1
|
Wu Y, Wong Y, Yeung Y, Lam P, Chau H, Tam W, Zhang Q, Tai WCS, Wong K. Peptide Multifunctionalization via Modular Construction of Trans-AB 2C Porphyrin on Resin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409771. [PMID: 39973068 PMCID: PMC11984925 DOI: 10.1002/advs.202409771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Indexed: 02/21/2025]
Abstract
Peptide multifunctionalization is a crucial technique to develop peptide-based agents for various purposes. Porphyrin-peptide conjugates are a class of popular multifunctional peptides renowned for their multifunctional and multimodal properties. However, the tedious synthetic works for porphyrin building blocks are involved in most previous studies. In this work, a modular solid-phase synthetic approach is reported to construct trans-AB2C porphyrin on peptide chains without presynthesized porphyrin building blocks. The products from this approach, which inherit both functionalities from the porphyrins and the modules employed for constructing porphyrins, show potential in biomedical and biomaterial applications. Furthermore, by extending this synthetic approach, the first example of "resin-to-resin" reaction is reported to link two peptides together along the construction of porphyrin motifs to give porphyrin-peptide conjugates with two different peptide chains.
Collapse
Affiliation(s)
- Yue Wu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Yuen‐Ting Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Yik‐Hoi Yeung
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Pak‐Lun Lam
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Ho‐Fai Chau
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Wing‐Sze Tam
- Department of ChemistryHong Kong Baptist University224 Waterloo Rd, Kowloon TongHong KongSARChina
| | - Qian Zhang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - William C. S. Tai
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Ka‐Leung Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| |
Collapse
|
2
|
Gouws CA, Naicker T, de la Torre BG, Albericio F, Duvenhage J, Kruger HG, Marjanovic-Painter B, Mdanda S, Zeevaart JR, Ebenhan T, Govender T. 68Ga Radiolabeling of NODASA-Functionalized Phage Display-Derived Peptides for Prospective Assessment as Tuberculosis-Specific PET Radiotracers. J Labelled Comp Radiopharm 2024; 67:360-374. [PMID: 39118205 DOI: 10.1002/jlcr.4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
This research presents the development of positron emission tomography (PET) radiotracers for detecting Mycobacterium tuberculosis (MTB) for the diagnosis and monitoring of tuberculosis. Two phage display-derived peptides with proven selective binding to MTB were identified for development into PET radiopharmaceuticals: H8 (linear peptide) and PH1 (cyclic peptide). We sought to functionalize H8/PH1 with NODASA, a bifunctional chelator that allows complexation of PET-compatible radiometals such as gallium-68. Herein, we report on the chelator functionalization, optimized radiosynthesis, and assessment of the radiopharmaceutical properties of [68Ga]Ga-NODASA-H8 and [68Ga]Ga-NODASA-PH1. Robust radiolabeling was achieved using the established routine method, indicating consistent production of a radiochemically pure product (RCP ≥ 99.6%). For respective [68Ga]Ga-NODASA-H8 and [68Ga]Ga-NODASA-PH1, relatively high levels of decay-corrected radiochemical yield (91.2% ± 2.3%, 86.7% ± 4.0%) and apparent molar activity (Am, 3.9 ± 0.8 and 34.0 ± 5.3 GBq/μmol) were reliably achieved within 42 min, suitable for imaging purposes. Notably, [68Ga]Ga-NODASA-PH1 remained stable in blood plasma for up to 2 h, while [68Ga]Ga-NODASA-H8 degraded within 30 min. For both 68Ga peptides, minimal whole-blood cell binding and plasma protein binding were observed, indicating a favorable pharmaceutical behavior. [68Ga]Ga-NODASA-PH1 is a promising candidate for further in vitro/in vivo evaluation as a tuberculosis-specific infection imaging agent.
Collapse
Affiliation(s)
- Christiaan A Gouws
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Janie Duvenhage
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Sipho Mdanda
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
| | - Jan R Zeevaart
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Radiochemistry, the South African Nuclear Energy Corporation (Necsa) SOC Ltd, Pelindaba, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Thomas Ebenhan
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
3
|
Failla M, Floresta G, Abbate V. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Med Chem 2023; 14:592-623. [PMID: 37122545 PMCID: PMC10131587 DOI: 10.1039/d2md00397j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, and positron emission tomography (PET) are extensively available and routinely used for disease diagnosis and treatment. Peptide-based targeting PET probes are usually small peptides with high affinity and specificity to specific cellular and tissue targets opportunely engineered for acting as PET probes. For instance, either the radioisotope (e.g., 18F, 11C) can be covalently linked to the peptide-probe or another ligand that strongly complexes the radioisotope (e.g., 64Cu, 68Ga) through multiple coordinative bonds can be chemically conjugated to the peptide delivery moiety. The main advantages of these probes are that they are cheaper than classical antibody-based PET tracers and can be efficiently chemically modified to be radiolabelled with virtually any radionuclide making them very attractive for clinical use. The goal of this review is to report and summarize recent technologies in peptide PET-based molecular probes synthesis and radiolabelling with the most used radioisotopes in 2022.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Giuseppe Floresta
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
- Department of Drug and Health Sciences, University of Catania Catania Italy
| | - Vincenzo Abbate
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
4
|
Development and Evaluation of a Peptide Heterodimeric Tracer Targeting CXCR4 and Integrin α vβ 3 for Pancreatic Cancer Imaging. Pharmaceutics 2022; 14:pharmaceutics14091791. [PMID: 36145541 PMCID: PMC9503769 DOI: 10.3390/pharmaceutics14091791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, pancreatic cancer is still a formidable disease to diagnose. The CXC chemokine receptor 4 (CXCR4) and integrin αvβ3 play important roles in tumor development, progression, invasion, and metastasis, which are overexpressed in many types of human cancers. In this study, we developed a heterodimeric tracer 68Ga-yG5-RGD targeting both CXCR4 and integrin αvβ3, and evaluated its feasibility and utility in PET imaging of pancreatic cancer. The 68Ga-yG5-RGD could accumulate in CXCR4/integrin αvβ3 positive BxPC3 tumors in a high concentration and was much higher than that of 68Ga-yG5 (p < 0.001) and 68Ga-RGD (p < 0.001). No increased uptake of 68Ga-yG5-RGD was found in MX-1 tumors (CXCR4/integrin αvβ3, negative). In addition, the uptake of 68Ga-yG5-RGD in BxPC3 was significantly blocked by excess amounts of AMD3100 (an FDA-approved CXCR4 antagonist) and/or unlabeled RGD (p < 0.001), confirming its dual-receptor targeting properties. The ex vivo biodistribution and immunohistochemical results were consistent with the in vivo imaging results. The dual-receptor targeting strategy achieved improved tumor-targeting efficiency and prolonged tumor retention in BxPC3 tumors, suggesting 68Ga-yG5-RGD is a promising tracer for the noninvasive detection of tumors that express either CXCR4 or integrin αvβ3 or both, and therefore may have good prospects for clinical translation.
Collapse
|
5
|
Bruno S, Margiotta M, Cozzolino M, Bianchini P, Diaspro A, Cavanna L, Tognolini M, Abbruzzetti S, Viappiani C. A photosensitizing fusion protein with targeting capabilities. Biomol Concepts 2022; 13:175-182. [DOI: 10.1515/bmc-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marilena Margiotta
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marco Cozzolino
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Paolo Bianchini
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Alberto Diaspro
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza , Piacenza , Italy
| | - Massimiliano Tognolini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| |
Collapse
|
6
|
Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem 2022; 65:3685-3705. [DOI: 10.1021/acs.jmedchem.1c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Feng Feng
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Yuan Li
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceuticals Science College, Huaian 223005, People’s Republic of China
| | - Xu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ying Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
7
|
Lindner S, Rudolf H, Palumbo G, Oos R, Antons M, Hübner R, Bartenstein P, Schirrmacher R, Wängler B, Wängler C. Are heterobivalent GRPR- and VPAC 1R-bispecific radiopeptides suitable for efficient in vivo tumor imaging of prostate carcinomas? Bioorg Med Chem Lett 2021; 48:128241. [PMID: 34217827 DOI: 10.1016/j.bmcl.2021.128241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Receptor-specific peptides labeled with positron emitters play an important role in the clinical imaging of several malignancies by positron emission tomography (PET). Radiolabeled heterobivalent bispecific peptidic ligands (HBPLs) can target more than one receptor type and by this - besides exhibiting other advantages - increase tumor imaging sensitivity. In the present study, we show the initial in vivo evaluation of the most potent heterobivalent gastrin-releasing peptide receptor (GRPR)- and vasoactive intestinal peptide receptor subtype 1 (VPAC1R)-bispecific radiotracer and determined its tumor visualization potential via PET/CT imaging. For this purpose, the most potent described HBPL was synthesized together with its partly scrambled heterobivalent monospecific homologs and its monovalent counterparts. The agents were efficiently labeled with 68Ga3+ and evaluated in an initial PET/CT tumor imaging study in a human prostate carcinoma (PCa) xenograft rat tumor model established for this purpose. None of the three 68Ga-HBPLs enabled a clear tumor visualization and a considerably higher involvement in receptor-mediated uptake was found for the GRPR-binding part of the molecule than for the VPAC1R-binding one. Of the monovalent radiotracers, only [68Ga]Ga-NODA-GA-PESIN could efficiently delineate the tumor, confirming the results. Thus, this work sets the direction for future developments in the field of GRPR- and VPAC1R-bispecific radioligands, which should be based on other VPAC1R-specific peptides than PACAP-27.
Collapse
Affiliation(s)
- Simon Lindner
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Henning Rudolf
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Giovanna Palumbo
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Melissa Antons
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
8
|
Cheng X, Hübner R, von Kiedrowski V, Fricker G, Schirrmacher R, Wängler C, Wängler B. Design, Synthesis, In Vitro and In Vivo Evaluation of Heterobivalent SiFA lin-Modified Peptidic Radioligands Targeting Both Integrin α vβ 3 and the MC1 Receptor-Suitable for the Specific Visualization of Melanomas? Pharmaceuticals (Basel) 2021; 14:ph14060547. [PMID: 34200477 PMCID: PMC8228600 DOI: 10.3390/ph14060547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Combining two peptides addressing two different receptors to a heterobivalent peptidic ligand (HBPL) is thought to enable an improved tumor-targeting sensitivity and thus tumor visualization, compared to monovalent peptide ligands. In the case of melanoma, the Melanocortin-1 receptor (MC1R), which is stably overexpressed in the majority of primary malignant melanomas, and integrin αvβ3, which is involved in lymph node metastasis and therefore has an important role in the transition from local to metastatic disease, are important target receptors. Thus, if a radiolabeled HBPL could be developed that was able to bind to both receptor types, the early diagnosis and correct staging of the disease would be significantly increased. Here, we report on the design, synthesis, radiolabeling and in vitro and in vivo testing of different SiFAlin-modified HBPLs (SiFA = silicon fluoride acceptor), consisting of an MC1R-targeting (GG-Nle-c(DHfRWK)) and an integrin αvβ3-affine peptide (c(RGDfK)), being connected by a symmetrically branching framework including linkers of differing length and composition. Kit-like 18F-radiolabeling of the HBPLs 1–6 provided the labeled products [18F]1–[18F]6 in radiochemical yields of 27–50%, radiochemical purities of ≥95% and non-optimized molar activities of 17–51 GBq/μmol within short preparation times of 25 min. Besides the evaluation of radiotracers regarding logD(7.4) and stability in human serum, the receptor affinities of the HBPLs were investigated in vitro on cell lines overexpressing integrin αvβ3 (U87MG cells) or the MC1R (B16F10). Based on these results, the most promising compounds [18F]2, showing the highest affinity to both target receptors (IC50 (B16F10) = 0.99 ± 0.11 nM, IC50 (U87MG) = 1300 ± 288 nM), and [18F]4, exhibiting the highest hydrophilicity (logD(7.4) = −1.39 ± 0.03), were further investigated in vivo and ex vivo in a xenograft mouse model bearing both tumors. For both HBPLs, clear visualization of B16F10, as well as U87MG tumors, was feasible. Blocking studies using the respective monospecific peptides demonstrated both peptide binders of the HBPLs contributing to tumor uptake. Despite the somewhat lower target receptor affinities (IC50 (B16F10) = 6.00 ± 0.47 nM and IC50 (U87MG) = 2034 ± 323 nM) of [18F]4, the tracer showed higher absolute tumor uptakes ([18F]4: 2.58 ± 0.86% ID/g in B16F10 tumors and 3.92 ± 1.31% ID/g in U87MG tumors; [18F]2: 2.32 ± 0.49% ID/g in B16F10 tumors and 2.33 ± 0.46% ID/g in U87MG tumors) as well as higher tumor-to-background ratios than [18F]2. Thus, [18F]4 demonstrates to be a highly potent radiotracer for the sensitive and bispecific imaging of malignant melanoma by PET/CT imaging and impressively illustrates the suitability of the underlying concept to develop heterobivalent integrin αvβ3- and MC1R-bispecific radioligands for the sensitive and specific imaging of malignant melanoma by PET/CT.
Collapse
Affiliation(s)
- Xia Cheng
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany; (X.C.); (V.v.K.)
| | - Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany;
| | - Valeska von Kiedrowski
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany; (X.C.); (V.v.K.)
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany;
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada;
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany;
- Correspondence: (C.W.); (B.W.)
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany; (X.C.); (V.v.K.)
- Correspondence: (C.W.); (B.W.)
| |
Collapse
|
9
|
Rivera-Bravo B, Ramírez-Nava G, Mendoza-Figueroa MJ, Ocampo-García B, Ferro-Flores G, Ávila-Rodríguez MA, Santos-Cuevas C. [ 68Ga]Ga-iPSMA-Lys 3-Bombesin: Biokinetics, dosimetry and first patient PET/CT imaging. Nucl Med Biol 2021; 96-97:54-60. [PMID: 33831746 DOI: 10.1016/j.nucmedbio.2021.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND The prostate-specific membrane antigen (PSMA) and the gastrin-releasing peptide receptor (GRPR) are overexpressed in prostate cancer (PCa). In preclinical studies, the iPSMA-Lys3-Bombesin (iPSMA-BN) heterodimeric ligand has shown a suitable affinity for PSMA and GRPR. This research aimed to assess the biokinetics and radiation dosimetry of [68Ga]Ga-iPSMA-BN in four healthy volunteers based on biodistribution data obtained from whole-body PET/CT studies, as well as to visualize the [68Ga]Ga-iPSMA-BN tumor uptake in a patient with PCa. METHODS PET/CT images acquired at 5 min, 0.5, 1, and 2 h after radiotracer administration (124.5 ± 2.1 MBq) were corrected for attenuation, scattering, dead-time, and decay. The activity in the segmented volumes of interest (VOIs) in each source organ at different times was adjusted to mono- and bi-exponential biokinetic models (A(t)VOI), from which the total disintegrations (N) were calculated to assess the internal radiation doses by using the OLINDA V1.1 code. RESULTS Images from the patient showed an evident uptake by the metastasis (SUVmax of 4.7) and by the organs expressing GRPR (pancreas) and PSMA (salivary glands). The average effective dose was 2.70 ± 0.05 mSv, which was like those known for most of the 68Ga studies, making [68Ga]Ga-iPSMA-BN a promising dual-target PET imaging radiotracer for PCa. CONCLUSIONS [68Ga]Ga-iPSMA-BN, capable of detecting both PSMA and GRPR with suitable biokinetics and dosimetric patterns, could be a potential complementary diagnostic tool for the improvement of prostate cancer PET imaging.
Collapse
Affiliation(s)
- Belén Rivera-Bravo
- Unidad PET/CT, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Gerardo Ramírez-Nava
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico State, Mexico; Departamento de Posgrado, UPIBI-Instituto Politécnico Nacional, Mexico City 07340, Mexico
| | - Mónica J Mendoza-Figueroa
- Unidad de Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico State, Mexico
| | - Guillermina Ferro-Flores
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico State, Mexico.
| | - Miguel A Ávila-Rodríguez
- Unidad de Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Clara Santos-Cuevas
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico State, Mexico.
| |
Collapse
|
10
|
Mikulová MB, Mikuš P. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals (Basel) 2021; 14:167. [PMID: 33669938 PMCID: PMC7924883 DOI: 10.3390/ph14020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Radiolabeled biomolecules targeted at tumor-specific enzymes, receptors, and transporters in cancer cells represent an intensively investigated and promising class of molecular tools for the cancer diagnosis and therapy. High specificity of such biomolecules is a prerequisite for the treatment with a lower burden to normal cells and for the effective and targeted imaging and diagnosis. Undoubtedly, early detection is a key factor in efficient dealing with many severe tumor types. This review provides an overview and critical evaluation of novel approaches in the designing of target-specific probes labeled with metal radionuclides for the diagnosis of most common death-causing cancers, published mainly within the last three years. Advances are discussed such traditional peptide radiolabeling approaches, and click and nanoparticle chemistry. The progress of radiolabeled peptide based ligands as potential radiopharmaceuticals is illustrated via novel structure and application studies, showing how the molecular modifications reflect their binding selectivity to significant onco-receptors, toxicity, and, by that, practical utilization. The most impressive outputs in categories of newly developed structures, as well as imaging and diagnosis approaches, and the most intensively studied oncological diseases in this context, are emphasized in order to show future perspectives of radiometal labeled amino acid-based compounds in nuclear medicine.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
- Toxicological and Antidoping Center (TAC), Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
11
|
Li X, Cai H, Wu X, Li L, Wu H, Tian R. New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Front Chem 2020; 8:583309. [PMID: 33335885 PMCID: PMC7736158 DOI: 10.3389/fchem.2020.583309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
The high incidence of prostate cancer (PCa) increases the need for progress in its diagnosis, staging, and precise treatment. The overexpression of tumor-specific receptors for peptides in human cancer cells, such as gastrin-releasing peptide receptor, natriuretic peptide receptor, and somatostatin receptor, has indicated the ideal molecular basis for targeted imaging and therapy. Targeting these receptors using radiolabeled peptides and analogs have been an essential topic on the current forefront of PCa studies. Radiolabeled peptides have been used to target receptors for molecular imaging in human PCa with high affinity and specificity. The radiolabeled peptides enable optimal quick elimination from blood and normal tissues, producing high contrast for positron emission computed tomography and single-photon emission computed tomography imaging with high tumor-to-normal tissue uptake ratios. Owing to their successful application in visualization, peptide derivatives with therapeutic radionuclides for peptide receptor radionuclide therapy in PCa have been explored in recent years. These developments offer the promise of personalized, molecular medicine for individual patients. Hence, we review the preclinical and clinical literature in the past 20 years and focus on the newer developments of peptide-based radiopharmaceuticals for the imaging and therapy of PCa.
Collapse
Affiliation(s)
- Xin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Hübner R, Cheng X, Wängler B, Wängler C. Functional Hybrid Molecules for the Visualization of Cancer: PESIN-Homodimers Combined with Multimodal Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging: Suited for Tracking of GRPR-Positive Malignant Tissue*. Chemistry 2020; 26:16349-16356. [PMID: 32618007 PMCID: PMC7756681 DOI: 10.1002/chem.202002386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/16/2022]
Abstract
We describe multimodal imaging probes for gastrin-releasing peptide receptor (GRPR)-specific targeting suited for positron emission tomography and optical imaging (PET/OI), consisting of PESIN (PEG3 -BBN7-14 ) dimers connected to multimodal imaging subunits. These multimodal agents comprise a fluorescent dye for OI and the chelator ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) (NODA-GA) for PET radiometal isotope labelling. Special focus was put on the influence of the used dyes on the properties of the whole bioconjugates. For this, several compounds with different fluorescent dyes and non-dye carrying subunits were synthesized and investigated. As fluorescent dyes, dansyl, NBD, derivatives of fluorescein, coumarin and rhodamine as well as three pyrilium-based dyes were employed. Considerable influence of the charge of the colored unit on hydrophilicity as well as in vitro target receptor binding was observed and classified. High radiochemical yields and purities were found during radiolabeling of the multimodal imaging subunits as well as their GRPR-specific bioconjugates with 68 Ga. Examinations of the photophysical properties of both molecule species displayed no loss or alteration of fluorescence characteristics.
Collapse
Affiliation(s)
- Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Xia Cheng
- Molecular Imaging and RadiochemistryDepartment of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Björn Wängler
- Molecular Imaging and RadiochemistryDepartment of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| |
Collapse
|
13
|
Current State of Radiolabeled Heterobivalent Peptidic Ligands in Tumor Imaging and Therapy. Pharmaceuticals (Basel) 2020; 13:ph13080173. [PMID: 32751666 PMCID: PMC7465997 DOI: 10.3390/ph13080173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past few years, an approach emerged that combines different receptor-specific peptide radioligands able to bind different target structures on tumor cells concomitantly or separately. The reason for the growing interest in this special field of radiopharmaceutical development is rooted in the fact that bispecific peptide heterodimers can exhibit a strongly increased target cell avidity and specificity compared to their corresponding monospecific counterparts by being able to bind to two different target structures that are overexpressed on the cell surface of several malignancies. This increase of avidity is most pronounced in the case of concomitant binding of both peptides to their respective targets but is also observed in cases of heterogeneously expressed receptors within a tumor entity. Furthermore, the application of a radiolabeled heterobivalent agent can solve the ubiquitous problem of limited tumor visualization sensitivity caused by differential receptor expression on different tumor lesions. In this article, the concept of heterobivalent targeting and the general advantages of using radiolabeled bispecific peptidic ligands for tumor imaging or therapy as well as the influence of molecular design and the receptors on the tumor cell surface are explained, and an overview is given of the radiolabeled heterobivalent peptides described thus far.
Collapse
|
14
|
Brandt M, Cardinale J, Giammei C, Guarrochena X, Happl B, Jouini N, Mindt TL. Mini-review: Targeted radiopharmaceuticals incorporating reversible, low molecular weight albumin binders. Nucl Med Biol 2019; 70:46-52. [PMID: 30831342 DOI: 10.1016/j.nucmedbio.2019.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The combination of low molecular weight, reversible human serum albumin (HSA) binders with targeted radiopharmaceuticals in dual-targeted radioconjugates holds great promise, in particular for endoradiotherapy. Attachment of HSA-binders to radiopharmaceuticals extends their blood circulation time and results in an enhanced tumour uptake as well as often in an improved pharmacokinetic profile. In this mini-review, an overview of currently pursued approaches of this novel strategy is provided.
Collapse
Affiliation(s)
- Marie Brandt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Jens Cardinale
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Carolina Giammei
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Xabier Guarrochena
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Happl
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Nedra Jouini
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Mendoza-Figueroa MJ, Escudero-Castellanos A, Ramirez-Nava GJ, Ocampo-García BE, Santos-Cuevas CL, Ferro-Flores G, Pedraza-Lopez M, Avila-Rodriguez MA. Preparation and preclinical evaluation of 68Ga-iPSMA-BN as a potential heterodimeric radiotracer for PET-imaging of prostate cancer. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6285-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Vall-Sagarra A, Litau S, Decristoforo C, Wängler B, Schirrmacher R, Fricker G, Wängler C. Design, Synthesis, In Vitro, and Initial In Vivo Evaluation of Heterobivalent Peptidic Ligands Targeting Both NPY(Y₁)- and GRP-Receptors-An Improvement for Breast Cancer Imaging? Pharmaceuticals (Basel) 2018; 11:ph11030065. [PMID: 29973529 PMCID: PMC6161111 DOI: 10.3390/ph11030065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022] Open
Abstract
Heterobivalent peptidic ligands (HBPLs), designed to address two different receptors independently, are highly promising tumor imaging agents. For example, breast cancer has been shown to concomitantly and complementarily overexpress the neuropeptide Y receptor subtype 1 (NPY(Y1)R) as well as the gastrin-releasing peptide receptor (GRPR). Thus, radiolabeled HBPLs being able to bind these two receptors should exhibit an improved tumor targeting efficiency compared to monospecific ligands. We developed here such bispecific HBPLs and radiolabeled them with 68Ga, achieving high radiochemical yields, purities, and molar activities. We evaluated the HBPLs and their monospecific reference peptides in vitro regarding stability and uptake into different breast cancer cell lines and found that the 68Ga-HBPLs were efficiently taken up via the GRPR. We also performed in vivo PET/CT imaging and ex vivo biodistribution studies in T-47D tumor-bearing mice for the most promising 68Ga-HBPL and compared the results to those obtained for its scrambled analogs. The tumors could easily be visualized by the newly developed 68Ga-HBPL and considerably higher tumor uptakes and tumor-to-background ratios were obtained compared to the scrambled analogs in and ex vivo. These results demonstrate the general feasibility of the approach to use bispecific radioligands for in vivo imaging of breast cancer.
Collapse
Affiliation(s)
- Alicia Vall-Sagarra
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Shanna Litau
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Clemens Decristoforo
- Department of Nuclear Medicine, University Hospital Innsbruck, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ralf Schirrmacher
- Department of Oncology, Division Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany.
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|