affiliation(s)
- B Manga
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - B VenkateswaraRao
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudeshnakopparapu
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Andugulapati Sai Balaji
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Surender Singh Jadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Vaikundamoorthy Ramalingam
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Gaja SK, Bandi S, Pavuluri PK, Sambyal S, Jaina VK, Sampath Kumar HM, Andugulapati SB, V R, Babu KS. Synthesis and antiproliferative activities of novel piscidinol a derivatives as potential anticancer agents. Nat Prod Res 2022:1-7. [PMID: 35343322 DOI: 10.1080/14786419.2022.2056889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Piscidinol A (1), a major compound isolated from Aphanamixis polystachya, showed modest anticancer activity against cancer cell lines. Subsequently, a series of analogues were synthesised by modification of the key structural functionalities of this high yield natural product and assessed for their anticancer potential against various cancer cell lines. Among the tested derivatives, the compounds 6e and 6i are significantly reduced the cell viability at 5.38 and 5.02 µM against DU145 prostate cancer cells, respectively. Additionally, both the compounds arrested the cell cycle at S phase and induced the late apoptosis in DU145 cells. Together, the results demonstrated that the compounds 6e and 6i could be a promising lead for the development of anticancer agents against DU145 and well worth further investigation aiming to generate potential anticancer agents.
Collapse
Affiliation(s)
- Swarna Kumari Gaja
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Siva Bandi
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Pavan Kumar Pavuluri
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Shainy Sambyal
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Vinod Kumar Jaina
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - H M Sampath Kumar
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Sai Balaji Andugulapati
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ramalingam V
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Abourehab MAS, Alqahtani AM, Almalki FA, Zaher DM, Abdalla AN, Gouda AM, Beshr EAM. Pyrrolizine/Indolizine-NSAID Hybrids: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules 2021; 26:6582. [PMID: 34770990 PMCID: PMC8588198 DOI: 10.3390/molecules26216582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
In the current study, eight new hybrids of the NSAIDs, ibuprofen and ketoprofen with five pyrrolizine/indolizine derivatives were designed and synthesized. The chemical structures of these hybrids were confirmed by spectral and elemental analyses. The antiproliferative activities of these hybrids (5 μM) was investigated against MCF-7, A549, and HT-29 cancer cell lines using the cell viability assay, MTT assay. The results revealed 4-71% inhibition of the growth of the three cancer cell lines, where 8a,e,f were the most active. In addition, an investigation of the antiproliferative activity of 8a,e,f against MCF-7 cells revealed IC50 values of 7.61, 1.07, and 3.16 μM, respectively. Cell cycle analysis of MCF-7 cells treated with the three hybrids at 5 μM revealed a pro-apoptotic increase in cells at preG1 and cell cycle arrest at the G1 and S phases. In addition, the three hybrids induced early apoptotic events in MCF-7 cells. The results of the molecular docking of the three hybrids into COX-1/2 revealed higher binding free energies than their parent compounds 5a,c and the co-crystallized ligands, ibuprofen and SC-558. The results also indicated higher binding free energies toward COX-2 over COX-1. Moreover, analysis of the binding modes of 8a,e,f into COX-2 revealed partial superposition with the co-crystallized ligand, SC-558 with the formation of essential hydrogen bonds, electrostatic, or hydrophobic interactions with the key amino acid His90 and Arg513. The new hybrids also showed drug-likeness scores in the range of 1.06-2.03 compared to ibuprofen (0.65) and ketoprofen (0.57). These results above indicated that compounds 8a,e,f deserve additional investigation as potential anticancer candidates.
Collapse
Affiliation(s)
- Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.M.A.); (F.A.A.)
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.M.A.); (F.A.A.)
| | - Dana M. Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmacology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Ahmed M. Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Eman A. M. Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| |
Collapse
|
9
|
Zhang RH, Guo HY, Deng H, Li J, Quan ZS. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem 2021; 36:1165-1197. [PMID: 34080510 PMCID: PMC8183565 DOI: 10.1080/14756366.2021.1931861] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.
Collapse
Affiliation(s)
- Run-Hui Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hao Deng
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jinzi Li
- Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
10
|
Kumar GD, Siva B, Vadlamudi S, Bathula SR, Dutta H, Suresh Babu K. Design, synthesis, and biological evaluation of pyrazole-linked aloe emodin derivatives as potential anticancer agents. RSC Med Chem 2021; 12:791-796. [PMID: 34124677 DOI: 10.1039/d0md00315h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
In connection with our continuous efforts to generate new derivatives from lead compounds isolated from traditional medicinal plants, a series of aloe-emodin derivatives (6a-6e) were synthesized and assessed for their potential anticancer activity against a panel of cancer cell lines. The results showed that most of the derivatives are more active than the aloe-emodin and particularly, 6b and 6e manifested potent activity with IC50 values of 1.32 & 1.6 μM and 0.99 & 2.68 μM against MDA-MB-231 and MCF-7 cells, respectively. Moreover, 6b and 6e induce early and late apoptosis as well as arrest the cell cycle at the G2/M phase in MDA-MB-231 cells. In conclusion, the results confirmed that the aloe-emodin derivatives could be a potential drug candidate for better treatment of breast cancer.
Collapse
Affiliation(s)
- Guddeti Dileep Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - Bandi Siva
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Sravanthi Vadlamudi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Surendar Reddy Bathula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad-500 007 India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
11
|
Yoganathan S, Alagaratnam A, Acharekar N, Kong J. Ellagic Acid and Schisandrins: Natural Biaryl Polyphenols with Therapeutic Potential to Overcome Multidrug Resistance in Cancer. Cells 2021; 10:458. [PMID: 33669953 PMCID: PMC7924821 DOI: 10.3390/cells10020458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance (MDR) is one of the major clinical challenges in cancer treatment and compromises the effectiveness of conventional anticancer chemotherapeutics. Among known mechanisms of drug resistance, drug efflux via ATP binding cassette (ABC) transporters, namely P-glycoprotein (P-gp) has been characterized as a major mechanism of MDR. The primary function of ABC transporters is to regulate the transport of endogenous and exogenous small molecules across the membrane barrier in various tissues. P-gp and similar efflux pumps are associated with MDR because of their overexpression in many cancer types. One of the intensively studied approaches to overcome this mode of MDR involves development of small molecules to modulate P-gp activity. This strategy improves the sensitivity of cancer cells to anticancer drugs that are otherwise ineffective. Although multiple generations of P-gp inhibitors have been identified to date, reported compounds have demonstrated low clinical efficacy and adverse effects. More recently, natural polyphenols have emerged as a promising class of compounds to address P-gp linked MDR. This review highlights the chemical structure and anticancer activities of selected members of a structurally unique class of 'biaryl' polyphenols. The discussion focuses on the anticancer properties of ellagic acid, ellagic acid derivatives, and schisandrins. Research reports regarding their inherent anticancer activities and their ability to sensitize MDR cell lines towards conventional anticancer drugs are highlighted here. Additionally, a brief discussion about the axial chirality (i.e., atropisomerism) that may be introduced into these natural products for medicinal chemistry studies is also provided.
Collapse
Affiliation(s)
- Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| | - Anushan Alagaratnam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
- Department of Chemistry, St. John’s College of Liberal Arts and Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| | - Jing Kong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| |
Collapse
|
12
|
Zhou Y, Men L, Sun Y, Wei M, Fan X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. Eur J Pharmacol 2020; 892:173796. [PMID: 33345853 DOI: 10.1016/j.ejphar.2020.173796] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Fruit of Schisandra chinensis Turcz. (Baill.) (S. chinensis) is a traditional herbal medicine widely used in China, Korea, and many other east Asian countries. At present, S. chinensis commonly forms Chinese medicinal formulae with other herbal medicines to treat liver disease and neurological disease in clinical. Modern researches indicated that lignans were the main active ingredients of S. chinensis with high content and novel dibenzocyclooctadiene skeletal structure, exhibited considerable antioxidant, anti-inflammatory, and neuroprotective properties. Additionally, some of these lignans also showed certain potentials in anti-cancer, anti-fibrosis, and other effects. In the current review, we summarize literature reported lignans from S. chinensis in the past five years, and highlight the molecular mechanisms of lignans in exerting their biological functions. Also, we point out some deficiencies of existing researches and discuss the future direction of lignans study.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lihui Men
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yunxia Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Wei
- Natural Medicine Institute of Zhejiang YangShengTang Co., Hangzhou, 310000, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Li H, Wang B, Yuan G, Liu X, Huang J, Xiong L, Zhang D, Feng W, Guo R. Simultaneous Determination of Multiple Active Components from Bushen Pills and Application in a Pharmacokinetic Study in Rats. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8882892. [PMID: 32765924 PMCID: PMC7387953 DOI: 10.1155/2020/8882892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Bushen Pills (BSPs), as a traditional Chinese medicine (TCM), is widely used in clinic to enrich Yang, nourish Yin, stem essence, and strengthen kidneys. Two chromatographic methods, liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), were applied to analyze the multiple active components of BSPs in dosage form for quality evaluation and in rat plasma for pharmacokinetics study, respectively. Three active constituents of BSPs, including paeoniflorin (PF), berberine hydrochloride (BBR), and schizandrin (SCH), were simultaneously determined by the established LC-MS method with electrospray ionization (ESI) in positive selected ion monitoring (SIM) mode at m/z 503.1, 336.0, and 455.2. The contents of PF, BBR, and SCH were (6.112 ± 0.166) mg/g, (335.1 ± 14.95) μg/g, and (5.867 ± 0.136) μg/g in BSPs. On this basis, PF and BBR were selected as targeted analytes for the pharmacokinetic study of BSPs in rats. Memantine hydrochloride was used as an internal standard (IS), and the plasma samples were processed by liquid-liquid extraction with ethyl acetate. All the analytes were separated on a C18 reversed phase column, eluted with a mobile phase consisting of acetonitrile-formic acid (0.01%) (25 : 75, v/v), and detected by ESI in the selected ion mode with multiple reaction monitoring (MRM). The target fragment ions were m/z 525.3 ⟶ 449.5 for PF, 336.2 ⟶ 320.2 for BBR, and 180.1 ⟶ 163.1 for IS. The linear ranges of PF and BBR were 5-500 ng/mL and 0.1-20 ng/mL with good linearity (r 2 > 0.99). No obvious matrix effect was observed, and acceptable accuracy, precision, recovery, and stability were obtained. The proposed method has been successfully applied to the pharmacokinetic study of BSPs in rats after a single dose.
Collapse
Affiliation(s)
- Houli Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Benjie Wang
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guiyan Yuan
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoyan Liu
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jing Huang
- Department of Pharmacy, Xi'an Central Hospita, Xi'an 710003, China
| | - Lilong Xiong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Di Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Dileep Kumar G, Siva B, Bharathi K, Devi A, Pavan Kumar P, Anusha K, Lambhate S, Karunakar T, Kumar Tiwari A, Suresh Babu K. Synthesis and biological evaluation of Schizandrin derivatives as tubulin polymerization inhibitors. Bioorg Med Chem Lett 2020; 30:127354. [PMID: 32631552 DOI: 10.1016/j.bmcl.2020.127354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/11/2023]
Abstract
A series of oxime ester-derivatives were prepared by utilizing the schizandrin (1), a major compound isolated from Schisandra grandiflora, which is deployed in different traditional system of medicine. The in vitro antiproliferative activities of the synthesized compounds were assessed against a selected panel of human cancer cell lines (A549, RKO P3, DU145 and Hela) and normal cell (HEK293). Several of these derivatives were found more potent in comparison to parent compound, schizandrin (1). Particularly, 4a and 4b demonstrated potent activity against DU-145 and RKOP3 cell lines with IC50 values of 3.42 µM and 3.35 µM respectively. To characterize the molecular mechanisms involved in antitumoral activity, these two compounds, 4a and 4b were selected for further studies. Cell cycle analysis revealed that both the compounds were able to induce apoptosis and cell cycle arrest at G0/G1 phase. To know the extent of apoptosis in DU145 and RKOP3 cell lines, Annexin V-FITC were performed. Moreover, the tubulin polymerization assay indicated that 4a and 4b exhibits potent inhibitory effect on the tubulin assembly. Molecular docking studies and competitive binding assay also indicated that 4a and 4b effectively bind at the colchicine binding site of the tubulin.
Collapse
Affiliation(s)
- G Dileep Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India; Academi of Scientific and Innovative Research-Postal staff college Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Utter Pradesh 201002, India
| | - B Siva
- Centre for Natural Products & Traditional Knowledge, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - K Bharathi
- Centre for Natural Products & Traditional Knowledge, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - A Devi
- Centre for Natural Products & Traditional Knowledge, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - P Pavan Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - K Anusha
- Centre for Natural Products & Traditional Knowledge, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Surbhi Lambhate
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - T Karunakar
- Qstatix Private Limited, Hyderabad 500035, India
| | - Ashok Kumar Tiwari
- Centre for Natural Products & Traditional Knowledge, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
15
|
Dong W, Yuan Y, Xie X, Zhang Z. Visible-Light-Driven Dearomatization Reaction toward the Formation of Spiro[4.5]deca-1,6,9-trien-8-ones. Org Lett 2020; 22:528-532. [DOI: 10.1021/acs.orglett.9b04283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wuheng Dong
- Medicine Center, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaomin Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Schizandrin A Protects Human Retinal Pigment Epithelial Cell Line ARPE-19 against HG-Induced Cell Injury by Regulation of miR-145. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:42-49. [PMID: 31794890 PMCID: PMC6909158 DOI: 10.1016/j.omtn.2019.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes, which is the main cause of blindness among adults. Traditional Chinese medicines (TCMs) have been proven to delay the development of DR. Nonetheless, the effect of Schizandrin A (SchA) on DR remains uninvestigated. The present study aimed to probe the protective effect of SchA on high-glucose (HG)-induced injury in ARPE-19 cells. We observed that SchA accelerated cell proliferation, prohibited apoptosis, and restrained pro-inflammatory cytokines (monocyte chemoattractant protein-1 [MCP-1], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) and reactive oxygen species (ROS) level in HG-stimulated cells. Additionally, miR-145 expression was upregulated in HG and SchA co-treated cells, and miR-145 inhibition reversed the protective effect of SchA on HG-managed ARPE-19 cells. Interestingly, downregulated myeloid differentiation factor 88 (MyD88) was found in HG and SchA co-treated cells, and upregulation of MyD88 was observed in miR-145 inhibitor-transfected cells. Additionally, SchA hindered nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in HG-treated ARPE-19 cells. The findings validated that SchA could protect ARPE-19 cells from HG-induced cell injury by regulation of miR-145.
Collapse
|
17
|
Noh S, Choi E, Hwang CH, Jung JH, Kim SH, Kim B. Dietary Compounds for Targeting Prostate Cancer. Nutrients 2019; 11:nu11102401. [PMID: 31597327 PMCID: PMC6835786 DOI: 10.3390/nu11102401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the third most common cancer worldwide, and the burden of the disease is increased. Although several chemotherapies have been used, concerns about the side effects have been raised, and development of alternative therapy is inevitable. The purpose of this study is to prove the efficacy of dietary substances as a source of anti-tumor drugs by identifying their carcinostatic activities in specific pathological mechanisms. According to numerous studies, dietary substances were effective through following five mechanisms; apoptosis, anti-angiogenesis, anti-metastasis, microRNA (miRNA) regulation, and anti-multi-drug-resistance (MDR). About seventy dietary substances showed the anti-prostate cancer activities. Most of the substances induced the apoptosis, especially acting on the mechanism of caspase and poly adenosine diphosphate ribose polymerase (PARP) cleavage. These findings support that dietary compounds have potential to be used as anticancer agents as both food supplements and direct clinical drugs.
Collapse
Affiliation(s)
- Seungjin Noh
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Eunseok Choi
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Cho-Hyun Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Ji Hoon Jung
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| |
Collapse
|
18
|
Ding Q, Li X, Sun Y, Zhang X. Schizandrin A inhibits proliferation, migration and invasion of thyroid cancer cell line TPC-1 by down regulation of microRNA-429. Cancer Biomark 2019; 24:497-508. [PMID: 30909188 DOI: 10.3233/cbm-182222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Schizandrin A (SchA) exerts anticancer potential. However, the effects of SchA on thyroid cancer (TC) have not been clear illuminated. Therefore, we investigated the effects of SchA on TC cell line TPC-1 and the underlying mechanisms. METHODS TPC-1 cells were treated with SchA and/or transfected with miR-429 mimic, anti-miR-429 and their corresponding negative controls (NC). Cell viability, proliferation, migration, invasion and cell apoptosis were examined by CCK-8 assay, bromodeoxyuridine, modified two-chamber migration assay, Millicell Hanging Cell Culture and flow cytometry analysis, respectively. The expression of miR-429, p16, Cyclin D1, cyclin-dependent kinases 4 (CDK4), matrix metalloprotein (MMP)-2, MMP-9 and Vimentin was detected by qRT-PCR. All protein expression was examined by western blot. RESULTS SchA inhibited cell proliferation, metastasis and induced cell apoptosis. Moreover, SchA negatively regulated miR-429 expression. Treatment with miR-429 mimic and SchA reversed the results led by SchA and NC. Furthermore, the phosphorylation β-catenin, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) were statistically down-regulated by SchA while co-treatment with miR-429 mimic and SchA led to the opposite trend. Moreover, miR-429 knockdown showed contrary results. CONCLUSION SchA inhibits cell proliferation, migration, invasion and inactivates Wnt/β-catenin and MEK/ERK signaling pathways by down regulating miR-429.
Collapse
|
19
|
Pavan Kumar P, Siva B, Venkateswara Rao B, Dileep Kumar G, Lakshma Nayak V, Nishant Jain S, Tiwari AK, Purushotham U, Venkata Rao C, Suresh Babu K. Synthesis and biological evaluation of bergenin-1,2,3-triazole hybrids as novel class of anti-mitotic agents. Bioorg Chem 2019; 91:103161. [PMID: 31387060 DOI: 10.1016/j.bioorg.2019.103161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/29/2022]
Abstract
In continuation of our investigation of pharmacologically-motivated natural products, we have isolated bergenin (1) as a major compound from Mallotus philippensis, which is deployed in different Indian traditional systems of medicine. Here, a series of bergenin-1,2,3-triazole hybrids were synthesized and evaluated for their potentials against a panel of cancer cell lines. Several of the hybrid derivatives were found more potent in comparison to parent compound bergenin (1). Among them, 4j demonstrated potent activity against A-549 and HeLa cell lines with IC50 values of 1.86 µM and 1.33 μM, respectively, and was equipotent to doxorubicin. Cell cycle analysis showed that 4j arrested HeLa cells at G2/M phase and lead to accumulation of Cyclin B1 protein. Cell based tubulin polymerization assays and docking studies demonstrated that 4j disrupts tubulin assembly by occupying colchicine binding pocket of tubulin.
Collapse
Affiliation(s)
- P Pavan Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Bandi Siva
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Banoth Venkateswara Rao
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - G Dileep Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - V Lakshma Nayak
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500607, India
| | - S Nishant Jain
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500607, India
| | - Ashok K Tiwari
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | | | - C Venkata Rao
- Department of Chemistry, Sri Venkateswara University, Tirupati 517502, India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| |
Collapse
|
20
|
Reddy SD, Siva B, Kumar K, Babu VSP, Sravanthi V, Boustie J, Nayak VL, Tiwari AK, Rao CHV, Sridhar B, Shashikala P, Babu KS. Comprehensive Analysis of Secondary Metabolites in Usnea longissima (Lichenized Ascomycetes, Parmeliaceae) Using UPLC-ESI-QTOF-MS/MS and Pro-Apoptotic Activity of Barbatic Acid. Molecules 2019; 24:molecules24122270. [PMID: 31216770 PMCID: PMC6630668 DOI: 10.3390/molecules24122270] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/07/2023] Open
Abstract
Considering the importance of ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS/MS) hyphenated techniques for analysis of secondary metabolites from crude extracts, the present study was aimed at identification of secondary metabolites in acetone extract of the lichen Usnea longissima. From our study, 19 compounds were tentatively identified through comparison of exact molecular masses from their MS/MS spectra, mass fragmentation studies and comparison with literature data. In addition, potent cytotoxic activity of U. longissima extract prompted us to isolate four compounds, 18R-hydroxy-dihydroalloprotolichesterinic acid (19), neuropogolic acid (20), barbatic acid (21), and usnic acid (22) from this extract which were adequately identified through mass spectrometry and NMR spectroscopy. All four compounds displayed cytotoxic activity. Barbatic acid (21) manifested doxorubicin equivalent activity against A549 lung cancer cell line with IC50 of 1.78 µM and strong G0/G1 accumulation of cells. Poly ADP-ribose polymerase (PARP) cleavage confirmed that it induced cytotoxic activity via apoptosis. Finally, our work has discerned the depside, barbatic acid (21) from crude extract as a candidate anti-cancer molecule, which induces cell death by stepping up apoptosis.
Collapse
Affiliation(s)
- S Divya Reddy
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, Telangana, India.
- Dept. of Pharmacy, University College of Technology, Osmania University, Hyderabad 500 007, Telangana, India.
| | - Bandi Siva
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, Telangana, India.
| | - Katragunta Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, Telangana, India.
| | - V S Phani Babu
- Centre for NMR & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India.
| | - Vemireddy Sravanthi
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India.
| | - Joel Boustie
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - V Lakshma Nayak
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, Telangana, India.
| | - Ashok K Tiwari
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, Telangana, India.
| | - C H V Rao
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute Rana Pratap Marg, P.O. Box No. 436, Lucknow 226001, Uttar Pradesh, India.
| | - B Sridhar
- Analytical Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, Telangana, India.
| | - P Shashikala
- Dept. of Pharmacy, University College of Technology, Osmania University, Hyderabad 500 007, Telangana, India.
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, Telangana, India.
| |
Collapse
|
21
|
Ravichandiran P, Subramaniyan SA, Kim SY, Kim JS, Park BH, Shim KS, Yoo DJ. Synthesis and Anticancer Evaluation of 1,4-Naphthoquinone Derivatives Containing a Phenylaminosulfanyl Moiety. ChemMedChem 2019; 14:532-544. [DOI: 10.1002/cmdc.201800749] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School and Hydrogen and Fuel Cell Research Center; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute; 111-27, Wonjangdong-gil, Deokjin-gu Jeonju Jeonbuk 54810 Republic of Korea
| | - Jong-Soo Kim
- Division of Chemical Engineering; College of Engineering; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry; Chonbuk National University Medical School; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School and Hydrogen and Fuel Cell Research Center; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
22
|
Dong W, Yuan Y, Gao X, Keranmu M, Li W, Xie X, Zhang Z. Visible-Light-Induced Intermolecular Dearomative Cyclization of 2-Bromo-1,3-dicarbonyl Compounds and Alkynes: Synthesis of Spiro[4.5]deca-1,6,9-trien-8-ones. Org Lett 2018; 20:5762-5765. [PMID: 30192154 DOI: 10.1021/acs.orglett.8b02463] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-induced photocatalytic intermolecular dearomative cyclization of 2-bromo-1,3-dicarbonyl compounds and alkynes afforded biologically important spirocarbocycle structures in moderate to good yields via a 5-exo-dig radical cyclization under mild reaction conditions. A 5.0 mmol scale dearomatization reaction proceeded smoothly with 95% yield even when the catalyst loading was reduced to 0.1 mol %, suggesting that this method was suitable for large-scale synthesis.
Collapse
Affiliation(s)
- Wuheng Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xiaoshuang Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Miladili Keranmu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Wanfang Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xiaomin Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
23
|
Lignans from Tujia Ethnomedicine Heilaohu: Chemical Characterization and Evaluation of Their Cytotoxicity and Antioxidant Activities. Molecules 2018; 23:molecules23092147. [PMID: 30150546 PMCID: PMC6225210 DOI: 10.3390/molecules23092147] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022] Open
Abstract
Heilaohu, the roots of Kadsura coccinea, has a long history of use in Tujia ethnomedicine for the treatment of rheumatoid arthritis and gastroenteric disorders, and a lot of work has been done in order to know the material basis of its pharmacological activities. The chemical investigation led to the isolation and characterization of three new (1–3) and twenty known (4–23) lignans. Three new heilaohulignans A-C (1–3) and seventeen known (4–20) lignans possessed dibenzocyclooctadiene skeletons. Similarly, one was a diarylbutane (21) and two were spirobenzofuranoid dibenzocyclooctadiene (22–23) lignans. Among the known compounds, 4–5, 7, 13–15 and 17–22 were isolated from this species for the first time. The structures were established, using IR, UV, MS and NMR data. The absolute configurations of the new compounds were determined by circular dichroism (CD) spectra. The isolated lignans were further evaluated for their cytotoxicity and antioxidant activities. Compound 3 demonstrated strong cytotoxic activity with an IC50 value of 9.92 µM, compounds 9 and 13 revealed weak cytotoxicity with IC50 values of 21.72 µM and 18.72 µM, respectively in the HepG-2 human liver cancer cell line. Compound 3 also showed weak cytotoxicity against the BGC-823 human gastric cancer cell line and the HCT-116 human colon cancer cell line with IC50 values of 16.75 µM and 16.59 µM, respectively. A chemiluminescence assay for antioxidant status of isolated compounds implied compounds 11 and 20, which showed weak activity with IC50 values of 25.56 µM and 21.20 µM, respectively.
Collapse
|