1
|
Huang Y, Zu D, Tian C, Xie J, Chen W, Fan H, Yu X, Lu H, Yang J, Lin F, Zheng J. Development of a magnetic beads-based ligand fishing method for screening SARS-CoV-2 NSP5 inhibitors from complex herbal mixtures: Rosmarinus officinalis as a case study. J Chromatogr A 2025; 1753:465956. [PMID: 40300453 DOI: 10.1016/j.chroma.2025.465956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
SARS-CoV-2 NSP5, a conserved protease essential for viral replication, represents a critical therapeutic target. Natural products provide diverse chemical scaffolds for antiviral development but remain underexploited. Traditional screening methods struggle to resolve specific inhibitors in complex herbal matrices due to selectivity and throughput limitations. To address these challenges, we developed an innovative magnetic beads-based ligand fishing strategy coupled with UPLC-Q-Exactive-Orbitrap-MS/MS for rapid discovery of SARS-CoV-2 NSP5 inhibitors from complex herbal matrices. Screening of 44 traditional Chinese medicinal extracts identified Rosmarinus officinalis as a potent inhibitor, exhibiting an IC50 of 19.90 ± 3.16 μg/mL against NSP5. Through ligand fishing and mass spectrometry analysis, 15 bioactive compounds were identified, including 8 diterpenoids (predominantly abietane-type) and 3 phenylpropanoids. Notably, rosmarinic acid demonstrated the strongest inhibition (IC50 = 5.784 ± 0.20 μM), surpassing the positive control ebselen in molecular docking studies. Structural characterization revealed that hydroxyl and carboxyl groups in diterpenoids formed critical hydrogen bonds with catalytic residues (Cys145, Ser144) of NSP5. This methodological advancement not only improved the accuracy of natural product screening but also facilitated the development of targeted antiviral strategies against SARS-CoV-2 and other emerging viral pathogens.
Collapse
Affiliation(s)
- Yujing Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China; College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Duntao Zu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chenjing Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Juntao Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wenlin Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxia Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huiqing Lu
- Clinical Research Department, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Jianni Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| | - Fulong Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Aboelnga MM, Petgrave M, Kalyaanamoorthy S, Ganesan A. Revealing the impact of active site residues in modeling the inhibition mechanism of SARS-Cov-2 main protease by GC373. Comput Biol Med 2025; 187:109779. [PMID: 39933269 DOI: 10.1016/j.compbiomed.2025.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Main protease (Mpro) is a cysteine protease enzyme crucial for the replication of SARS-CoV-2, the etiological agent of COVID-19 and thus considered as a viable target for antiviral development. The GC373 compound, an aldehyde-containing inhibitor, is one of the most effective inhibitors that retards the catalytic function of Mpro. A deeper understanding of the inhibitory action of GC373 by providing precise mechanistic details, is pivotal toward developing more potent inhibitors against Mpro. In this work, we provide novel insights into the inhibition mechanism considering different models and possible pathways using a combination of molecular dynamics and hybrid quantum mechanical/molecular mechanical (QM/MM) methodologies. Our study reveals the impact of key residues on both the binding of the GC373 inhibitor and its inhibition mechanism. Together with the oxyanion hole residues, G143, S144 and C145, we note that H163, and E166 residues play a crucial role in the binding of the inhibitor. Further, our exploration of two pathways namely, water-assisted and direct inhibition mechanisms, using three differently sized QM/MM models shows consistent and distinguishable trends in catalytic pathways and rate-limiting steps, respectively. Our results highlight the importance of treating more representative active site residues in the QM layer enabling a more accurate description of the inhibition mechanism. More importantly, we propose that designing novel inhibitors that could afford stronger interaction with the underlying essential residues is a promising strategy to guide the efforts toward optimizing efficient inhibitors against Mpro.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada; Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada; Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt; King Salman International University, Faculty of Science, Ras Sudr, 46612, Sinai, Egypt.
| | - Maya Petgrave
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada.
| | - Subha Kalyaanamoorthy
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada; Waterloo Artificial Intelligence Institute, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Aravindhan Ganesan
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada; ArGan'sLab, Department of Chemistry and Biochemistry, Faculty of Science, Wilfrid Laurier University, Waterloo, N2L 3C5, Ontario, Canada.
| |
Collapse
|
3
|
Tripathi SM, Akash S, Rahman MA, Sundriyal S. Identification of synthetically tractable MERS-CoV main protease inhibitors using structure-based virtual screening and molecular dynamics potential of mean force (PMF) calculations. J Biomol Struct Dyn 2025; 43:787-797. [PMID: 37978909 DOI: 10.1080/07391102.2023.2283780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023]
Abstract
The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a potentially lethal infection that presents a substantial threat to health, especially in Middle East nations. Given that no FDA-approved specific therapy for MERS infection exists, designing and discovering a potent antiviral therapy for MERS-CoV is crucial. One pivotal strategy for inhibiting MERS replication is to focus on the viral main protease (Mpro). In this study, we identify potential novel Mpro inhibitors employing structure-based virtual screening of our recently reported Ugi reaction-derived library (URDL) consisting of cherry-picked molecules from the literature. The key features of the URDL library include synthetic tractability (1-2 pot synthesis) of the molecules scaffold and unexplored chemical space. The hits were ranked based on the docking score, MM-GBSA free energy of binding, and the interaction pattern with the active site residues. A molecular dynamics (MD) simulation study was performed for the first two top-ranked compounds to analyze the stability and free binding energy based on the molecular mechanics Poisson-Boltzmann surface area. The potential mean force calculated from the steered molecular dynamics (SMD) simulations of the hits indicates improved H-bond potential, enhanced conformational stability, and binding affinity toward the target, compared to the cocrystallized ligand. The discovered hits represent novel synthetically tractable scaffolds as potential MERS-CoV Mpro inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shailesh Mani Tripathi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Rajasthan, India
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Ashulia, Bangladesh
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Rajasthan, India
| |
Collapse
|
4
|
Manjhi SK, Achuthan Kattuparambil A, Mishra B, Ballaney P, Tiwari P, Aduri R. In silico design and discovery of pan coronavirus small molecule anti-virals targeting 3CL PRO protease. J Biomol Struct Dyn 2024:1-18. [PMID: 39668778 DOI: 10.1080/07391102.2024.2439581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/25/2024] [Indexed: 12/14/2024]
Abstract
Coronaviruses (CoV), belonging to the family Coronaviridae, were not considered dangerous pathogens until the outbreaks of SARS, MERS, and more recently, COVID-19. The coronaviruses causing these respective diseases/syndromes, SARS, MERS, and SARS-CoV2, share high sequence and structural similarities. COVID-19 continues to have a global impact on human health and the economy. Human-to-human transmission is at the center of COVID-19's ability to stall the entire world and force lockdowns across the globe. The corona viruses' positive sense RNA genome is ∼30 kb long and encodes non-structural (ORF1ab) and structural (Spike, Envelope, Membrane, and Nucleo-capsid) proteins. The main viral protease (NSP5) is a Chymotrypsin-like protease (3CLpro) that cleaves on the carboxy side of the glutamine (Q) of the polypeptide sequence motif x-(L/F/M)-Q-(G/A/S)-x. 3CLPRO is highly conserved among coronaviruses and is critical in the replication and viral life cycle. Therefore, 3CLPRO is considered a promising drug target. We have recently reported three natural compounds, flavonoid derivatives, to target the cysteine 145 of the catalytic dyad covalently. Here, we have screened for small molecules with pan coronavirus activity to target 3CLpro. Our rigid body docking studies have identified 30 small molecules with comparable binding affinities to all the beta coronaviruses. Of these, five molecules have showed the possibility of covalently attacking the C145 of the catalytic dyad. MD simulations have revealed compounds 22 and 23 to be the most ideal lead compounds. Interestingly, one of the compounds, 22, identified in the current study has already shown to be an ideal lead compound against SARS-CoV2 3CLPRO.
Collapse
Affiliation(s)
- Satish Kumar Manjhi
- Department of Biological Sciences, BITS Pilani K K Birla Goa campus, Zuarinagar, Goa, India
| | | | - Bibhudutta Mishra
- Department of Biological Sciences, BITS Pilani K K Birla Goa campus, Zuarinagar, Goa, India
| | - Pranav Ballaney
- Department of Biological Sciences, BITS Pilani K K Birla Goa campus, Zuarinagar, Goa, India
| | - Prachi Tiwari
- Department of Biological Sciences, BITS Pilani K K Birla Goa campus, Zuarinagar, Goa, India
| | - Raviprasad Aduri
- Department of Biological Sciences, BITS Pilani K K Birla Goa campus, Zuarinagar, Goa, India
| |
Collapse
|
5
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
6
|
Cheng S, Feng Y, Li W, Liu T, Lv X, Tong X, Xi G, Ye X, Li X. Development of novel antivrial agents that induce the degradation of the main protease of human-infecting coronaviruses. Eur J Med Chem 2024; 275:116629. [PMID: 38941718 DOI: 10.1016/j.ejmech.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
The family of human-infecting coronaviruses (HCoVs) poses a serious threat to global health and includes several highly pathogenic strains that cause severe respiratory illnesses. It is essential that we develop effective broad-spectrum anti-HCoV agents to prepare for future outbreaks. In this study, we used PROteolysis TArgeting Chimera (PROTAC) technology focused on degradation of the HCoV main protease (Mpro), a conserved enzyme essential for viral replication and pathogenicity. By adapting the Mpro inhibitor GC376, we produced two novel PROTACs, P2 and P3, which showed relatively broad-spectrum activity against the human-infecting CoVs HCoV-229E, HCoV-OC43, and SARS-CoV-2. The concentrations of these PROTACs that reduced virus replication by 50 % ranged from 0.71 to 4.6 μM, and neither showed cytotoxicity at 100 μM. Furthermore, mechanistic binding studies demonstrated that P2 and P3 effectively targeted HCoV-229E, HCoV-OC43, and SARS-CoV-2 by degrading Mpro within cells in vitro. This study highlights the potential of PROTAC technology in the development of broad-spectrum anti-HCoVs agents, presenting a novel approach for dealing with future viral outbreaks, particularly those stemming from CoVs.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China.
| | - Yong Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Tong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Xiaomei Tong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Gan Xi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China.
| |
Collapse
|
7
|
Kuan Y, Chu HF, Hsu PH, Hsu KC, Lin TH, Huang CH, Chen WY. Disulfiram inhibits coronaviral main protease by conjugating to its substrate entry site. Int J Biol Macromol 2024; 276:133955. [PMID: 39025177 DOI: 10.1016/j.ijbiomac.2024.133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Coronaviruses (CoV) are highly pathogenic single-strand RNA viruses. CoV infections cause fatal respiratory symptoms and lung injuries in humans and significant economic losses in livestock. Since the SARS-2 outbreak in 2019, the highly conserved main protease (Mpro), also termed 3-chymotrypsin-like protease (3CLpro), has been considered an attractive drug target for treating CoV infections. Mpro mediates the proteolytic cleavage of eleven sites in viral polypeptides necessary for virus replication. Here, we report that disulfiram, an FDA-approved drug for alcoholic treatment, exhibits a broad-spectrum inhibitory effect on CoV Mpros. Analytical ultracentrifugation and circular dichroism analyses indicated that disulfiram treatment blocks the dimeric formation of SARS and PEDV Mpros and decreases the thermostability of SARS, SARS-2, and PEDV Mpros, whereas it facilitates the dimerization and stability of MERS Mpro. Furthermore, mass spectrometry and structural alignment revealed that disulfiram targets the Cys44 residue of Mpros, which is located at the substrate entrance and close to the catalytic His41. In addition, molecular docking analysis suggests that disulfiram conjugation interferes with substrate entry to the catalytic center. In agreement, mutation of Cys44 modulates the disulfiram sensitivity of CoV Mpros. Our study suggests a broad-spectrum inhibitory function of disulfiram against CoV Mpros.
Collapse
Affiliation(s)
- Ying Kuan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ta-Hsien Lin
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu City 30076, Taiwan.
| | - Wei-Yi Chen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Yan Y, Liu H, Wu D, Gu Z, Guo W, Yao H, Lin K, Li X. Design, synthesis and biological evaluation of novel 3C-like protease inhibitors as lead compounds against SARS-CoV-2. Future Med Chem 2024; 16:887-903. [PMID: 38618977 PMCID: PMC11249163 DOI: 10.4155/fmc-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Background: The epidemic caused by SARS-CoV-2 swept the world in 2019. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a key role in viral replication, and its inhibition could inhibit viral replication. Materials & methods: The virtual screen based on receptor-ligand pharmacophore models and molecular docking were conducted to obtain the novel scaffolds of the 3CLpro. The molecular dynamics simulation was also carried out. All compounds were synthesized and evaluated in biochemical assays. Results: The compound C2 could inhibit 3CLpro with a 72% inhibitory rate at 10 μM. The covalent docking showed that C2 could form a covalent bond with the Cys145 in 3CLpro. Conclusion: C2 could be a potent lead compound of 3CLpro inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Yong Yan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanwen Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Di Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhihao Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenhao Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hequan Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuanyi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
9
|
Kim Y, Pool E, Kim E, Dampalla CS, Nguyen HN, Johnson DK, Lovell S, Groutas WC, Chang KO. Potent small molecule inhibitors against the 3C protease of foot-and-mouth disease virus. Microbiol Spectr 2024; 12:e0337223. [PMID: 38466127 PMCID: PMC10986521 DOI: 10.1128/spectrum.03372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Emma Pool
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Eunji Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | - David K. Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Lin C, Zhu Z, Jiang H, Zou X, Zeng X, Wang J, Zeng P, Li W, Zhou X, Zhang J, Wang Q, Li J. Structural Basis for Coronaviral Main Proteases Inhibition by the 3CLpro Inhibitor GC376. J Mol Biol 2024; 436:168474. [PMID: 38311236 DOI: 10.1016/j.jmb.2024.168474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
The main protease (Mpro) of coronaviruses participates in viral replication, serving as a hot target for drug design. GC376 is able to effectively inhibit the activity of Mpro, which is due to nucleophilic addition of GC376 by binding covalently with Cys145 in Mpro active site. Here, we used fluorescence resonance energy transfer (FRET) assay to analyze the IC50 values of GC376 against Mpros from six different coronaviruses (SARS-CoV-2, HCoV-229E, HCoV-HUK1, MERS-CoV, SARS-CoV, HCoV-NL63) and five Mpro mutants (G15S, M49I, K90R, P132H, S46F) from SARS-CoV-2 variants. The results showed that GC376 displays effective inhibition to various coronaviral Mpros and SARS-CoV-2 Mpro mutants. In addition, the crystal structures of SARS-CoV-2 Mpro (wide type)-GC376, SARS-CoV Mpro-GC376, MERS-CoV Mpro-GC376, and SARS-CoV-2 Mpro mutants (G15S, M49I, S46F, K90R, and P132H)-GC376 complexes were solved. We found that GC376 is able to fit into the active site of Mpros from different coronaviruses and different SARS-CoV-2 variants properly. Detailed structural analysis revealed key molecular determinants necessary for inhibition and illustrated the binding patterns of GC376 to these different Mpros. In conclusion, we not only proved the inhibitory activity of GC376 against different Mpros including SARS-CoV-2 Mpro mutants, but also revealed the molecular mechanism of inhibition by GC376, which will provide scientific guidance for the development of broad-spectrum drugs against SARS-CoV-2 as well as other coronaviruses.
Collapse
Affiliation(s)
- Cheng Lin
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhimin Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Haihai Jiang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiaofang Zou
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Xiangyi Zeng
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Jie Wang
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Pei Zeng
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Wenwen Li
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Xuelan Zhou
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Jin Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| | - Qisheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
11
|
Biswas S, Mita MA, Afrose S, Hasan MR, Shimu MSS, Zaman S, Saleh MA. An in silico approach to develop potential therapies against Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Heliyon 2024; 10:e25837. [PMID: 38379969 PMCID: PMC10877303 DOI: 10.1016/j.heliyon.2024.e25837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
A deadly respiratory disease Middle East Respiratory Syndrome (MERS) is caused by a perilous virus known as MERS-CoV, which has a severe impact on human health. Currently, there is no approved vaccine, prophylaxis, or antiviral therapeutics for preventing MERS-CoV infection. Due to its inexorable and integral role in the maturation and replication of the MERS-CoV virus, the 3C-like protease is unavoidly a viable therapeutic target. In this study, 2369 phytoconstituents were enlisted from Japanese medicinal plants, and these compounds were screened against 3C-like protease to identify feasible inhibitors. The best three compounds were identified as Kihadanin B, Robustaflavone, and 3-beta-O- (trans-p-Coumaroyl) maslinic acid, with binding energies of -9.8, -9.4, and -9.2 kcal/mol, respectively. The top three potential candidates interacted with several active site residues in the targeted protein, including Cys145, Met168, Glu169, Ala171, and Gln192. The best three compounds were assessed by in silico technique to determine their drug-likeness properties, and they exhibited the least harmful features and the greatest drug-like qualities. Various descriptors, such as solvent-accessible surface area, root-mean-square fluctuation, root-mean-square deviation, hydrogen bond, and radius of gyration, validated the stability and firmness of the protein-ligand complexes throughout the 100ns molecular dynamics simulation. Moreover, the top three compounds exhibited better binding energy along with better stability and firmness than the inhibitor (Nafamostat), which was further confirmed by the binding free energy calculation. Therefore, this computational investigation could aid in the development of efficient therapeutics for life-threatening MERS-CoV infections.
Collapse
Affiliation(s)
- Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
12
|
Li P, Kim Y, Dampalla CS, Nhat Nguyen H, Meyerholz DK, Johnson DK, Lovell S, Groutas WC, Perlman S, Chang KO. Potent 3CLpro inhibitors effective against SARS-CoV-2 and MERS-CoV in animal models by therapeutic treatment. mBio 2024; 15:e0287823. [PMID: 38126789 PMCID: PMC10865860 DOI: 10.1128/mbio.02878-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic betacoronaviruses that continue to have a significant impact on public health. Timely development and introduction of vaccines and antivirals against SARS-CoV-2 into the clinic have substantially mitigated the burden of COVID-19. However, a limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections, respectively, calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. In this report, we examined the efficacy of two potent 3CLpro inhibitors, 5d and 11d, in fatal animal models of SARS-CoV-2 and MERS-CoV to demonstrate their broad-spectrum activity against both viral infections. These compounds significantly increased the survival of mice in both models when treatment started 1 day post infection compared to no treatment which led to 100% fatality. Especially, the treatment with compound 11d resulted in 80% and 90% survival in SARS-CoV-2 and MERS-CoV-infected mice, respectively. Amelioration of lung viral load and histopathological changes in treated mice correlated well with improved survival in both infection models. Furthermore, compound 11d exhibited significant antiviral activities in K18-hACE2 mice infected with SARS-CoV-2 Omicron subvariant XBB.1.16. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.IMPORTANCEHuman coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) continue to have a significant impact on public health. A limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. We have previously reported a series of small-molecule 3C-like protease (3CLpro) inhibitors against human coronaviruses. In this report, we demonstrated the in vivo efficacy of 3CLpro inhibitors for their broad-spectrum activity against both SARS-CoV-2 and MERS-CoV infections using the fatal animal models. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Microbiology and Immunology, The University of Iowa, lowa, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | | | - David K. Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, lowa, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
13
|
Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 13:100632. [PMID: 37251276 PMCID: PMC10198795 DOI: 10.1016/j.jafr.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Worldwide, Severe acute respiratory syndrome Coronavirus (SARS-CoV-2) pandemic crisis, causing many morbidities, mortality, and devastating impact on economies, so the current outbreak of the CoV-2 is a major concern for global health. The infection spread quickly and caused chaos in many countries around the world. The slow discovery of CoV-2 and the limited treatment options are among the main challenges. Therefore, the development of a drug that is safe and effective against CoV-2 is urgently needed. The present overview briefly summarizes CoV-2 drug targets ex: RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), transmembrane serine protease enzymes (TMPRSS2), angiotensin-converting enzyme 2 (ACE2), structural protein (N, S, E, and M), and virulence factors (NSP1, ORF7a, and NSP3c) for which drug design perspective can be considered. In addition, summarize all anti-COVID-19 medicinal plants and phytocompounds and their mechanisms of action to be used as a guide for further studies.
Collapse
Affiliation(s)
- Doha H Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
Stubbing LA, Hubert JG, Bell-Tyrer J, Hermant YO, Yang SH, McSweeney AM, McKenzie-Goldsmith GM, Ward VK, Furkert DP, Brimble MA. P 1 Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the Pisoniviricetes class. RSC Chem Biol 2023; 4:533-547. [PMID: 37547456 PMCID: PMC10398354 DOI: 10.1039/d3cb00075c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Viral infections are one of the leading causes of acute morbidity in humans and much endeavour has been made by the synthetic community for the development of drugs to treat associated diseases. Peptide-based enzyme inhibitors, usually short sequences of three or four residues, are one of the classes of compounds currently under development for enhancement of their activity and pharmaceutical properties. This review reports the advances made in the design of inhibitors targeting the family of highly conserved viral proteases 3C/3CLpro, which play a key role in viral replication and present minimal homology with mammalian proteases. Particular focus is put on the reported development of P1 glutamine isosteres to generate potent inhibitors mimicking the natural substrate sequence at the site of recognition.'
Collapse
Affiliation(s)
- Louise A Stubbing
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Joseph Bell-Tyrer
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Alice M McSweeney
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Geena M McKenzie-Goldsmith
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Vernon K Ward
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| |
Collapse
|
15
|
Farkaš B, Minneci M, Misevicius M, Rozas I. A Tale of Two Proteases: M Pro and TMPRSS2 as Targets for COVID-19 Therapies. Pharmaceuticals (Basel) 2023; 16:834. [PMID: 37375781 PMCID: PMC10301481 DOI: 10.3390/ph16060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the importance of the 2019 outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulting in the coronavirus disease 2019 (COVID-19) pandemic, an overview of two proteases that play an important role in the infection by SARS-CoV-2, the main protease of SARS-CoV-2 (MPro) and the host transmembrane protease serine 2 (TMPRSS2), is presented in this review. After summarising the viral replication cycle to identify the relevance of these proteases, the therapeutic agents already approved are presented. Then, this review discusses some of the most recently reported inhibitors first for the viral MPro and next for the host TMPRSS2 explaining the mechanism of action of each protease. Afterward, some computational approaches to design novel MPro and TMPRSS2 inhibitors are presented, also describing the corresponding crystallographic structures reported so far. Finally, a brief discussion on a few reports found some dual-action inhibitors for both proteases is given. This review provides an overview of two proteases of different origins (viral and human host) that have become important targets for the development of antiviral agents to treat COVID-19.
Collapse
Affiliation(s)
| | | | | | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590 Dublin, Ireland; (B.F.); (M.M.); (M.M.)
| |
Collapse
|
16
|
Su M, Yin B, Xing X, Li Z, Zhang J, Feng S, Li L, Zhao F, Yang X, Yu S, Wang J, Zhang Y, Shi D, Chen J, Feng L, Guo D, Sun D. Octyl gallate targeting the 3C-like protease exhibits highly efficient antiviral activity against swine enteric coronavirus PEDV. Vet Microbiol 2023; 281:109743. [PMID: 37062110 DOI: 10.1016/j.vetmic.2023.109743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Infection with porcine epidemic diarrhea virus (PEDV) causes severe watery diarrhea in newborn piglets, leading to substantial financial losses for the swine industry. In this study, we screened small molecule drugs targeting 3 C-like protease (3CLpro) by molecular docking, and further evaluated the antiviral activity of the screened drugs against PEDV. Results showed that octyl gallate (OG), a widely used food additive, exhibited strong binding affinity with the 3CLpro active sites of PEDV. Bio-layer interferometry and fluorescence resonance energy transfer revealed that OG directly interacts with PEDV 3CLpro (KD = 549 nM) and inhibits 3CLpro activity (IC50 = 22.15 µM). OG showed a strong inhibition of PEDV replication in vitro. Virus titers were decreased by 0.58 and 0.71 log10 TCID50/mL for the CV777 and HM2017 strains, respectively. In vivo, all piglets in the PEDV-infected group died at 48 h post-infection (hpi), while 75% of piglets in the OG treatment group showed significant relief from the clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Moreover, the western blotting results showed that OG also has strong antiviral activity against other swine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Our findings revealed that OG could be developed as a novel antiviral drug against PEDV. The OG exhibited a potential broad-spectrum antiviral drug for control of other swine enteric coronaviruses.
Collapse
Affiliation(s)
- Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China; College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, PR China
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Zijian Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Shufeng Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shiping Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Yongchen Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| |
Collapse
|
17
|
Kandeel M. An overview of the recent progress in Middle East Respiratory Syndrome Coronavirus (MERS-CoV) drug discovery. Expert Opin Drug Discov 2023; 18:385-400. [PMID: 36971501 DOI: 10.1080/17460441.2023.2192921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION The Middle East respiratory syndrome coronavirus (MERS-CoV) has remained a public health concern since it first emerged in 2012. Although many potential treatments for MERS-CoV have been developed and tested, none have had complete success in stopping the spread of this deadly disease. MERS-CoV replication comprises attachment, entry, fusion and replication steps. Targeting these events may lead to the creation of medications that effectively treat MERS-CoV infection. AREAS COVERED This review updates the research on the development of inhibitors of MERS-CoV. The main topics are MERS-CoV‒related proteins and host cell proteins that are involved in viral protein activation and infection. EXPERT OPINION Research on discovering drugs that can inhibit MERS-CoV started at a slow pace, and although efforts have steadily increased, clinical trials for new drugs specifically targeting MERS-CoV have not been extensive enough. The explosion in efforts to find new medications for the SARS-CoV-2 virus indirectly enhanced the volume of data on MERS-CoV inhibition by including MERS-CoV in drug assays. The appearance of COVID-19 completely transformed the data available on MERS-CoV inhibition. Despite the fact that new infected cases are constantly being diagnosed, there are currently no approved vaccines for or inhibitors of MERS-CoV.
Collapse
|
18
|
Ali Dahhas M, M Alkahtani H, Malik A, Almehizia AA, Bakheit AH, Akber Ansar S, AlAbdulkarim AS, S Alrasheed L, Alsenaidy MA. Screening and identification of potential MERS-CoV papain-like protease (PLpro) inhibitors; Steady-state kinetic and Molecular dynamic studies. Saudi Pharm J 2023; 31:228-244. [PMID: 36540698 PMCID: PMC9756750 DOI: 10.1016/j.jsps.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.
Collapse
Key Words
- 3CLpro, 3-Chymotrypsin -like Protease
- ADMET, Absorption, distribution, metabolism, excretion and toxicity
- CFR, Case fatality rate
- DTT, Dithiothreitol
- Drug Design
- Drug Discovery
- E. coli, Escherichia coli
- EDTA, Ethylenediaminetetraacetic acid
- HCoV-, Human Coronavirus
- HIA, Human intestinal absorption
- His-tag, Histidine tag
- IPTG, Isopropyl b-D-1-thiogalactopyranoside
- Inhibitors
- Kan, Kanamicyn
- LB, Luria–Bertani
- MD, Molecular dynamic
- MERS-CoV PLpro Inhibitors
- MOE, Molecular Operating Environment
- MPLpro, MERS papain-like protease
- Molecular Docking
- Molecular dynamic simulation
- Ni-NTA, Nickel-nitrilotri
- Nonstructural proteins
- PLIF, Protein- ligand interaction fingerprint
- Papain-like protease
- Protease
- RMSD, Root Mean Square Deviation
- RMSF, Root Mean Square Fluctuation
- pp1a, Polyprotein 1a
- pp1b, Polyprotein 1b
Collapse
Affiliation(s)
- Mohammed Ali Dahhas
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, Department Chairman, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University. King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, Department Chairman, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Siddique Akber Ansar
- Department of Pharmaceutical Chemistry, Department Chairman, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah S AlAbdulkarim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Lamees S Alrasheed
- Department of Pharmaceutical Chemistry, Department Chairman, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad A Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Structure basis for inhibition of SARS-CoV-2 by the feline drug GC376. Acta Pharmacol Sin 2023; 44:255-257. [PMID: 35773339 PMCID: PMC9243920 DOI: 10.1038/s41401-022-00929-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
|
20
|
Identification of Darunavir Derivatives for Inhibition of SARS-CoV-2 3CL pro. Int J Mol Sci 2022; 23:ijms232416011. [PMID: 36555652 PMCID: PMC9781983 DOI: 10.3390/ijms232416011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The effective antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed around the world. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a pivotal role in virus replication; it also has become an important therapeutic target for the infection of SARS-CoV-2. In this work, we have identified Darunavir derivatives that inhibit the 3CLpro through a high-throughput screening method based on a fluorescence resonance energy transfer (FRET) assay in vitro. We found that the compounds 29# and 50# containing polyphenol and caffeine derivatives as the P2 ligand, respectively, exhibited favorable anti-3CLpro potency with EC50 values of 6.3 μM and 3.5 μM and were shown to bind to SARS-CoV-2 3CLpro in vitro. Moreover, we analyzed the binding mode of the DRV in the 3CLpro through molecular docking. Importantly, 29# and 50# exhibited a similar activity against the protease in Omicron variants. The inhibitory effect of compounds 29# and 50# on the SARS-CoV-2 3CLpro warrants that they are worth being the template to design functionally improved inhibitors for the treatment of COVID-19.
Collapse
|
21
|
Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses. Bioorg Chem 2022; 130:106264. [PMCID: PMC9643332 DOI: 10.1016/j.bioorg.2022.106264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
22
|
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS-CoV-2 main protease (M pro): Structure, function, and emerging therapies for COVID-19. MedComm (Beijing) 2022; 3:e151. [PMID: 35845352 PMCID: PMC9283855 DOI: 10.1002/mco2.151] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.
Collapse
Affiliation(s)
- Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang‐Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ya‐Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐Wen Zhang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Ping Huang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Guang‐Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
23
|
Chien TJ, Liu CY, Chang YI, Fang CJ, Pai JH, Wu YX, Chen SW. Therapeutic effects of herbal-medicine combined therapy for COVID-19: A systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2022; 13:950012. [PMID: 36120361 PMCID: PMC9475194 DOI: 10.3389/fphar.2022.950012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023] Open
Abstract
Background/Aim: Since 2019, the COVID-19 pandemic has been a devastating disease affecting global health to a great extent. Some countries have added on herbal medicines as a complementary treatment for combating COVID-19 due to the urgency of stopping the spread of this viral disease. However, whether these herbal medicines are effective is uncertain. This systematic review and meta-analysis aimed to evaluate the effects of herbal medicine combined therapy in the treatment of COVID-19. Methods: A literature search was performed following the PRISMA Statement and without language restrictions. Seven databases were searched from inception through December 2021. All selected studies were randomized clinical trials (RCTs). Comparing the effects of herbal medicine combined therapy with conventional western medicine, including improvement of clinical symptoms, chest CT images, viral conversion rate, C-reactive protein (CRP) and interleukin 6. Cochrane criteria were applied to examine the methodological quality of the enrolled trials; and meta-analysis software (RevMan 5.4.1) was used for data analysis. Results: In total, the data of 5,417 participants from 40 trials were included in this systematic review; and 28 trials were qualified for meta-analysis. The trials had medium-to-high quality based on GRADE system. Meta-analysis showed that combining herbal medicine vs conventional treatment in 1) coughing (1.43 95% CI:1.21, 1.71, p = 0.0001), 2) fever (1.09 95% CI:1.00, 1.19, p = 0.06), 3) fatigue (1.21 95% CI:1.10, 1.33, p = 0.0001); 4) CT images (1.26 95% CI:1.19, 1.34, P ≤ 0.00001), 5) viral conversion rates (1.22 95% CI:1.06, 1.40, p = 0.005) and 6) viral conversion times (-3.72 95% CI: -6.05, -1.40, p = 0.002), 7) IL6 change (1.97 95% CI: -0.72, 4.66, p = 0.15) and 8) CRP change (-7.92 95% CI: -11.30, -4.53, P ≤ 0.00001). Conclusion: Herbal medicine combined therapy significantly reduces COVID-19 clinical symptoms, improving CT images and viral conversion rates. Reported adverse events are mild. However, for certain biases in the included studies, and the need for further study on effective components of herbal medicine. Further large trials with better randomized design are warranted to definite a more definite role of herbal medicine.
Collapse
Affiliation(s)
- Tsai-Ju Chien
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Zhong-Zhou, Taipei City Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Yu Liu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-I Chang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Ju Fang
- Medical Library, National Cheng Kung University, Tainan, Taiwan
- Department of Secretariat, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Juo-Hsiang Pai
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Zhong-Zhou, Taipei City Hospital, Taipei, Taiwan
| | - Yu-Xuan Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuoh-Wen Chen
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
24
|
Robust antiviral activity of commonly prescribed antidepressants against emerging coronaviruses: in vitro and in silico drug repurposing studies. Sci Rep 2022; 12:12920. [PMID: 35902647 PMCID: PMC9331004 DOI: 10.1038/s41598-022-17082-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022] Open
Abstract
During the current coronavirus disease 2019 (COVID-19) pandemic, symptoms of depression are commonly documented among both symptomatic and asymptomatic quarantined COVID-19 patients. Despite that many of the FDA-approved drugs have been showed anti-SARS-CoV-2 activity in vitro and remarkable efficacy against COVID-19 in clinical trials, no pharmaceutical products have yet been declared to be fully effective for treating COVID-19. Antidepressants comprise five major drug classes for the treatment of depression, neuralgia, migraine prophylaxis, and eating disorders which are frequently reported symptoms in COVID-19 patients. Herein, the efficacy of eight frequently prescribed FDA-approved antidepressants on the inhibition of both SARS-CoV-2 and MERS-CoV was assessed. Additionally, the in vitro anti-SARS-CoV-2 and anti-MERS-CoV activities were evaluated. Furthermore, molecular docking studies have been performed for these drugs against the spike (S) and main protease (Mpro) pockets of both SARS-CoV-2 and MERS-CoV. Results showed that Amitriptyline, Imipramine, Paroxetine, and Sertraline had potential anti-viral activities. Our findings suggested that the aforementioned drugs deserve more in vitro and in vivo studies targeting COVID-19 especially for those patients suffering from depression.
Collapse
|
25
|
Engineering and Characterization of Avian Coronavirus Mutants Expressing Fluorescent Reporter Proteins from the Replicase Gene. J Virol 2022; 96:e0065322. [PMID: 35862676 PMCID: PMC9327687 DOI: 10.1128/jvi.00653-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an avian coronavirus that causes infectious bronchitis, an acute and highly contagious respiratory disease of chickens. IBV evolution under the pressure of comprehensive and widespread vaccination requires surveillance for vaccine resistance, as well as periodic vaccine updates. Reverse genetics systems are very valuable tools in virology, as they facilitate rapid genetic manipulation of viral genomes, thereby advancing basic and applied research. We report here the construction of an infectious clone of IBV strain Beaudette as a bacterial artificial chromosome (BAC). The engineered full-length IBV clone allowed the rescue of an infectious virus that was phenotypically indistinguishable from the parental virus. We used the infectious IBV clone and examined whether an enhanced green fluorescent protein (EGFP) can be produced by the replicase gene ORF1 and autocatalytically released from the replicase polyprotein through cleavage by the main coronavirus protease. We show that IBV tolerates insertion of the EGFP ORF at the 3' end of the replicase gene, between the sequences encoding nsp13 and nsp16 (helicase, RNA exonuclease, RNA endonuclease, and RNA methyltransferase). We further show that EGFP is efficiently cleaved from the replicase polyprotein and can be localized in double-membrane vesicles along with viral RNA polymerase and double-stranded RNA, an intermediate of IBV genome replication. One of the engineered reporter EGFP viruses were genetically stable during passage in cultured cells. We demonstrate that the reporter EGFP viruses can be used to study virus replication in host cells and for antiviral drug discovery and development of diagnostic assays. IMPORTANCE Reverse genetics systems based on bacterial artificial chromosomes (BACs) are the most valuable systems in coronavirus research. Here, we describe the establishment of a reverse genetics system for the avian coronavirus strain Beaudette, the most intensively studied strain. We cloned a copy of the avian coronavirus genome into a BAC vector and recovered infectious virus in permissive cells. We used the new system to construct reporter viruses that produce enhanced green fluorescent protein (EGFP). The EGFP coding sequence was inserted into 11 known cleavage sites of the major coronavirus protease in the replicase gene ORF1. Avian coronavirus tolerated the insertion of the EGFP coding sequence at three sites. The engineered reporter viruses replicated with parental efficiency in cultured cells and were sufficiently genetically stable. The new system facilitates functional genomics of the avian coronavirus genome but can also be used for the development of novel vaccines and anticoronaviral drugs.
Collapse
|
26
|
Chalcone-amide, a privileged backbone for the design and development of selective SARS-CoV/SARS-CoV-2 papain-like protease inhibitors. Eur J Med Chem 2022; 240:114572. [PMID: 35797899 PMCID: PMC9250826 DOI: 10.1016/j.ejmech.2022.114572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
The newly emerged coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic, is the closest relative of SARS-CoV with high genetic similarity. The papain-like protease (PLpro) is an important SARS-CoV/SARS-CoV-2 nonstructural protein that plays a critical role in some infection processes such as the generation of the functional replication complex, maturation of crude polyproteins, and regulation of the host antiviral immune responses. Therefore, the research to discover SARS-CoV-2 PLpro inhibitors could be a sensible strategy to obtain therapeutic agents for the treatment of COVID-19. Aiming to find SARS-CoV/SARS-CoV-2 PLpro inhibitors, various high throughput screenings (HTS) have been performed over the past two decades. Interestingly, the result of these efforts is the identification of hit/lead compounds whose structures have one important feature in common, namely having a chalcone-amide (N-benzylbenzamide) backbone. Structure-activity relationship (SAR) studies have shown that placing an (R)-configurated methyl group on the middle carbon adjacent to the amide group creates a unique backbone called (R)-methyl chalcone-amide, which dramatically increases PLpro inhibitory potency. Although this scaffold has not yet been introduced by medicinal chemists as a specific skeleton for the design of PLpro inhibitors, structural considerations show that the most reported PLpro inhibitors have this skeleton. This review suggests the (R)-methyl chalcone-amide scaffold as a key backbone for the design and development of selective SARS-CoV-2 PLpro inhibitors. Understanding the SAR and binding mode of these inhibitors in the active site of SARS-CoV-2 PLpro can aid the future development of anti-COVID-19 agents.
Collapse
|
27
|
Li Petri G, Di Martino S, De Rosa M. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. J Med Chem 2022; 65:7438-7475. [PMID: 35604326 DOI: 10.1021/acs.jmedchem.2c00123] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of peptides as therapeutics has often been associated with several drawbacks such as poor absorption, low stability to proteolytic digestion, and fast clearance. Peptidomimetics are developed by modifications of native peptides with the aim of obtaining molecules that are more suitable for clinical development and, for this reason, are widely used as tools in medicinal chemistry programs. The effort to disclose innovative peptidomimetic therapies is recurrent and constantly evolving as demonstrated by the new lead compounds in clinical trials. Synthetic strategies for the development of peptidomimetics have also been implemented with time. This perspective highlights some of the most recent efforts for the design and synthesis of peptidomimetic agents together with their biological evaluation toward a panel of targets.
Collapse
Affiliation(s)
| | | | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
28
|
Ho CY, Yu JX, Wang YC, Lin YC, Chiu YF, Gao JY, Lai SJ, Chen MJ, Huang WC, Tien N, Chen Y. A Structural Comparison of SARS-CoV-2 Main Protease and Animal Coronaviral Main Protease Reveals Species-Specific Ligand Binding and Dimerization Mechanism. Int J Mol Sci 2022; 23:5669. [PMID: 35628479 PMCID: PMC9145999 DOI: 10.3390/ijms23105669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Animal coronaviruses (CoVs) have been identified to be the origin of Severe Acute Respiratory Syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and probably SARS-CoV-2 that cause severe to fatal diseases in humans. Variations of zoonotic coronaviruses pose potential threats to global human beings. To overcome this problem, we focused on the main protease (Mpro), which is an evolutionary conserved viral protein among different coronaviruses. The broad-spectrum anti-coronaviral drug, GC376, was repurposed to target canine coronavirus (CCoV), which causes gastrointestinal infections in dogs. We found that GC376 can efficiently block the protease activity of CCoV Mpro and can thermodynamically stabilize its folding. The structure of CCoV Mpro in complex with GC376 was subsequently determined at 2.75 Å. GC376 reacts with the catalytic residue C144 of CCoV Mpro and forms an (R)- or (S)-configuration of hemithioacetal. A structural comparison of CCoV Mpro and other animal CoV Mpros with SARS-CoV-2 Mpro revealed three important structural determinants in a substrate-binding pocket that dictate entry and release of substrates. As compared with the conserved A141 of the S1 site and P188 of the S4 site in animal coronaviral Mpros, SARS-CoV-2 Mpro contains N142 and Q189 at equivalent positions which are considered to be more catalytically compatible. Furthermore, the conserved loop with residues 46-49 in animal coronaviral Mpros has been replaced by a stable α-helix in SARS-CoV-2 Mpro. In addition, the species-specific dimerization interface also influences the catalytic efficiency of CoV Mpros. Conclusively, the structural information of this study provides mechanistic insights into the ligand binding and dimerization of CoV Mpros among different species.
Collapse
Affiliation(s)
- Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan;
- Division of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
- Physical Examination Center, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| | - Jia-Xin Yu
- AI Innovation Center, China Medical University Hospital, Taichung 404, Taiwan;
| | - Yu-Chuan Wang
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan; (Y.-C.W.); (Y.-F.C.)
| | - Yu-Chuan Lin
- Translational Cell Therapy Center, China Medical University Hospital, Taichung 404, Taiwan;
| | - Yi-Fang Chiu
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan; (Y.-C.W.); (Y.-F.C.)
| | - Jing-Yan Gao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (S.-J.L.); (W.-C.H.)
- Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Ming-Jen Chen
- Department of Applied Cosmetology, Hungkuang University, Taichung 404, Taiwan;
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (S.-J.L.); (W.-C.H.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 404, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan; (Y.-C.W.); (Y.-F.C.)
- Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
29
|
Inclusion of a Phytomedicinal Flavonoid in Biocompatible Surface-Modified Chylomicron Mimic Nanovesicles with Improved Oral Bioavailability and Virucidal Activity: Molecular Modeling and Pharmacodynamic Studies. Pharmaceutics 2022; 14:pharmaceutics14050905. [PMID: 35631491 PMCID: PMC9144278 DOI: 10.3390/pharmaceutics14050905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022] Open
Abstract
Morin hydrate (MH) is a widely-used Asian phytomedicinal flavonoid with a wide range of reported therapeutic activities. However, MH has limited oral bioavailability due to its low aqueous solubility and intestinal permeability, which in turn hinders its potential antiviral activity. The study reported herein was designed to encapsulate MH in polyethyleneglycolated (PEGylated) chylomicrons (PCMs) and to boost its antiviral activity and biological availability for oral administration using a rat experimental model. The PEGylated edge activator combined with the conventional components of chylomicrons (CMs) amplify the transport of the drug across the intestine and its circulation period, hence its therapeutic impact. The implementation of variables in the in vitro characterization of the vesicles was investigated. Using Design Expert® software, a 24 factorial design was conducted, and the resulting PCM formulations were fabricated utilizing a thin-film hydration technique. The efficacy of the formulations was assessed according to their zeta potential (ZP), entrapment efficiency percentage (EE%), amount of drug released after 8 h (Q8h), and particle size (PS) data. Formulation F9, which was deemed to be the optimal formula, used compritol as the lipidic core together in defined amounts with phosphatidylcholine (PC) and Brij52. Computer-aided studies revealed that MH alone in a suspension had both diminished intestinal permeability and absorption, but was enhanced when loaded in PCMs. This was affirmed by the superiority of formulation F9 results in ex vivo permeation and pharmacokinetic studies. Furthermore, formulation F9 had a superior safety profile and antiviral activity over a pure MH suspension. Molecular-docking studies revealed the capability of MH to inhibit MERS-CoV 3CLpro, the enzyme shown to exhibit a crucial role in viral replication. Additionally, F9 suppressed both MERS-CoV-induced histopathological alteration in lung tissue and resulting oxidative and inflammatory biomarkers. Collectively, the results reported herein affirmed the potential of PCMs as nanocarriers for the effective oral administration of MH as an antiviral.
Collapse
|
30
|
Therapeutic mechanisms and impact of traditional Chinese medicine on COVID-19 and other influenza diseases. PHARMACOLOGICAL RESEARCH. MODERN CHINESE MEDICINE 2022; 2:100029-100029. [PMCID: PMC8666147 DOI: 10.1016/j.prmcm.2021.100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19), first reported in Wuhan, China, has rapidly spread worldwide. Traditional Chinese medicine (TCM) has been used to prevent and treat viral epidemics and plagues for over 2,500 years. In the guidelines on fighting against COVID-19, the National Health Commission of the People's Republic of China has recommended certain TCM formulas, namely Jinhua Qinggan granule (JHQGG), Lianhua Qingwen granule (LHQWG), Qingfei Paidu decoction (QFPDD), Xuanfei Baidu granule (XFBD), Xuebijing injection (XBJ), and Huashi Baidu granule (HSBD) for treating COVID-19 infected individuals. Among these six TCM formulas, JHQGG and LHQWG effectively treated mild/moderate and severe COVID-19 infections. XFBD therapy is recommended for mild COVID-19 infections, while XBJ and HSBD effectively treat severe COVID-19 infections. The internationalization of TCM faces many challenges due to the absence of a clinical efficacy evaluation system, insufficient research evidence, and a lack of customer trust across the globe. Therefore, evidence-based research is crucial in battling this infectious disease. This review summarizes SARS-CoV-2 pathogenesis and the history of TCM used to treat various viral epidemics, with a focus on six TCM formulas. Based on the evidence, we also discuss the composition of various TCM formulas, their underlying therapeutic mechanisms, and their role in curing COVID-19 infections. In addition, we evaluated the roles of six TCM formulas in the treatment and prevention of other influenza diseases, such as influenza A (H1N1), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). Furthermore, we highlighted the efficacy and side effects of single prescriptions used in TCM formulas.
Collapse
|
31
|
Lu J, Chen SA, Khan MB, Brassard R, Arutyunova E, Lamer T, Vuong W, Fischer C, Young HS, Vederas JC, Lemieux MJ. Crystallization of Feline Coronavirus M pro With GC376 Reveals Mechanism of Inhibition. Front Chem 2022; 10:852210. [PMID: 35281564 PMCID: PMC8907848 DOI: 10.3389/fchem.2022.852210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses infect a variety of hosts in the animal kingdom, and while each virus is taxonomically different, they all infect their host via the same mechanism. The coronavirus main protease (Mpro, also called 3CLpro), is an attractive target for drug development due to its essential role in mediating viral replication and transcription. An Mpro inhibitor, GC376, has been shown to treat feline infectious peritonitis (FIP), a fatal infection in cats caused by internal mutations in the feline enteric coronavirus (FECV). Recently, our lab demonstrated that the feline drug, GC373, and prodrug, GC376, are potent inhibitors of SARS-CoV-2 Mpro and solved the structures in complex with the drugs; however, no crystal structures of the FIP virus (FIPV) Mpro with the feline drugs have been published so far. Here, we present crystal structures of FIPV Mpro-GC373/GC376 complexes, revealing the inhibitors covalently bound to Cys144 in the active site, similar to SARS-CoV-2 Mpro. Additionally, GC376 has a higher affinity for FIPV Mpro with lower nanomolar Ki values compared to SARS-CoV and SARS-CoV-2 Mpro. We also show that improved derivatives of GC376 have higher potency for FIPV Mpro. Since GC373 and GC376 represent strong starting points for structure-guided drug design, determining the crystal structures of FIPV Mpro with these inhibitors are important steps in drug optimization and structure-based broad-spectrum antiviral drug discovery.
Collapse
Affiliation(s)
- Jimmy Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sizhu Amelia Chen
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | - Raelynn Brassard
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Singh MK, Lakshman MK. Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Org Biomol Chem 2022; 20:963-979. [PMID: 35018952 DOI: 10.1039/d1ob01329g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To a large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules to modulate conformational flexibility, improve bioavailability, and fine-tune electronics, and in order to achieve potency similar to or better than that of the natural peptide ligand. This mini-review delineates recent developments, limited to the past five years, in the utility of selected saturated 3- to 6-membered heterocyclic moieties in peptidomimetic design. Also discussed is the chemistry involved in the synthesis of the azaheterocyclic scaffolds and the structural implications of the introduction of these azaheterocycles in peptide backbones as well as side chains of the peptide mimics.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Science, Technology, and Mathematics, Lincoln University, 820 Chestnut Street, Jefferson City, Missouri 65101, USA.
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
33
|
The structure of a novel antibody against the spike protein inhibits Middle East respiratory syndrome coronavirus infections. Sci Rep 2022; 12:1260. [PMID: 35075213 PMCID: PMC8786824 DOI: 10.1038/s41598-022-05318-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/07/2022] [Indexed: 11/08/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus, responsible for outbreaks of a severe respiratory illness in humans with a fatality rate of 30%. Currently, there are no vaccines or United States food and drug administration (FDA)-approved therapeutics for humans. The spike protein displayed on the surface of MERS-CoV functions in the attachment and fusion of virions to host cellular membranes and is the target of the host antibody response. Here, we provide a molecular method for neutralizing MERS-CoV through potent antibody-mediated targeting of the receptor-binding subdomain (RBD) of the spike protein. The structural characterization of the neutralizing antibody (KNIH90-F1) complexed with RBD using X-ray crystallography revealed three critical epitopes (D509, R511, and E513) in the RBD region of the spike protein. Further investigation of MERS-CoV mutants that escaped neutralization by the antibody supported the identification of these epitopes in the RBD region. The neutralizing activity of this antibody is solely provided by these specific molecular structures. This work should contribute to the development of vaccines or therapeutic antibodies for MERS-CoV.
Collapse
|
34
|
Proteases of SARS Coronaviruses. REFERENCE MODULE IN LIFE SCIENCES 2022. [PMCID: PMC9308495 DOI: 10.1016/b978-0-12-821618-7.00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coronaviruses such as SARS and SARS-CoV-2 have established themselves as a global health concern after causing an epidemic and a pandemic in the last twenty years. Understanding the life cycle of such viruses is critical to reveal their pathogenic potential. As one of the essential viral enzymes, SARS proteases are indispensable for the processing of viral polypeptides and for the replication of the virus. SARS-CoV and SARS-CoV-2 encode for 2 viral proteases: the main protease (3CLpro) and the papain-like protease (PLPro), which are conserved among different coronaviruses and are absent in humans. This review summarizes the existing literature on the structure and function of these proteases; highlighting the similarity and differences between the enzymes of SARS and SARS-CoV-2. It also discusses the development of inhibitors to target viral proteases.
Collapse
|
35
|
Dampalla CS, Rathnayake AD, Perera KD, Jesri ARM, Nguyen HN, Miller MJ, Thurman HA, Zheng J, Kashipathy MM, Battaile KP, Lovell S, Perlman S, Kim Y, Groutas WC, Chang KO. Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies. J Med Chem 2021; 64:17846-17865. [PMID: 34865476 PMCID: PMC8673480 DOI: 10.1021/acs.jmedchem.1c01037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The COVID-19 pandemic is having a major impact on public health worldwide, and there is an urgent need for the creation of an armamentarium of effective therapeutics, including vaccines, biologics, and small-molecule therapeutics, to combat SARS-CoV-2 and emerging variants. Inspection of the virus life cycle reveals multiple viral- and host-based choke points that can be exploited to combat the virus. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is an attractive target for therapeutic intervention, and the design of inhibitors of the protease may lead to the emergence of effective SARS-CoV-2-specific antivirals. We describe herein the results of our studies related to the application of X-ray crystallography, the Thorpe-Ingold effect, deuteration, and stereochemistry in the design of highly potent and nontoxic inhibitors of SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
| | - Athri D. Rathnayake
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Matthew J. Miller
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Hayden A. Thurman
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
36
|
Abstract
The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
37
|
Costanzi E, Kuzikov M, Esposito F, Albani S, Demitri N, Giabbai B, Camasta M, Tramontano E, Rossetti G, Zaliani A, Storici P. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. Int J Mol Sci 2021; 22:11779. [PMID: 34769210 PMCID: PMC8583849 DOI: 10.3390/ijms222111779] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
After almost two years from its first evidence, the COVID-19 pandemic continues to afflict people worldwide, highlighting the need for multiple antiviral strategies. SARS-CoV-2 main protease (Mpro/3CLpro) is a recognized promising target for the development of effective drugs. Because single target inhibition might not be sufficient to block SARS-CoV-2 infection and replication, multi enzymatic-based therapies may provide a better strategy. Here we present a structural and biochemical characterization of the binding mode of MG-132 to both the main protease of SARS-CoV-2, and to the human Cathepsin-L, suggesting thus an interesting scaffold for the development of double-inhibitors. X-ray diffraction data show that MG-132 well fits into the Mpro active site, forming a covalent bond with Cys145 independently from reducing agents and crystallization conditions. Docking of MG-132 into Cathepsin-L well-matches with a covalent binding to the catalytic cysteine. Accordingly, MG-132 inhibits Cathepsin-L with nanomolar potency and reversibly inhibits Mpro with micromolar potency, but with a prolonged residency time. We compared the apo and MG-132-inhibited structures of Mpro solved in different space groups and we identified a new apo structure that features several similarities with the inhibited ones, offering interesting perspectives for future drug design and in silico efforts.
Collapse
Affiliation(s)
- Elisa Costanzi
- Elettra—Sincrotrone Trieste, 34149 Trieste, Italy; (E.C.); (N.D.); (B.G.)
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 22525 Hamburg, Germany; (M.K.); (A.Z.)
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, 28759 Bremen, Germany
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (F.E.); (M.C.); (E.T.)
| | - Simone Albani
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational Biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (S.A.); (G.R.)
- Department of Biology, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Nicola Demitri
- Elettra—Sincrotrone Trieste, 34149 Trieste, Italy; (E.C.); (N.D.); (B.G.)
| | - Barbara Giabbai
- Elettra—Sincrotrone Trieste, 34149 Trieste, Italy; (E.C.); (N.D.); (B.G.)
| | - Marianna Camasta
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (F.E.); (M.C.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (F.E.); (M.C.); (E.T.)
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational Biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (S.A.); (G.R.)
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 22525 Hamburg, Germany; (M.K.); (A.Z.)
| | - Paola Storici
- Elettra—Sincrotrone Trieste, 34149 Trieste, Italy; (E.C.); (N.D.); (B.G.)
| |
Collapse
|
38
|
Ullrich S, Sasi VM, Mahawaththa MC, Ekanayake KB, Morewood R, George J, Shuttleworth L, Zhang X, Whitefield C, Otting G, Jackson C, Nitsche C. Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors. Bioorg Med Chem Lett 2021; 50:128333. [PMID: 34418570 PMCID: PMC8378659 DOI: 10.1016/j.bmcl.2021.128333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Specific anti-coronaviral drugs complementing available vaccines are urgently needed to fight the COVID-19 pandemic. Given its high conservation across the betacoronavirus genus and dissimilarity to human proteases, the SARS-CoV-2 main protease (Mpro) is an attractive drug target. SARS-CoV-2 Mpro inhibitors have been developed at unprecedented speed, most of them being substrate-derived peptidomimetics with cysteine-modifying warheads. In this study, Mpro has proven resistant towards the identification of high-affinity short substrate-derived peptides and peptidomimetics without warheads. 20 cyclic and linear substrate analogues bearing natural and unnatural residues, which were predicted by computational modelling to bind with high affinity and designed to establish structure-activity relationships, displayed no inhibitory activity at concentrations as high as 100 μM. Only a long linear peptide covering residues P6 to P5' displayed moderate inhibition (Ki = 57 µM). Our detailed findings will inform current and future drug discovery campaigns targeting Mpro.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Vishnu M Sasi
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mithun C Mahawaththa
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Kasuni B Ekanayake
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Richard Morewood
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Josemon George
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Laura Shuttleworth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Xiaobai Zhang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
39
|
Structure-based discovery and structural basis of a novel broad-spectrum natural product against main protease of coronavirus. J Virol 2021; 96:e0125321. [PMID: 34586857 PMCID: PMC8754229 DOI: 10.1128/jvi.01253-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Over the past 20 years, the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2 emerged, causing severe human respiratory diseases throughout the globe. Developing broad-spectrum drugs would be invaluable in responding to new, emerging coronaviruses and to address unmet urgent clinical needs. Main protease (Mpro; also known as 3CLpro) has a major role in the coronavirus life cycle and is one of the most important targets for anti-coronavirus agents. We show that a natural product, noncovalent inhibitor, shikonin, is a pan-main protease inhibitor of SARS-CoV-2, SARS-CoV, MERS-CoV, human coronavirus (HCoV)-HKU1, HCoV-NL63, and HCoV-229E with micromolar half maximal inhibitory concentration (IC50) values. Structures of the main protease of different coronavirus genus, SARS-CoV from the betacoronavirus genus and HCoV-NL63 from the alphacoronavirus genus, were determined by X-ray crystallography and revealed that the inhibitor interacts with key active site residues in a unique mode. The structure of the main protease inhibitor complex presents an opportunity to discover a novel series of broad-spectrum inhibitors. These data provide substantial evidence that shikonin and its derivatives may be effective against most coronaviruses as well as emerging coronaviruses of the future. Given the importance of the main protease for coronavirus therapeutic indication, insights from these studies should accelerate the development and design of safer and more effective antiviral agents. IMPORTANCE The current pandemic has created an urgent need for broad-spectrum inhibitors of SARS-CoV-2. The main protease is relatively conservative compared to the spike protein and, thus, is one of the most promising targets in developing anti-coronavirus agents. We solved the crystal structures of the main protease of SARS-CoV and HCoV-NL63 that bound to shikonin. The structures provide important insights, have broad implications for understanding the structural basis underlying enzyme activity, and can facilitate rational design of broad-spectrum anti-coronavirus ligands as new therapeutic agents.
Collapse
|
40
|
Alamri MA, Tahir ul Qamar M, Mirza MU, Bhadane R, Alqahtani SM, Muneer I, Froeyen M, Salo-Ahen OMH. Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL pro. J Biomol Struct Dyn 2021; 39:4936-4948. [PMID: 32579061 PMCID: PMC7332866 DOI: 10.1080/07391102.2020.1782768] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The SARS-CoV-2 was confirmed to cause the global pandemic of coronavirus disease 2019 (COVID-19). The 3-chymotrypsin-like protease (3CLpro), an essential enzyme for viral replication, is a valid target to combat SARS-CoV and MERS-CoV. In this work, we present a structure-based study to identify potential covalent inhibitors containing a variety of chemical warheads. The targeted Asinex Focused Covalent (AFCL) library was screened based on different reaction types and potential covalent inhibitors were identified. In addition, we screened FDA-approved protease inhibitors to find candidates to be repurposed against SARS-CoV-2 3CLpro. A number of compounds with significant covalent docking scores were identified. These compounds were able to establish a covalent bond (C-S) with the reactive thiol group of Cys145 and to form favorable interactions with residues lining the substrate-binding site. Moreover, paritaprevir and simeprevir from FDA-approved protease inhibitors were identified as potential inhibitors of SARS-CoV-2 3CLpro. The mechanism and dynamic stability of binding between the identified compounds and SARS-CoV-2 3CLpro were characterized by molecular dynamics (MD) simulations. The identified compounds are potential inhibitors worthy of further development as COVID-19 drugs. Importantly, the identified FDA-approved anti-hepatitis-C virus (HCV) drugs paritaprevir and simeprevir could be ready for clinical trials to treat infected patients and help curb COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkarj, Saudi Arabia
| | | | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, Finland
| | - Safar M. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkarj, Saudi Arabia
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei, P. R. China
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Outi M. H. Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, Finland
| |
Collapse
|
41
|
Dampalla CS, Zheng J, Perera KD, Wong LYR, Meyerholz DK, Nguyen HN, Kashipathy MM, Battaile KP, Lovell S, Kim Y, Perlman S, Groutas WC, Chang KO. Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2021; 118:e2101555118. [PMID: 34210738 PMCID: PMC8307543 DOI: 10.1073/pnas.2101555118] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Jian Zheng
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242
| | - David K Meyerholz
- Department of Pathology, The University of Iowa, Iowa City, IA 52242
| | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, KS 67260
| | | | | | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506;
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242;
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260;
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506;
| |
Collapse
|
42
|
Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Covalent Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:285-312. [PMID: 34258745 DOI: 10.1007/978-981-16-0267-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Nowadays, many viral infections have emerged and are taking a huge toll on human lives globally. Meanwhile, viral resistance to current drugs has drastically increased. Hence, there is a pressing need to design potent broad-spectrum antiviral agents to treat a variety of viral infections and overcome viral resistance. Covalent inhibitors have the potential to achieve both goals owing to their biochemical efficiency, prolonged duration of action, and the capability to inhibit shallow, solvent-exposed substrate-binding domains. In this chapter, we review the structures, activities, and inhibition mechanisms of covalent inhibitors against severe acute respiratory syndrome coronavirus 2, dengue virus, enterovirus, hepatitis C virus, human immunodeficiency virus, and influenza viruses. We also discuss the application of in silico study in covalent inhibitor design.
Collapse
Affiliation(s)
- Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | - Fatemeh Abdi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Skwarecki AS, Nowak MG, Milewska MJ. Amino Acid and Peptide-Based Antiviral Agents. ChemMedChem 2021; 16:3106-3135. [PMID: 34254457 DOI: 10.1002/cmdc.202100397] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 01/10/2023]
Abstract
A significant number of antiviral agents used in clinical practice are amino acids, short peptides, or peptidomimetics. Among them, several HIV protease inhibitors (e. g. lopinavir, atazanavir), HCV protease inhibitors (e. g. grazoprevir, glecaprevir), and HCV NS5A protein inhibitors have contributed to a significant decrease in mortality from AIDS and hepatitis. However, there is an ongoing need for the discovery of new antiviral agents and the development of existing drugs; amino acids, both proteinogenic and non-proteinogenic in nature, serve as convenient building blocks for this purpose. The synthesis of non-proteinogenic amino acid components of antiviral agents could be challenging due to the need for enantiomerically or diastereomerically pure products. Herein, we present a concise review of antiviral agents whose structures are based on amino acids of both natural and unnatural origin. Special attention is paid to the synthetic aspects of non-proteinogenic amino acid components of those agents.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
44
|
Two Inhibitors Against the 3C-Like Proteases of Swine Coronavirus and Feline Coronavirus. Virol Sin 2021; 36:1421-1430. [PMID: 34228261 PMCID: PMC8258280 DOI: 10.1007/s12250-021-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 10/31/2022] Open
Abstract
Coronaviruses (CoVs) are important human and animal pathogens that cause respiratory and gastrointestinal diseases. Porcine epidemic diarrhoea (PED), characterized by severe diarrhoea and vomiting in pigs, is a highly lethal disease caused by porcine epidemic diarrhoea virus (PEDV) and causes substantial losses in the swine industry worldwide. However, currently available commercial drugs have not shown great therapeutic effects. In this study, a fluorescence resonance energy transfer (FRET)-based assay was applied to screen a library containing 1,590 compounds and identified two compounds, 3-(aminocarbonyl)-1-phenylpyridinium and 2,3-dichloronaphthoquinone, that target the 3C-like protease (3CLpro) of PEDV. These compounds are of low molecular weight (MW) and greatly inhibited the activity of this enzyme (IC50 values were obtained in this study). Furthermore, these compounds exhibited antiviral capacity against another member of the CoV family, feline infectious peritonitis virus (FIPV). Here, the inhibitory effects of these compounds against CoVs on Vero cells and feline kidney cells were identified (with EC50 values) and cell viability assays were performed. The results of putative molecular docking models indicate that these compounds, labeled compound 1 and compound 2, contact the conserved active sites (Cys144, Glu165, Gln191) of 3CLpro via hydrogen bonds. These findings provide insight into the antiviral activities of compounds 1 and 2 that may facilitate future research on anti-CoV drugs.
Collapse
|
45
|
Identification of known drugs as potential SARS-CoV-2 Mpro inhibitors using ligand- and structure-based virtual screening. Future Med Chem 2021; 13:1353-1366. [PMID: 34169729 PMCID: PMC8240648 DOI: 10.4155/fmc-2021-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The new coronavirus pandemic has had a significant impact worldwide, and therapeutic treatment for this viral infection is being strongly pursued. Efforts have been undertaken by medicinal chemists to discover molecules or known drugs that may be effective in COVID-19 treatment – in particular, targeting the main protease (Mpro) of the virus. Materials & methods: We have employed an innovative strategy – application of ligand- and structure-based virtual screening – using a special compilation of an approved and diverse set of SARS-CoV-2 crystallographic complexes that was recently published. Results and conclusion: We identified seven drugs with different original indications that might act as potential Mpro inhibitors and may be preferable to other drugs that have been repurposed. These drugs will be experimentally tested to confirm their potential Mpro inhibition and thus their effectiveness against COVID-19.
Collapse
|
46
|
Arutyunova E, Khan MB, Fischer C, Lu J, Lamer T, Vuong W, van Belkum MJ, McKay RT, Tyrrell DL, Vederas JC, Young HS, Lemieux MJ. N-Terminal Finger Stabilizes the S1 Pocket for the Reversible Feline Drug GC376 in the SARS-CoV-2 M pro Dimer. J Mol Biol 2021; 433:167003. [PMID: 33895266 PMCID: PMC8061786 DOI: 10.1016/j.jmb.2021.167003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
The main protease (Mpro, also known as 3CL protease) of SARS-CoV-2 is a high priority drug target in the development of antivirals to combat COVID-19 infections. A feline coronavirus antiviral drug, GC376, has been shown to be effective in inhibiting the SARS-CoV-2 main protease and live virus growth. As this drug moves into clinical trials, further characterization of GC376 with the main protease of coronaviruses is required to gain insight into the drug's properties, such as reversibility and broad specificity. Reversibility is an important factor for therapeutic proteolytic inhibitors to prevent toxicity due to off-target effects. Here we demonstrate that GC376 has nanomolar Ki values with the Mpro from both SARS-CoV-2 and SARS-CoV strains. Restoring enzymatic activity after inhibition by GC376 demonstrates reversible binding with both proteases. In addition, the stability and thermodynamic parameters of both proteases were studied to shed light on physical chemical properties of these viral enzymes, revealing higher stability for SARS-CoV-2 Mpro. The comparison of a new X-ray crystal structure of Mpro from SARS-CoV complexed with GC376 reveals similar molecular mechanism of inhibition compared to SARS-CoV-2 Mpro, and gives insight into the broad specificity properties of this drug. In both structures, we observe domain swapping of the N-termini in the dimer of the Mpro, which facilitates coordination of the drug's P1 position. These results validate that GC376 is a drug with an off-rate suitable for clinical trials.
Collapse
Affiliation(s)
- Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Conrad Fischer
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Jimmy Lu
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Tess Lamer
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Wayne Vuong
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Marco J van Belkum
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Ryan T McKay
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada.
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada.
| |
Collapse
|
47
|
Gossen J, Albani S, Hanke A, Joseph BP, Bergh C, Kuzikov M, Costanzi E, Manelfi C, Storici P, Gribbon P, Beccari AR, Talarico C, Spyrakis F, Lindahl E, Zaliani A, Carloni P, Wade RC, Musiani F, Kokh DB, Rossetti G. A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. ACS Pharmacol Transl Sci 2021; 4:1079-1095. [PMID: 34136757 PMCID: PMC8009102 DOI: 10.1021/acsptsci.0c00215] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/27/2022]
Abstract
The SARS-CoV-2 coronavirus outbreak continues to spread at a rapid rate worldwide. The main protease (Mpro) is an attractive target for anti-COVID-19 agents. Unexpected difficulties have been encountered in the design of specific inhibitors. Here, by analyzing an ensemble of ∼30 000 SARS-CoV-2 Mpro conformations from crystallographic studies and molecular simulations, we show that small structural variations in the binding site dramatically impact ligand binding properties. Hence, traditional druggability indices fail to adequately discriminate between highly and poorly druggable conformations of the binding site. By performing ∼200 virtual screenings of compound libraries on selected protein structures, we redefine the protein's druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding. This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore. The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2 Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen protein targets with malleable binding sites.
Collapse
Affiliation(s)
- Jonas Gossen
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Simone Albani
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Anton Hanke
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
- Institute
of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - Benjamin P. Joseph
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Cathrine Bergh
- Science for
Life Laboratory & Swedish e-Science Research Center, Department
of Applied Physics, KTH Royal Institute
of Technology, Stockholm, 11428, Sweden
| | - Maria Kuzikov
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14-km 163,5 in AREA Science Park, Basovizza,
Trieste, 34149, Italy
| | - Candida Manelfi
- Dompé
Farmaceutici SpA, Via Campo di Pile, L’Aquila, 67100, Italy
| | - Paola Storici
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14-km 163,5 in AREA Science Park, Basovizza,
Trieste, 34149, Italy
| | - Philip Gribbon
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | | | - Carmine Talarico
- Dompé
Farmaceutici SpA, Via Campo di Pile, L’Aquila, 67100, Italy
| | - Francesca Spyrakis
- Department
of Drug Science and Technology, University
of Turin, via Giuria
9, Turin, 10125, Italy
| | - Erik Lindahl
- Science for
Life Laboratory & Swedish e-Science Research Center, Department
of Applied Physics, KTH Royal Institute
of Technology, Stockholm, 11428, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-106 91, Sweden
| | - Andrea Zaliani
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | - Paolo Carloni
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Rebecca C. Wade
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
- Zentrum
für Molekulare Biologie der University Heidelberg, DKFZ-ZMBH
Alliance, INF 282, Heidelberg, 69120, Germany
- Interdisciplinary
Center for Scientific Computing (IWR), Heidelberg
University, INF 368, Heidelberg, 69120, Germany
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Daria B. Kokh
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
| | - Giulia Rossetti
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Jülich
Supercomputing Center (JSC), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Department
of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, 44517, Germany
| |
Collapse
|
48
|
Kandeel M, Yamamoto M, Park BK, Al-Taher A, Watanabe A, Gohda J, Kawaguchi Y, Oh-Hashi K, Kwon HJ, Inoue JI. Discovery of New Potent anti-MERS CoV Fusion Inhibitors. Front Pharmacol 2021; 12:685161. [PMID: 34149429 PMCID: PMC8206564 DOI: 10.3389/fphar.2021.685161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), capable of zoonotic transmission, has been associated with emerging viral pneumonia in humans. In this study, a set of highly potent peptides were designed to prevent MERS-CoV fusion through competition with heptad repeat domain 2 (HR2) at its HR1 binding site. We designed eleven peptides with stronger estimated HR1 binding affinities than the wild-type peptide to prevent viral fusion with the cell membrane. Eight peptides showed strong inhibition of spike-mediated MERS-CoV cell-cell fusion with IC50 values in the nanomolar range (0.25–2.3 µM). Peptides #4–6 inhibited 95–98.3% of MERS-CoV plaque formation. Notably, peptide four showed strong inhibition of MERS-CoV plaques formation with EC50 = 0.302 µM. All peptides demonstrated safe profiles without cytotoxicity up to a concentration of 10 μM, and this cellular safety, combined with their anti-MERS-CoV antiviral activity, indicate all peptides can be regarded as potential promising antiviral agents.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Byoung Kwon Park
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aya Watanabe
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Hyung-Joo Kwon
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Senior Professor Office, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Alamri MA, Tahir Ul Qamar M, Afzal O, Alabbas AB, Riadi Y, Alqahtani SM. Discovery of anti-MERS-CoV small covalent inhibitors through pharmacophore modeling, covalent docking and molecular dynamics simulation. J Mol Liq 2021; 330:115699. [PMID: 33867606 PMCID: PMC8040153 DOI: 10.1016/j.molliq.2021.115699] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Middle east respiratory syndrome coronavirus (MERS-CoV) is a fatal pathogen that poses a serious health risk worldwide and especially in the middle east countries. Targeting the MERS-CoV 3-chymotrypsin-like cysteine protease (3CLpro) with small covalent inhibitors is a significant approach to inhibit replication of the virus. The present work includes generating a pharmacophore model based on the X-ray crystal structures of MERS-CoV 3CLpro in complex with two covalently bound inhibitors. In silico screening of covalent chemical database having 31,642 compounds led to the identification of 378 compounds that fulfils the pharmacophore queries. Lipinski rules of five were then applied to select only compounds with the best physiochemical properties for orally bioavailable drugs. 260 compounds were obtained and subjected to covalent docking-based virtual screening to determine their binding energy scores. The top three candidate compounds, which were shown to adapt similar binding modes as the reported covalent ligands were selected. The mechanism and stability of binding of these compounds were confirmed by 100 ns molecular dynamic simulation followed by MM/PBSA binding free energy calculation. The identified compounds can facilitate the rational design of novel covalent inhibitors of MERS-CoV 3CLpro enzyme as anti-MERS CoV drugs.
Collapse
Affiliation(s)
- Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alhumaidi B Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
50
|
Shi M, Peng B, Li A, Li Z, Song P, Li J, Xu R, Li N. Broad Anti-Viral Capacities of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule and Rational use Against COVID-19 Based on Literature Mining. Front Pharmacol 2021; 12:640782. [PMID: 34054522 PMCID: PMC8160462 DOI: 10.3389/fphar.2021.640782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/14/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) has become a matter of international concern as the disease is spreading exponentially. Statistics showed that infected patients in China who received combined treatment of Traditional Chinese Medicine and modern medicine exhibited lower fatality rate and relatively better clinical outcomes. Both Lian-Hua-Qing-Wen Capsule (LHQWC) and Jin-Hua-Qing-Gan Granule (JHQGG) have been recommended by China Food and Drug Administration for the treatment of COVID-19 and have played a vital role in the prevention of a variety of viral infections. Here, we desired to analyze the broad-spectrum anti-viral capacities of LHQWC and JHQGG, and to compare their pharmacological functions for rational clinical applications. Based on literature mining, we found that both LHQWC and JHQGG were endowed with multiple antiviral activities by both targeting viral life cycle and regulating host immune responses and inflammation. In addition, from literature analyzed, JHQGG is more potent in modulating viral life cycle, whereas LHQWC exhibits better efficacies in regulating host anti-viral responses. When translating into clinical applications, oral administration of LHQWC could be more beneficial for patients with insufficient immune functions or for patients with alleviated symptoms after treatment with JHQGG.
Collapse
Affiliation(s)
- Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - An Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyun Li
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Li
- Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|