1
|
van Wier SP, Beekman AM. Peptide design to control protein-protein interactions. Chem Soc Rev 2025; 54:1684-1698. [PMID: 39817557 PMCID: PMC11736853 DOI: 10.1039/d4cs00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 01/18/2025]
Abstract
Targeting of protein-protein interactions has become of huge interest in every aspect of medicinal and biological sciences. The control of protein interactions selectively offers the opportunity to control biological processes while limiting off target effects. This interest has massively increased with the development of cryo-EM and protein structure prediction with tools such as RosettaFold and AlphaFold. When designing molecules to control protein interactions, either inhibition or stabilisation, a starting point is commonly peptide design. This tutorial review describes that process, highlighting the selection of an initial sequence with and without structural information. Subsequently, methods for how the sequence can be analysed for key residues and how this information can be used to optimise the ligand efficiency are highlighted. Finally a discussion on how peptides can be further modified to increase their affinity and cell permeability, improving their drug-like properties, is presented.
Collapse
Affiliation(s)
- Suzanne P van Wier
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Andrew M Beekman
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
2
|
Registre C, Silva LM, Registre F, Soares RDDOA, Rubio KTS, Carneiro SP, Dos Santos ODH. Targeting Leishmania Promastigotes and Amastigotes Forms through Amino Acids and Peptides: A Promising Therapeutic Strategy. ACS Infect Dis 2024; 10:2467-2484. [PMID: 38950147 DOI: 10.1021/acsinfecdis.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Millions of people worldwide are affected by leishmaniasis, caused by the Leishmania parasite. Effective treatment is challenging due to the biological complexity of the parasite, drug toxicity, and increasing resistance to conventional drugs. To combat this disease, the development of specific strategies to target and selectively eliminate the parasite is crucial. This Review highlights the importance of amino acids in the developmental stages of Leishmania as a factor determining whether the infection progresses or is suppressed. It also explores the use of peptides as alternatives in parasite control and the development of novel targeted treatments. While these strategies show promise for more effective and targeted treatment, further studies to address the remaining challenges are imperative.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Luciana Miranda Silva
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Farah Registre
- School of Medicine, Goiás Federal University, Goiânia, Goiás 74605-050, Brazil
| | - Rodrigo Dian de Oliveira Aguiar Soares
- Immunopathology Laboratory, Center for Research in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina Taciana Santos Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone Pinto Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | | |
Collapse
|
3
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
4
|
Paes SS, Silva-Silva JV, Portal Gomes PW, da Silva LO, da Costa APL, Lopes Júnior ML, Hardoim DDJ, Moragas-Tellis CJ, Taniwaki NN, Bertho AL, de Molfetta FA, Almeida-Souza F, Santos LS, Calabrese KDS. (-)-5-Demethoxygrandisin B a New Lignan from Virola surinamensis (Rol.) Warb. Leaves: Evaluation of the Leishmanicidal Activity by In Vitro and In Silico Approaches. Pharmaceutics 2023; 15:2292. [PMID: 37765261 PMCID: PMC10535778 DOI: 10.3390/pharmaceutics15092292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Leishmaniasis is a complex disease caused by infection with different Leishmania parasites. The number of medications used for its treatment is still limited and the discovery of new drugs is a valuable approach. In this context, here we describe the in vitro leishmanicidal activity and the in silico interaction between trypanothione reductase (TryR) and (-)-5-demethoxygrandisin B from the leaves of Virola surinamensis (Rol.) Warb. The compound (-)-5-demethoxygrandisin B was isolated from V. surinamensis leaves, a plant found in the Brazilian Amazon, and it was characterized as (7R,8S,7'R,8'S)-3,4,5,3',4'-pentamethoxy-7,7'-epoxylignan. In vitro antileishmanial activity was examined against Leishmania amazonensis, covering both promastigote and intracellular amastigote phases. Cytotoxicity and nitrite production were gauged using BALB/c peritoneal macrophages. Moreover, transmission electron microscopy was applied to probe ultrastructural alterations, and flow cytometry assessed the shifts in the mitochondrial membrane potential. In silico methods such as molecular docking and molecular dynamics assessed the interaction between the most stable configuration of (-)-5-demethoxygrandisin B and TryR from L. infantum (PDB ID 2JK6). As a result, the (-)-5-demethoxygrandisin B was active against promastigote (IC50 7.0 µM) and intracellular amastigote (IC50 26.04 µM) forms of L. amazonensis, with acceptable selectivity indexes. (-)-5-demethoxygrandisin B caused ultrastructural changes in promastigotes, including mitochondrial swelling, altered kDNA patterns, vacuoles, vesicular structures, autophagosomes, and enlarged flagellar pockets. It reduced the mitochondria membrane potential and formed bonds with important residues in the TryR enzyme. The molecular dynamics simulations showed stability and favorable interaction with TryR. The compound targets L. amazonensis mitochondria via TryR enzyme inhibition.
Collapse
Affiliation(s)
- Steven Souza Paes
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - João Victor Silva-Silva
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil (K.d.S.C.)
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo, São Carlos 13418-900, SP, Brazil
| | - Paulo Wender Portal Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92123, USA
| | | | - Ana Paula Lima da Costa
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Manoel Leão Lopes Júnior
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Daiana de Jesus Hardoim
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil (K.d.S.C.)
| | - Carla J. Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Alvaro Luiz Bertho
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil;
- Flow Cytometry Core Facility, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Fábio Alberto de Molfetta
- Laboratory of Molecular Modeling, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Fernando Almeida-Souza
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil (K.d.S.C.)
- Postgraduate Program in Animal Science, State University of Maranhão, Sao Luis 65055-310, MA, Brazil
| | - Lourivaldo Silva Santos
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Kátia da Silva Calabrese
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil (K.d.S.C.)
| |
Collapse
|
5
|
Abirami M, Karan Kumar B, Dey S, Johri S, Reguera RM, Balaña-Fouce R, Gowri Chandra Sekhar KV, Sankaranarayanan M. Molecular-level strategic goals and repressors in Leishmaniasis - Integrated data to accelerate target-based heterocyclic scaffolds. Eur J Med Chem 2023; 257:115471. [PMID: 37257213 DOI: 10.1016/j.ejmech.2023.115471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Leishmaniasis is a complex of neglected tropical diseases caused by various species of leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, these drugs have many drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Among several identified potential molecular targets, enzymes involved in the purine salvage pathway include polyamine biosynthetic process, such as arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, trypanothione reductase as well as enzymes in the DNA cell cycle, such as DNA topoisomerases I and II plays vital role in the life cycle survival of leishmanial parasite. This review mainly focuses on various heterocyclic scaffolds, and their specific inhibitory targets against leishmaniasis, particularly those from the polyamine biosynthesis pathway and DNA topoisomerases with estimated activity studies of various heterocyclic analogs in terms of their IC50 or EC50 value, reported molecular docking analysis from available published literatures.
Collapse
Affiliation(s)
- M Abirami
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India; Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sanchita Dey
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Samridhi Johri
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Rosa M Reguera
- Department of Biomedical Sciences, University of León, 24071, León, Spain
| | | | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India.
| |
Collapse
|
6
|
Verboni M, Olivieri D, Lucarini S. A recent update on new synthetic chiral compounds with antileishmanial activity. Chirality 2022; 34:1279-1297. [PMID: 35947400 PMCID: PMC9543214 DOI: 10.1002/chir.23494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, affect billions of people and are responsible for almost 500,000 deaths/year. In particular, leishmaniasis, a neglected tropical disease, is considered a global public health problem because current drugs have several drawbacks including to toxicity, high cost, and drug resistance, which result in a lack of effective and readily available therapies. Therefore, the synthesis of new, safe, and effective molecules still requires the attention of the scientific community. Moreover, it is well known that chirality plays a crucial role in the antiparasitic activity of molecules, driving the design of their synthesis. Therefore, in this review we report a recent update on new chiral compounds with promising antileishmanial activity, focusing on synthetic approaches. Where reported, in most cases the enantiopure compound has shown better potency against the protozoa than its enantiomer or corresponding racemic mixture.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | - Diego Olivieri
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | - Simone Lucarini
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
7
|
Li C, Zhao N, An L, Dai Z, Chen X, Yang F, You Q, Di B, Hu C, Xu L. Apoptosis-inducing activity of synthetic hydrocarbon-stapled peptides in H358 cancer cells expressing KRAS G12C. Acta Pharm Sin B 2021; 11:2670-2684. [PMID: 34589388 PMCID: PMC8463269 DOI: 10.1016/j.apsb.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Lung cancers are the leading cause of cancer deaths worldwide and pose a grave threat to human life and health. Non-small cell lung cancer (NSCLC) is the most frequent malignancy occupying 80% of all lung cancer subtypes. Except for other mutations (e.g., KRASG12V/D) that are also vital for the occurrence, KRASG12C gene mutation is a significant driving force of NSCLC, with a prevalence of approximately 14% of all NSCLC patients. However, there are only a few therapeutic drugs targeting KRASG12C mutations currently. Here, we synthesized hydrocarbon-stapled peptide 3 that was much shorter and more stable with modest KRASG12C binding affinity and the same anti-tumor effect based on the α-helical peptide mimic SAH-SOS1A. The stapled peptide 3 effectively induced G2/M arrest and apoptosis, inhibiting cell growth in KRAS-mutated lung cancer cells via disrupting the KRAS-mediated RAF/MEK/ERK signaling, which was verified from the perspective of genomics and proteomics. Peptide 3 also exhibited strong anti-trypsin and anti-chymotrypsin abilities, as well as good plasma stability and human liver microsomal metabolic stability. Overall, peptide 3 retains the equivalent anti-tumor activity of SAH-SOS1A but with improved stability and affinity, superior to SAH-SOS1A. Our work offers a structural optimization approach of KRASG12C peptide inhibitors for cancer therapy.
Collapse
|
8
|
Revuelto A, López-Martín I, de Lucio H, García-Soriano JC, Zanda N, de Castro S, Gago F, Jiménez-Ruiz A, Velázquez S, Camarasa MJ. Small Molecule-Peptide Conjugates as Dimerization Inhibitors of Leishmania infantum Trypanothione Disulfide Reductase. Pharmaceuticals (Basel) 2021; 14:ph14070689. [PMID: 34358115 PMCID: PMC8308777 DOI: 10.3390/ph14070689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanothione disulfide reductase (TryR) is an essential homodimeric enzyme of trypanosomatid parasites that has been validated as a drug target to fight human infections. Using peptides and peptidomimetics, we previously obtained proof of concept that disrupting protein-protein interactions at the dimer interface of Leishmania infantum TryR (LiTryR) offered an innovative and so far unexploited opportunity for the development of novel antileishmanial agents. Now, we show that linking our previous peptide prototype TRL38 to selected hydrophobic moieties provides a novel series of small-molecule-peptide conjugates that behave as good inhibitors of both LiTryR activity and dimerization.
Collapse
Affiliation(s)
- Alejandro Revuelto
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Isabel López-Martín
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Juan Carlos García-Soriano
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Nicola Zanda
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Sonia de Castro
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Federico Gago
- Unidad Asociada al IQM-CSIC, Área de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain;
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Sonsoles Velázquez
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
- Correspondence: (S.V.); (M.-J.C.); Tel.: +34-912-587-458 (M.-J.C.)
| | - María-José Camarasa
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
- Correspondence: (S.V.); (M.-J.C.); Tel.: +34-912-587-458 (M.-J.C.)
| |
Collapse
|
9
|
Revuelto A, de Lucio H, García-Soriano JC, Sánchez-Murcia PA, Gago F, Jiménez-Ruiz A, Camarasa MJ, Velázquez S. Efficient Dimerization Disruption of Leishmania infantum Trypanothione Reductase by Triazole-phenyl-thiazoles. J Med Chem 2021; 64:6137-6160. [PMID: 33945281 PMCID: PMC8480782 DOI: 10.1021/acs.jmedchem.1c00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/06/2023]
Abstract
Inhibition of Leishmania infantum trypanothione disulfide reductase (LiTryR) by disruption of its homodimeric interface has proved to be an alternative and unexploited strategy in the search for novel antileishmanial agents. Proof of concept was first obtained by peptides and peptidomimetics. Building on previously reported dimerization disruptors containing an imidazole-phenyl-thiazole scaffold, we now report a new 1,2,3-triazole-based chemotype that yields noncompetitive, slow-binding inhibitors of LiTryR. Several compounds bearing (poly)aromatic substituents dramatically improve the ability to disrupt LiTryR dimerization relative to reference imidazoles. Molecular modeling studies identified an almost unexplored hydrophobic region at the interfacial domain as the putative binding site for these compounds. A subsequent structure-based design led to a symmetrical triazole analogue that displayed even more potent inhibitory activity over LiTryR and enhanced leishmanicidal activity. Remarkably, several of these novel triazole-bearing compounds were able to kill both extracellular and intracellular parasites in cell cultures.
Collapse
Affiliation(s)
- Alejandro Revuelto
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Héctor de Lucio
- Departamento
de Biología de Sistemas, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | | | - Pedro A. Sánchez-Murcia
- Área
de Farmacología, Departamento de Ciencias Biomédicas,
Unidad Asociada al IQM-CSIC, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Federico Gago
- Área
de Farmacología, Departamento de Ciencias Biomédicas,
Unidad Asociada al IQM-CSIC, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Antonio Jiménez-Ruiz
- Departamento
de Biología de Sistemas, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - María-José Camarasa
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sonsoles Velázquez
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
10
|
Kawano K, Yokoyama F, Kawamoto J, Ogawa T, Kurihara T, Futaki S. Development of a Simple and Rapid Method for In Situ Vesicle Detection in Cultured Media. J Mol Biol 2020; 432:5876-5888. [PMID: 32931802 DOI: 10.1016/j.jmb.2020.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Extracellular membrane vesicles (EMVs) are biogenic secretory lipidic vesicles that play significant roles in intercellular communication related to human diseases and bacterial pathogenesis. They are being investigated for their possible use in diagnosis, vaccines, and biotechnology. However, the existing methods suffer from a number of issues. High-speed centrifugation, a widely used method to collect EMVs, may cause structural artifacts. Immunostaining methods require several steps and thus the separation and detection of EMVs from the secretory cells is time-consuming. Furthermore, detection of EMVs using these methods requires specific and costly antibodies. To tackle these problems, development of a simple and rapid detection method for the EMVs in the cultured medium without separation from the secretory cells is a pressing task. In this study, we focused on the Gram-negative bacterium Shewanella vesiculosa HM13, which produces a large amount of EMVs including a cargo protein with high purity, as a model. Curvature-sensing peptides were used for EMV-detection tools. FAAV, a peptide derived from sorting nexin protein 1, selectively binds to the EMVs even in the presence of the secretory cells in the complex cultured medium. FAAV can fully detect the EMVs within a few minutes, and the resistance of FAAV to proteases enables it to withstand prolonged use in the cultured medium. Fluorescence/Förster resonance energy transfer was used to develop a method to detect changes in the amount of the EMVs with high sensitivity. Overall, our results indicate the potential applicability of FAAV for in situ EMV detection in cultured media.
Collapse
Affiliation(s)
- Kenichi Kawano
- Laboratory of Biofunctional Design Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan.
| | - Fumiaki Yokoyama
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan.
| | - Jun Kawamoto
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Takuya Ogawa
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Tatsuo Kurihara
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Shiroh Futaki
- Laboratory of Biofunctional Design Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
11
|
Liu J, Liu X, Zhang F, Qu J, Sun H, Zhu Q. A Peptide Stapling Strategy with Built‐In Fluorescence by Direct Late‐Stage C(sp
2
)−H Olefination of Tryptophan. Chemistry 2020; 26:16122-16128. [DOI: 10.1002/chem.202003548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Xin Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Fangfang Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Jiaojiao Qu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF) City University of Hong Kong Hong Kong P.R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| |
Collapse
|
12
|
Saccoliti F, Di Santo R, Costi R. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism. ChemMedChem 2020; 15:2420-2435. [PMID: 32805075 DOI: 10.1002/cmdc.202000325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Indexed: 01/28/2023]
Abstract
Leishmania and Trypanosoma parasites are responsible for the challenging neglected tropical diseases leishmaniases, Chagas disease, and human African trypanosomiasis, which account for up to 40,000 deaths annually mainly in developing countries. Current chemotherapy relies on drugs with significant limitations in efficacy and safety, prompting the urgent need to explore innovative approaches to improve the drug discovery pipeline. The unique trypanothione-based redox pathway, which is absent in human hosts, is vital for all trypanosomatids and offers valuable opportunities to guide the rational development of specific, broad-spectrum and innovative anti-trypanosomatid agents. Major efforts focused on the key metabolic enzymes trypanothione synthetase-amidase and trypanothione reductase, whose inhibition should affect the entire pathway and, finally, parasite survival. Herein, we will report and comment on the most recent studies in the search for enzyme inhibitors, underlining the promising opportunities that have emerged so far to drive the exploration of future successful therapeutic approaches.
Collapse
Affiliation(s)
- Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163, Genova, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185, Roma, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
13
|
Mendes B, Almeida JR, Vale N, Gomes P, Gadelha FR, Da Silva SL, Miguel DC. Potential use of 13-mer peptides based on phospholipase and oligoarginine as leishmanicidal agents. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108612. [PMID: 31454702 DOI: 10.1016/j.cbpc.2019.108612] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022]
Abstract
Phospholipase A2 toxins present in snake venoms interact with biological membranes and serve as structural models for the design of small peptides with anticancer, antibacterial and antiparasitic properties. Oligoarginine peptides are capable of increasing cell membrane permeability (cell penetrating peptides), and for this reason are interesting delivery systems for compounds of pharmacological interest. Inspired by these two families of bioactive molecules, we have synthesized two 13-mer peptides as potential antileishmanial leads gaining insights into structural features useful for the future design of more potent peptides. The peptides included p-Acl, reproducing a natural segment of a Lys49 PLA2 from Agkistrodon contortrix laticinctus snake venom, and its p-AclR7 analogue where all seven lysine residues were replaced by arginines. Both peptides were active against promastigote and amastigote forms of Leishmania (L.) amazonensis and L. (L.) infantum, while displaying low cytotoxicity for primary murine macrophages. Spectrofluorimetric studies suggest that permeabilization of the parasite's cell membrane is the probable mechanism of action of these biomolecules. Relevantly, the engineered peptide p-AclR7 was more active in both life stages of Leishmania and induced higher rates of ethidium bromide incorporation than its native template p-Acl. Taken together, the results suggest that short peptides based on phospholipase toxins are potential scaffolds for development of antileishmanial candidates. Moreover, specific amino acid substitutions, such those herein employed, may enhance the antiparasitic action of these cationic peptides, encouraging their future biomedical applications.
Collapse
Affiliation(s)
- Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José R Almeida
- Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Nuno Vale
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia da Universidade do Porto, Portugal; IPATIMUP/Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Fernanda R Gadelha
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Saulo L Da Silva
- Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca/Azuay, Ecuador.; Centro de Innovación de la Salud - EUS/EP, Cuenca/Azuay, Ecuador
| | - Danilo C Miguel
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
14
|
Revuelto A, Ruiz-Santaquiteria M, de Lucio H, Gamo A, Carriles AA, Gutiérrez KJ, Sánchez-Murcia PA, Hermoso JA, Gago F, Camarasa MJ, Jiménez-Ruiz A, Velázquez S. Pyrrolopyrimidine vs Imidazole-Phenyl-Thiazole Scaffolds in Nonpeptidic Dimerization Inhibitors of Leishmania infantum Trypanothione Reductase. ACS Infect Dis 2019; 5:873-891. [PMID: 30983322 DOI: 10.1021/acsinfecdis.8b00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Disruption of protein-protein interactions of essential oligomeric enzymes by small molecules represents a significant challenge. We recently reported some linear and cyclic peptides derived from an α-helical region present in the homodimeric interface of Leishmania infantum trypanothione reductase ( Li-TryR) that showed potent effects on both dimerization and redox activity of this essential enzyme. Here, we describe our first steps toward the design of nonpeptidic small-molecule Li-TryR dimerization disruptors using a proteomimetic approach. The pyrrolopyrimidine and the 5-6-5 imidazole-phenyl-thiazole α-helix-mimetic scaffolds were suitably decorated with substituents that could mimic three key residues (K, Q, and I) of the linear peptide prototype (PKIIQSVGIS-Nle-K-Nle). Extensive optimization of previously described synthetic methodologies was required. A library of 15 compounds bearing different hydrophobic alkyl and aromatic substituents was synthesized. The imidazole-phenyl-thiazole-based analogues outperformed the pyrrolopyrimidine-based derivatives in both inhibiting the enzyme and killing extracellular and intracellular parasites in cell culture. The most active imidazole-phenyl-thiazole compounds 3e and 3f inhibit Li-TryR and prevent growth of the parasites at low micromolar concentrations similar to those required by the peptide prototype. The intrinsic fluorescence of these compounds inside the parasites visually demonstrates their good permeability in comparison with previous peptide-based Li-TryR dimerization disruptors.
Collapse
Affiliation(s)
| | | | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | - Ana Gamo
- Instituto de Química Médica (IQM-CSIC), Madrid E-28006, Spain
| | - Alejandra A. Carriles
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry “Rocasolano” (IQFR-CSIC), Madrid E-28006, Spain
| | - Kilian Jesús Gutiérrez
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | - Pedro A. Sánchez-Murcia
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Madrid E-28805, Spain
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry “Rocasolano” (IQFR-CSIC), Madrid E-28006, Spain
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Madrid E-28805, Spain
| | | | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | | |
Collapse
|
15
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|