1
|
Hou J, Chen G, Hao X, Xu J, Waterhouse GIN, Zhang Z, Yu L. Coral-Inspired Zinc Acrylate Polymer Utilizing Coumarin as the Fluorescent Unit for Marine Antifouling. Biomacromolecules 2025; 26:1799-1815. [PMID: 39960235 DOI: 10.1021/acs.biomac.4c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The need for low-cost and effective antifouling solutions drives innovation in the fields of chemistry, materials science, and biology. In this work, guided by the antifouling strategies used by fluorescent corals, a series of fluorescent zinc acrylate polymer coatings containing coumarin units (ZAR-coumarin) was successfully prepared. The ZAR-coumarin coatings demonstrated excellent antifouling properties due to the synergistic action of multiple antifouling mechanisms, including fluorescent antifouling, natural bactericidal activity, and self-polishing surface renewal (due to ester group (-COO-Zn-OOC-) cleavage). Compared with zinc acrylate coatings without coumarin units (ZAR), the introduction of coumarin units significantly improved the inhibition efficiency for both bacteria and algae. In marine environment tests, the ZAR-AMCO-1, ZAR-ADMCO-1, and ZAR-CAMCO-1 coatings containing optimized amounts of different types of coumarin units maintained good antifouling properties over a 160-day field test period. This research presents an innovative approach to creating marine antifouling coatings.
Collapse
Affiliation(s)
- Jianwei Hou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Guobo Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xinghai Hao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiali Xu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | | | - Zhiming Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China; Sanya Oceanographic Laboratory, Sanya 572024, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China; Sanya Oceanographic Laboratory, Sanya 572024, China
| |
Collapse
|
2
|
de Andrade Borges A, Ouverney G, Arruda ATS, Ribeiro AV, Ribeiro RCB, de Souza AS, da Fonseca ACC, de Queiroz LN, de Almeida ECP, Pontes B, Rabelo VWH, Ferreira V, Abreu PA, de Carvalho da Silva F, da Silva Magalhaes Forezi L, Robbs BK. Determination of Inhibitory Effect of PKM2 Enzyme and Antitumoral Activity of Novel Coumarin-naphthoquinone Hybrids. Curr Med Chem 2025; 32:359-379. [PMID: 38877863 DOI: 10.2174/0109298673298471240605072658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 02/19/2025]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) represents the primary form of oral cancer, posing a significant global health threat. The existing chemotherapy options are accompanied by notable side effects impacting patient treatment adherence. Consequently, the exploration and development of novel substances with enhanced anticancer effects and fewer side effects have become pivotal in the realms of biological and chemical science. OBJECTIVE This work presents the pioneering examples of naphthoquinone-coumarin hybrids as a new category of highly effective cytotoxic substances targeting oral squamous cell carcinoma (OSCC). METHODS Given the significance of both naphthoquinones and coumarins as essential pharmacophores/ privileged structures in the quest for anticancer compounds, this study focused on the synthesis and evaluation of novel naphthoquinones/coumarin hybrids against oral squamous cell carcinoma. RESULTS By several in vitro, in silico, and in vivo approaches, we demonstrated that compound 6e was highly cytotoxic against OSCC cells and several other cancer cell types and was more selective than current chemotherapeutic drugs (carboplatin) and the naphthoquinone lapachol. Furthermore, compound 6e was non-hemolytic and tolerated in vivo at 50 mg/kg with an LD50 of 62.5 mg/kg. Furthermore, compound 6e did not induce apoptosis and cell cycle arrest but led to intracellular vesicle formation with LC3 aggregation in autophagosomes, suggesting an autophagic cell death. Additionally, 6e had a high-affinity potential for PKM2 protein, higher than the known ligands, such as lapachol or shikonin, and was able to inhibit this enzyme activity in vitro. CONCLUSION We assert that compound 6e shows promise as a potential lead for a novel chemotherapeutic drug targeting OSCC, with potential applicability to other cancer types.
Collapse
Grants
- 1A 301873/2019-4, 301873/2019-4 CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico
- E-26/010.101106/2018, E-26/202, 787/2019, E-26/10.002250/2019, E-26/210.085/2022, E-26/010.001318/2019, E-26/211.343/2021, E-26/210.068/2021, E-26/203.191/2017-JCNE, E-26 /202.800/2017-CNE, E-26/010.101106/2018, E-26/200 .870/2021-CNE, E-26/201.369/2021-JCNE, E-26/010/ 001687/2015, E-26/202.787/2019, E-26/210.514/2019, E-26/10.002250/2019, E-26/211.343/2021, E-26/210. 085/2022, E-26/210.068/2021 FAPERJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro
- 001 Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES)
Collapse
Affiliation(s)
- Amanda de Andrade Borges
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Gabriel Ouverney
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Afonso Thales Sousa Arruda
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Amanda Vieira Ribeiro
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Ruan Carlos Busquet Ribeiro
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Acacio Silva de Souza
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Programa de Pós-graduação em Odontologia, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Lucas Nicolau de Queiroz
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Elan Cardozo Paes de Almeida
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CEP, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Vitor Won-Held Rabelo
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, CEP , Macaé, 27965-045, RJ, Brazil
| | - Vitor Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, CEP , Macaé, 27965-045, RJ, Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Luana da Silva Magalhaes Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Bruno Kaufmann Robbs
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| |
Collapse
|
3
|
Zhang Y, Xu Z, Dou M, Xu Y, Fu X, Zhu F, Ye H, Zhang J, Feng G. Design, Synthesis, and Bioactivity of Novel Coumarin-3-carboxylic Acid Derivatives Containing a Thioether Quinoline Moiety. ACS OMEGA 2024; 9:50695-50704. [PMID: 39741815 PMCID: PMC11683614 DOI: 10.1021/acsomega.4c08627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
A series of coumarin-3-carboxylic acid derivatives containing a thioether quinoline moiety were designed and synthesized. The structures of these compounds were determined using 1H NMR, 13C NMR, and HRMS. The antibacterial activity of the compounds was evaluated against Xanthomonas oryzae pv oryzae (Xoo), Ralstonia solanacearum (Rs), and Acidovorax citrulli (Aac). The results showed that most of the compounds exhibited significant antibacterial activity against these pathogens. Particularly, compound A9 demonstrated potent activity against Xoo and Aac, with EC50 values of 11.05 and 8.05 μg/mL respectively. In addition, A9 indicated strong protective and curative effects against Aac in vivo, with efficacy rates of 61.50 and 54.86%, respectively, surpassing those of the positive control thiodiazole copper. The scanning electron microscopy observations revealed that treatment of Aac cells with A9 at a concentration of 2EC50 resulted in a curved and sunken cell morphology, along with destroyed cell membrane integrity. Additionally, the motility and exopolysaccharide production of Aac were inhibited, and biofilm formation was prevented. Consequently, these newly developed derivatives of coumarin-3-carboxylic acid, incorporating the thioether quinoline moiety, hold promise as potential templates for the development of innovative antibacterial agents.
Collapse
Affiliation(s)
- Yuanquan Zhang
- National
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Zhiyuan Xu
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Minxiang Dou
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Yan Xu
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Xin Fu
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Fadi Zhu
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Huochun Ye
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Jing Zhang
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Gang Feng
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| |
Collapse
|
4
|
Moussa Z, Ramanathan M, Alharmoozi SM, Alkaabi SAS, Al Aryani SHM, Ahmed SA, Al-Masri HT. Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon 2024; 10:e38894. [PMID: 39492900 PMCID: PMC11531639 DOI: 10.1016/j.heliyon.2024.e38894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Aza-heterocyclic scaffolds are privileged cores in the composition of their potential therapeutic profiles and versatile synthetic intermediates. Pyrazole is one of the frequently studied compounds of "azole" family and consists of nitrogen in a 1,2 linking sequence. These motifs possess a wide-spectrum of applications in the field of pharmaceuticals, agrochemicals, polymer chemistry, cosmetics, food industries and more. In addition, functionalized pyrazole derivatives are frequently used as ligands in coordination chemistry and metal-catalysed reactions. As exemplified by numerous recent reports, pyrazoles are highly promising pharmacophores with excellent therapeutic applications. Owing to their aromaticity, the ring structures have many reactive positions, where electrophilic, nucleophilic, alkylation and oxidative reactions might occur. The structural adroitness and diversity of pyrazole cores further emanated numerous fused bicyclic skeletons with various biological applications. In this review, we highlight the recent synthetic methods developed for the preparation of functionalized pyrazole derivatives (From 2017 to present). In addition, we have also covered the notable biological activities (anti-cancer, anti-inflammatory, anti-bacterial and anti-viral) of this ubiquitous core. Herein, we emphasised the synthesis of pyrazoles from variety of precursors such as, alkynes, α,β-unsaturated carbonyl compounds, diazo reagents, nitrile imines, diazonium salts, 1,3-dicarbonyl compounds and etc. Moreover, the recent synthetic methodologies focusing on the preparation of pyrazolines and pyrazolones and variously fused-pyrazoles are also included. Authors expect this review could significantly help the researchers in finding elegant novel tools to synthesize pyrazole skeletons and expand their biological evaluation.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shaikha Mohammad Alharmoozi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shahad Ali Saeed Alkaabi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | | | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| |
Collapse
|
5
|
Pakeeraiah K, Swain PP, Sahoo A, Panda PK, Mahapatra M, Mal S, Sahoo RK, Sahu PK, Paidesetty SK. Multimodal antibacterial potency of newly designed and synthesized Schiff's/Mannich based coumarin derivatives: potential inhibitors of bacterial DNA gyrase and biofilm production. RSC Adv 2024; 14:31633-31647. [PMID: 39376521 PMCID: PMC11457008 DOI: 10.1039/d4ra05756b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
The briskened urge to develop potential antibacterial candidates against multidrug-resistant pathogens has motivated the present research study. Herein, newly synthesized coumarin derivatives with azomethine and amino-methylated as the functional groups have been focused on their antibacterial efficacy. The study proposed two distinct series: 3-acetyl substituted coumarin derivatives, followed by the Schiff base approach (5a-5i), and formaldehyde-secondary cyclic amine-based derivatives (7a-7g), using the Mannich base approach, further the compounds have been confirmed through various spectral studies. Further, target-specific binding affinity has been affirmed via in silico study. In vitro antibacterial study suggested compounds 5d and 5f to be most effective against S. aureus and multidrug-resistant K. pneumoniae, with MIC values of 8 and 16 μg mL-1. Among them, the compounds 5d and 5f showed excellent binding scores against different bacterial gyrase compared to the standard novobiocin. Based on RMRS, RMSF, Rg, and H-bond plots, MD simulation study at 100 ns also suggested better stability of 5d inside gyraseB of E. coli than the complex of E. coli-GyrB-novobiocin. The toxicity and pharmacokinetic profiles showed favorable drug-likeness. Overall, systematic in vitro and in silico assessment suggested that multimodal antibacterial derivatives 5d and 5f strongly inhibit both bacterial DNA gyrase and biofilm formation of drug-resistant pathogens, suggesting their potency in mainstream antibacterial therapy.
Collapse
Affiliation(s)
- Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Pragyan Paramita Swain
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Alaka Sahoo
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
- Research and Development Division, Salixiras Research Private Limited Bhubaneswar Odisha India
| | - Preetesh Kumar Panda
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Pratap Kumar Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| |
Collapse
|
6
|
Mohamed Ahmed MS, Alfraiji RA, Attaby FA, Abdallah ZA. Synthesis, Antimicrobial Evaluation, DFT, in Silico-Docking, and ADMET Investigations of Novel Chromene-Based 2,4-Thiazolidinediones. Chem Biodivers 2024; 21:e202401095. [PMID: 39007423 DOI: 10.1002/cbdv.202401095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Three series of thiazolidinedione (TZD) derivatives (5a-f, 7a-f, and 9a-f) were prepared efficiently. Afterward, the synthesized candidates' antibacterial efficacy against both gram-positive and gram-negative bacteria was assessed. Compounds 7c, 7d, and 7f had values comparable to that of ampicillin, a reference antibiotic, whereas compounds 5c, 5d, and 7e exhibited the greatest values (23.0±1.0, 27.7±0.6, and 20.0±1.0, respectively) against gram-positive bacteria (Staphylococcus aureus). The optimal structure of the produced molecules was determined by DFT computing. To assess the binding energy and elucidate the interaction between the potential candidates and different proteins, in silico docking is employed. ADMET analysis to assess the synthesized compounds' toxicity, metabolism, excretion, distribution, and absorption.
Collapse
Affiliation(s)
| | - Redhab Aj Alfraiji
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Chemistry Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Fawzy A Attaby
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Zeinab A Abdallah
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
7
|
Majhi A, Venkateswarlu K, Sasikumar P. Coumarin Based Fluorescent Probe for Detecting Heavy Metal Ions. J Fluoresc 2024; 34:1453-1483. [PMID: 37581754 DOI: 10.1007/s10895-023-03372-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Heavy metals such as Iron, Copper, and Zinc are micro-essential trace metal and involve animportant biological role, but it quickly turns toxic at exceeding the permissible limit, causing gastrointestinal irritation, liver, bone, and kidney damage, as well as disorders including Wilson's, Parkinson's, and Alzheimer's. It is important to detect the metal ions as well as their concentration quickly and affordable cost using organic probes. Among the organic probes,the coumarin fluorescent probe shows a very prominent candidate with heavy metal ions. Therefore, in the present review, we reviewed the very recent literature the identify the heavy metals using modified coumarin fluorescent probes. Readers will get information quickly about the method of preparation of modified coumarin core and their use as fluorescent probes with heavy metals using absorption and emission spectroscopic methods along with the probable mechanistic pathway of detection.
Collapse
Affiliation(s)
- Anjoy Majhi
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Katta Venkateswarlu
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry, Yogi Vemana University, Kadapa, 516005, India
| | - Palani Sasikumar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
8
|
Zhang SG, Wan YQ, Zhang WH. Discovery of Dehydroabietylamine Derivatives as Antibacterial and Antifungal Agents. JOURNAL OF NATURAL PRODUCTS 2024; 87:924-934. [PMID: 38513270 DOI: 10.1021/acs.jnatprod.3c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A diverse array of biologically active derivatives was derived by modifying the chemically active sites of dehydroabietylamine. Herein, we describe the synthesis of a new series of C-19-arylated dehydroabietylamine derivatives using a palladium-catalyzed C(sp3)-H activation reaction. Five analogues (3b, 3d, 3h, 3n, and 4a) exhibited antibacterial activity against Escherichia coli. Compound 4a exhibited strong inhibitory activity against DNA Topo II and Topo IV. Molecular docking modeling indicated that it can bind effectively to the target through interactions with amino acid residues. The synthesized compounds were tested in vitro for their antifungal activity against six common phytopathogenic fungi. The mechanism of action of compound 4c against Rhizoctorzia solani was investigated, revealing that it disrupts the morphology of the mycelium and enhances cell membrane permeability.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yu-Qiang Wan
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
9
|
Kachi OG, Pawar HR, Chabukswar AR, Jagdale S, Swamy V, Vinayak K, Hingane D, Shinde M, Pawar N. Design, Synthesis and Evaluation of Antifungal Activity of Pyrazoleacetamide Derivatives. Med Chem 2024; 20:957-968. [PMID: 38867538 DOI: 10.2174/0115734064300961240417063246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Fungal infections have posed a big challenge in the management of their treatment. Due to the resistance and toxicity of existing drug molecules in the light of pandemic infections, like COVID-19, there is an urgent need to find newer derivatives of active molecules, which can be effective in fungal infections. OBJECTIVE In the present study, we aimed to design pyrazole derivatives using molecular modeling studies against target 1EA1 and synthesize 10 molecules of pyrazole derivatives using a multi-step synthesis approach. METHODS Designed pyrazole derivatives were synthesized by conventional organic methods. The newly synthesized pyrazole molecules were characterized by using FT-IR, 1HNMR, 13CNMR, and LC-MS techniques. Molecular docking studies were also performed. The antifungal activity of newly synthesized compounds was assessed in vitro against Candida albicans and Aspergillus niger using the well plate method. RESULTS Two of the compounds, OK-7 and OK-8, have been found to show significant docking interaction with target protein 1EA1. These two compounds have also been found to show significant anti-fungal activity against Candida albicans and Aspergillus nigra when compared to the standard fluconazole. The Minimum Inhibitory Concentration (MIC) value of these two compounds has been found to be 50 μg/ml. CONCLUSION Pyrazole derivatives with -CH3, CH3O-, and -CN groups have been found to be active against tested fungi and can be further explored for their potential as promising anti-fungal agents for applications in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Onkar G Kachi
- Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune, 411 004, India
| | - Hari R Pawar
- Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune, 411 004, India
| | - Anuruddha R Chabukswar
- Department Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411038, MS, India
| | - Swati Jagdale
- Department Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411038, MS, India
| | | | - Kadam Vinayak
- Department of Chemistry, MGVS Arts Commerce & Science College, Surgana, Nashik, 422211, India
| | - Dattatray Hingane
- Department of Chemistry, Mahatma Phule College, Pimpri, Pune, 411017, India
| | - Mahadev Shinde
- Department of Chemistry, Arts, Science and Commerce College, Indapur, Maharashtra 413106, India
| | - Nagesh Pawar
- Department of Chemistry, B.K. Birla College, Kalyan. Kalyan West, Maharashtra, 421301, India
| |
Collapse
|
10
|
Fayed EA, Ebrahim MA, Fathy U, Elawady AM, Khalaf WS, Ramsis TM. Pyrano-coumarin hybrids as potential antimicrobial agents against MRSA strains: Design, synthesis, ADMET, molecular docking studies, as DNA gyrase inhibitors. J Mol Struct 2024; 1295:136663. [DOI: 10.1016/j.molstruc.2023.136663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Li Q, Yang Y, Li Y, Mi Y, Ma X, Jiang A, Guo Z. Enhanced biological activities of coumarin-functionalized polysaccharide derivatives: Chemical modification and activity assessment. Int J Biol Macromol 2023; 253:126691. [PMID: 37673148 DOI: 10.1016/j.ijbiomac.2023.126691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Natural polysaccharides are abundant and renewable resource, but their applications are hampered by limited biological activity. Chemical modification can overcome these drawbacks by altering their structure. Three series of polysaccharide derivatives with coumarins were synthesized to obtain polysaccharide derivatives with enhanced biological activity. The biological activities were tested, including antioxidant property, antifungal property, and antibacterial property. Based on the results, the inhibitory properties of the coumarin-polysaccharide derivatives were significantly improved over the raw polysaccharide. The IC50 of the inhibition of DPPH, ABTS•+, and superoxide (O2•-) radical-scavenging was 0.06-0.15 mg/mL, 2.3-15.9 μg/mL, and 0.03-0.25 mg/mL, respectively. Compared with the raw polysaccharides, coumarin- polysaccharide derivatives exhibited higher efficacy in inhibiting the growth of tested phytopathogens, showing inhibitory indices of 60.0-93.6 % at 1.0 mg/mL. Chitosan derivatives with methyl and chlorine (Compound 10B and 10C) exhibited significant antibacterial activity against S. aureus (MIC = 31.2 μg/mL), E. coli (MIC = 7.8 μg/mL), and V. harveyi (MIC = 15.6 μg/mL), respectively. The results of the cytotoxicity assay showed no observed cytotoxicity when the RAW 264.7 cells were incubated with the synthesized polysaccharide derivatives at the tested concentrations.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunhui Yang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Life Sciences, Yantai University, Yantai 264003, China
| | - Yijian Li
- College of Chemisry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Xuanxuan Ma
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Aili Jiang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
12
|
Zhu FD, Fu X, Ye HC, Ding HX, Gu LS, Zhang J, Guo YX, Feng G. Antibacterial activities of coumarin-3-carboxylic acid against Acidovorax citrulli. Front Microbiol 2023; 14:1207125. [PMID: 37799610 PMCID: PMC10547900 DOI: 10.3389/fmicb.2023.1207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Coumarin-3-carboxylic acid (3-CCA), previously screened from natural coumarins, was found to possess strong antibacterial activity against Acidovorax citrulli (Ac). In order to further evaluate the activity of this compound against plant bacterial pathogens and explore its potential value as a bactericidal lead compound, the activity of 3-CCA against 14 plant pathogenic bacteria in vitro and in vivo was tested. Results showed that 3-CCA exhibited strong in vitro activities against Ac, Ralstonia solanacearum, Xanthomonas axonopodis pv. manihotis, X. oryzae pv. oryzae, and Dickeya zeae with EC50 values ranging from 26.64 μg/mL to 40.73 μg/mL. Pot experiment results showed that 3-CCA had powerful protective and curative effects against Ac. In addition, the protective efficiency of 3-CCA was almost equivalent to that of thiodiazole copper at the same concentration. The results of SEM and TEM observation and conductivity tests showed that 3-CCA disrupted the integrity of the cell membrane and inhibited polar flagella growth. Furthermore, 3-CCA resulted in reductions in motility and extracellular exopolysaccharide (EPS) production of Ac while inhibiting the biofilm formation of Ac. These findings indicate that 3-CCA could be a promising natural lead compound against plant bacterial pathogens to explore novel antibacterial agents.
Collapse
Affiliation(s)
- Fa-Di Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Xin Fu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huo-Chun Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| | - Hai-Xin Ding
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Liu-Shuang Gu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| | - Yong-Xia Guo
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China of Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| |
Collapse
|
13
|
Pérez-Narváez OA, Castillo Hernández S SL, Leos-Rivas C, Pérez-Hernández RA, Chávez-Montes A, Verduzco-Martínez JA, Sánchez-García E. Antibacterial Effect of Ethanolic Extracts of Dodonaea viscosa L. Jacq. and Mammea americana L. against Staphylococci Isolated from Skin Lesions. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5584412. [PMID: 37700878 PMCID: PMC10495233 DOI: 10.1155/2023/5584412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Background The resistance to antibiotics shown by some dermatological pathogenic microorganisms has increased the interest of pharmaceutical and cosmetic industries in developing natural products that possess different biological activities, including antimicrobial effects. Methods In the present investigation, the antibacterial activity of ethanolic extracts of Dodonaea viscosa aerial part and Mammea americana leaves and seed was evaluated against resistant strains of Staphylococcus isolated from skin lesions and against S. aureus ATCC 25923 (reference strain). Column chromatography (CC) and preparative thin-layer chromatography (PTLC) were used to obtain separate fractions of the seed extract of M. americana. We also determined the antimicrobial resistance of the strains against antibiotics using the agar disc diffusion assay. In addition, phytochemical screening was performed by colorimetric standard techniques. Results M. americana seed extract showed the highest antibacterial activity with MBC from 2.3 μg/mL to 19.5 μg/mL without differences with gentamicin (p = 0.998). The isolated strain S. epidermidis I showed the highest antimicrobial resistance against the tested antibiotics. PTLC-fractions of M. americana seed extract showed MBC from 3.2 μg/mL to 40.7 μg/mL against S. epidermidis I and S. aureus 25923 (reference), respectively, which suggests a synergistic effect of the secondary metabolites present in the crude ethanolic extract compared to its active PTLC-fractions, where only coumarins and compounds with lactone groups were detected in the phytochemical screening. Conclusion M. americana seed extract has promising effects that should be considered in further studies as an alternative or adjuvant in treating skin infections caused by staphylococci.
Collapse
Affiliation(s)
- Oscar Alberto Pérez-Narváez
- Department of Chemistry, Laboratory of Analytical Chemistry, Universidad Autónoma de Nuevo León, Faculty of Biological Sciences, San Nicolás de los Garza, Nuevo León C.P. 66455, Mexico
| | | | - Catalina Leos-Rivas
- Department of Chemistry, Laboratory of Analytical Chemistry, Universidad Autónoma de Nuevo León, Faculty of Biological Sciences, San Nicolás de los Garza, Nuevo León C.P. 66455, Mexico
| | - Raymundo Alejandro Pérez-Hernández
- Department of Chemistry, Laboratory of Analytical Chemistry, Universidad Autónoma de Nuevo León, Faculty of Biological Sciences, San Nicolás de los Garza, Nuevo León C.P. 66455, Mexico
| | - Abelardo Chávez-Montes
- Department of Chemistry, Laboratory of Analytical Chemistry, Universidad Autónoma de Nuevo León, Faculty of Biological Sciences, San Nicolás de los Garza, Nuevo León C.P. 66455, Mexico
| | - Jorge Armando Verduzco-Martínez
- Department of Cell Biology and Genetics, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León C.P. 66455, Mexico
| | - Eduardo Sánchez-García
- Department of Chemistry, Laboratory of Analytical Chemistry, Universidad Autónoma de Nuevo León, Faculty of Biological Sciences, San Nicolás de los Garza, Nuevo León C.P. 66455, Mexico
| |
Collapse
|
14
|
Tariq HZ, Saeed A, Ullah S, Fatima N, Halim SA, Khan A, El-Seedi HR, Ashraf MZ, Latif M, Al-Harrasi A. Synthesis of novel coumarin-hydrazone hybrids as α-glucosidase inhibitors and their molecular docking studies. RSC Adv 2023; 13:26229-26238. [PMID: 37670997 PMCID: PMC10475976 DOI: 10.1039/d3ra03953f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder and more than 90% of diabetic patients suffer from type-2 diabetes, which is characterized by hyperglycemia. α-Glucosidase inhibition has become an appropriate approach to tackle high blood glucose levels. The current study was focused on synthesizing coumarin-hydrazone hybrids (7a-i) by using facile chemical reactions. The synthesized compounds were characterized by using 1H-NMR, 13C-NMR, and IR. To evaluate their anti-diabetic capability, all of the conjugates were screened for in vitro α-glucosidase inhibitory activity to reveal their therapeutic importance. All of the compounds (except 7b) demonstrated significant enzyme inhibitory potential with IC50 values ranging between 2.39-57.52 μM, as compared to the standard inhibitor, acarbose (IC50 = 873.34 ± 1.67 μM). Among them, compound 7c is the most potent α-glucosidase inhibitor (IC50 = 2.39 ± 0.05 μM). Additionally, molecular docking was employed to scrutinize the binding pattern of active compounds within the α-glucosidase binding site. The in silico analysis reflects that hydrazone moiety is an essential pharmacophore for the binding of compounds with the active site residues of the enzyme. This study demonstrates that compounds 7c and 7f deserve further molecular optimization for potential application in diabetic management.
Collapse
Affiliation(s)
- Hafiza Zara Tariq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Noor Fatima
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Hesham R El-Seedi
- School of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
| | | | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| |
Collapse
|
15
|
Jin L, Chen X, Pang C, Zhou L, Liu Y, Sun Y, Xu L, Wang Y, Chen Y. Investigation of the antibacterial mechanism of the novel bactericide dioctyldiethylenetriamine (Xinjunan). PEST MANAGEMENT SCIENCE 2023; 79:2780-2791. [PMID: 36924248 DOI: 10.1002/ps.7456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chemical control is an important method for tackling crop diseases. Clarifying the antibacterial mechanisms of bactericides is useful for developing new bactericides and for continuous plant disease control. In this study, the antibacterial mechanism of a novel bactericide, dioctyldiethylenetriamine (Xinjunan), which affects adenosine triphosphate (ATP) synthesis, was investigated. RESULTS The results of an in vitro inhibition activity assay showed that dioctyldiethylenetriamine inhibited the growth of a variety of plant pathogenic bacteria, especially that of Xanthomonas spp. Scanning electron microscopy demonstrated that dioctyldiethylenetriamine caused cell distortion and rupture. To investigate the molecular mechanism underlying the antibacterial effect of dioctyldiethylenetriamine, transcriptome sequencing (RNA-seq) was performed for Xanthomonas oryzae pv. oryzae (Xoo, PXO99A) treated with dioctyldiethylenetriamine, which has strong antibacterial effects against xanthomonads. The results showed that differentially expressed genes were enriched mainly in the oxidative phosphorylation and tricarboxylic acid (TCA) cycle pathways after treatment. Moreover, the dioctyldiethylenetriamine treatment exhibited reduction in enzyme activities in the TCA cycle, decreased intracellular nicotinamide adenine dinucleotide and ATP contents, and increased accumulation of reactive oxygen species. In addition, dioctyldiethylenetriamine exhibited an inhibitory effect on the growth of other bacterial pathogens by reducing ATP synthesis. CONCLUSION This is the first report of the mechanism by which dioctyldiethylenetriamine inhibits ATP synthesis by affecting oxidative phosphorylation and TCA cycle pathways in bacteria. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling Jin
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chaoyue Pang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Zhou
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Liang Xu
- Shandong Vicome Greenland Chemical Co., Ltd, Shandong, China
| | - Yongxing Wang
- Shandong Vicome Greenland Chemical Co., Ltd, Shandong, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Chiodi D, Ishihara Y. "Magic Chloro": Profound Effects of the Chlorine Atom in Drug Discovery. J Med Chem 2023; 66:5305-5331. [PMID: 37014977 DOI: 10.1021/acs.jmedchem.2c02015] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chlorine is one of the most common atoms present in small-molecule drugs beyond carbon, hydrogen, nitrogen, and oxygen. There are currently more than 250 FDA-approved chlorine-containing drugs, yet the beneficial effect of the chloro substituent has not yet been reviewed. The seemingly simple substitution of a hydrogen atom (R = H) with a chlorine atom (R = Cl) can result in remarkable improvements in potency of up to 100,000-fold and can lead to profound effects on pharmacokinetic parameters including clearance, half-life, and drug exposure in vivo. Following the literature terminology of the "magic methyl effect" in drugs, the term "magic chloro effect" has been coined herein. Although reports of 500-fold or 1000-fold potency improvements are often serendipitous discoveries that can be considered "magical" rather than planned, hypotheses made to explain the magic chloro effect can lead to lessons that accelerate the cycle of drug discovery.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, California 92121, United States
| |
Collapse
|
17
|
Bukhari SNA, Abdelgawad MA, Ahmed N, Amjad MW, Hussain MA, Elsherif MA, Ejaz H, Alotaibi NH, Filipović I, Janković N. Synthesis, Characterization, and Biological Evaluation of Meldrum's Acid Derivatives: Dual Activity and Molecular Docking Study. Pharmaceuticals (Basel) 2023; 16:281. [PMID: 37259425 PMCID: PMC9968196 DOI: 10.3390/ph16020281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 09/28/2023] Open
Abstract
In the presented study, eight novel Meldrum's acid derivatives containing various vanillic groups were synthesized. Vanillidene Meldrum's acid compounds were tested against different cancer cell lines and microbes. Out of nine, three showed very good biological activity against E. coli, and HeLa and A549 cell lines. It is shown that the O-alkyl substituted derivatives possessed better antimicrobial and anticancer activities in comparison with the O-acyl ones. The decyl substituted molecule (3i) has the highest activity against E. coli (MIC = 12.4 μM) and cancer cell lines (HeLa, A549, and LS174 = 15.7, 21.8, and 30.5 μM, respectively). The selectivity index of 3i is 4.8 (HeLa). The molecular docking study indicates that compound 3i showed good binding affinity to DNA, E. coli Gyrase B, and topoisomerase II beta. The covalent docking showed that 3i was a Michael acceptor for the nucleophiles Lys and Ser. The best Eb was noted for the topoisomerase II beta-LYS482-3i cluster.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia
| | | | - Naveed Ahmed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia
| | - Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia
| | - Ignjat Filipović
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nenad Janković
- University of Kragujevac, Department of Science, Institute for Information Technologies Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| |
Collapse
|
18
|
Singla D, Paul K. One-Pot Cascade Access to Ru(II)-Catalyzed Regioselective C(sp 2)-H Activation/Alkenylation of Chromeno[4,3- c]pyrazol-4-ones and Their Emission Solvatochromic Studies. J Org Chem 2022; 87:16436-16448. [DOI: 10.1021/acs.joc.2c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Dinesh Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| |
Collapse
|
19
|
Gomaa MS, Ali IAI, El Enany G, El Ashry ESH, El Rayes SM, Fathalla W, Ahmed AHA, Abubshait SA, Abubshait HA, Nafie MS. Facile Synthesis of Some Coumarin Derivatives and Their Cytotoxicity through VEGFR2 and Topoisomerase II Inhibition. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238279. [PMID: 36500372 PMCID: PMC9737644 DOI: 10.3390/molecules27238279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Novel semisynthetic coumarin derivatives were synthesized to be developed as chemotherapeutic anticancer agents through topoisomerase II, VEGFR2 inhibition that leads to apoptotic cancer cell death. The coumarin amino acids and dipeptides derivatives were prepared by the reaction of coumarin-3-carboxylic acid with amino acid methyl esters following the N,N-dicyclohexylcarbodiimide (DCC) method and 1-hydroxy-benzotriazole (HOBt), as coupling reagents. The synthesized compounds were screened towards VEGFR2, and topoisomerase IIα proteins to highlight their binding affinities and virtual mechanism of binding. Interestingly, compounds 4k (Tyr) and 6c (β-Ala-L-Met) shared the activity towards the three proteins by forming the same interactions with the key amino acids, such as the co-crystallized ligands. Both compounds 4k and 6c exhibited potent cytotoxic activities against MCF-7 cells with IC50 values of 4.98 and 5.85 µM, respectively causing cell death by 97.82 and 97.35%, respectively. Validating the molecular docking studies, both compounds demonstrated promising VEGFR-2 inhibition with IC50 values of 23.6 and 34.2 µM, compared to Sorafenib (30 µM) and topoisomerase-II inhibition with IC50 values of 4.1 and 8.6 µM compared to Doxorubicin (9.65 µM). Hence, these two promising compounds could be further tested as effective and selective target-oriented active agents against cancer.
Collapse
Affiliation(s)
- Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibrahim A. I. Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Gaber El Enany
- Department of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraidah 52571, Saudi Arabia
- Scientific Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - El Sayed H. El Ashry
- Chemistry Department, Faculty of Science, University of Alexandria, Alexandria 21526, Egypt
| | - Samir M. El Rayes
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or
| | - Walid Fathalla
- Scientific Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Abdulghany H. A. Ahmed
- Chemistry Department, Faculty of Medicinal Science, University of Science and Technology, Aden 15201, Yemen
| | - Samar A. Abubshait
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Haya A. Abubshait
- Basic Science Department, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
20
|
Zhang C, Tian Q, Li Y. Design, synthesis, and insecticidal activity evaluation of piperine derivatives. Front Chem 2022; 10:973630. [PMID: 35958231 PMCID: PMC9360595 DOI: 10.3389/fchem.2022.973630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Structural optimization of natural products has become one of the most effective ways to develop novel pesticides. In this study, 30 novel pesticide derivatives containing a linear bisamide were synthesized. Then, their insecticidal activities against P. xylostella were evaluated. Results indicate that different bisamide substitutes show different larvicidal structure–activity relationships. At the same time, 2-trifluoroethyl is the most efficient substituent. The bioactivity results showed that most of the desired compounds exhibited better insecticidal activity against P. xylostella than piperine. Among them, compound D28 resulted in 90% mortality at 1 mg/ml concentration. This study provides a novel protocol for the discovery of new insecticides. The molecular docking results indicated that compound D28 could act on γ-aminobutyric acid receptors.
Collapse
Affiliation(s)
- Chiying Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Qingqiang Tian
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bio-engineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Yahui Li,
| |
Collapse
|
21
|
Ragab A, Abusaif MS, Aboul-Magd DS, Wassel MMS, Elhagali GAM, Ammar YA. A new exploration toward adamantane derivatives as potential anti-MDR agents: Design, synthesis, antimicrobial, and radiosterilization activity as potential topoisomerase IV and DNA gyrase inhibitors. Drug Dev Res 2022; 83:1305-1330. [PMID: 35716118 DOI: 10.1002/ddr.21960] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 12/16/2022]
Abstract
Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt
| | - Gameel A M Elhagali
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
22
|
Feng YM, Qi PY, Xiao WL, Zhang TH, Zhou X, Liu LW, Yang S. Fabrication of Isopropanolamine-Decorated Coumarin Derivatives as Novel Quorum Sensing Inhibitors to Suppress Plant Bacterial Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6037-6049. [PMID: 35579561 DOI: 10.1021/acs.jafc.2c01141] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emerging pesticide-resistant phytopathogenic bacteria have become a stumbling block in the development and use of pesticides. Quorum sensing (QS) blockers, which interfere with bacterial virulence gene expression, are a compelling way to manage plant bacterial disease without resistance. Herein, a series of isopropanolamine-decorated coumarin derivatives were designed and synthesized, and their potency in interfering with QS was investigated. Notably, compound A5 exhibited a better bioactivity with median effective concentration (EC50) values of 6.75 mg L-1 against Xanthomonas oryzae pv. oryzae (Xoo) than bismerthiazol (EC50 = 21.9 mg L-1). Further biochemical studies revealed that compound A5 disturbed biofilm formation and suppressed bacterial virulence factors and so forth. Moreover, compound A5 decreased the expression of QS-related genes. Interestingly, compound A5 had the acceptable control effect (53.2%) toward Xoo in vivo. Overall, this study identifies a novel lead compound for the development of bactericide candidates to control plant bacterial diseases by interfering with QS.
Collapse
Affiliation(s)
- Yu-Mei Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Wan-Lin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
23
|
Xie D, Yang J, Niu X, Wang Z, Wu Z. Synthesis and bioactivity evaluation of 5‐trifluoromethyl‐1
H
‐pyrazole‐4‐carboxamide derivatives as potential anticancer and antifungal agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dewen Xie
- School of Pharmaceutical Sciences Guizhou University Guiyang China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Xue Niu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang China
- School of Chemistry and Chemical Engineering Guizhou University Guiyang China
| | - Zhenchao Wang
- School of Pharmaceutical Sciences Guizhou University Guiyang China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| |
Collapse
|
24
|
Sultana S, Bouyahya A, Rebezov M, Shariati MA, Balahbib A, Khouchlaa A, El Yaagoubi OM, Khaliq A, Omari NE, Bakrim S, Zengin G, Akram M, Khayrullin M, Bogonosova I, Mahmud S, Simal-Gandara J. Impacts of nutritive and bioactive compounds on cancer development and therapy. Crit Rev Food Sci Nutr 2022; 63:9187-9216. [PMID: 35416738 DOI: 10.1080/10408398.2022.2062699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For persons who survive with progressive cancer, nutritional therapy and exercise may be significant factors to improve the health condition and life quality of cancer patients. Nutritional therapy and medications are essential to managing progressive cancer. Cancer survivors, as well as cancer patients, are mostly extremely encouraged to search for knowledge about the selection of diet, exercise, and dietary supplements to recover as well as maintain their treatment consequences, living quality, and survival of patients. A healthy diet plays an important role in cancer treatment. Different articles are studied to collect information and knowledge about the use of nutrients in cancer treatment as well as cancer prevention. The report deliberates nutrition and exercise strategies during the range of cancer care, emphasizing significant concerns during treatment of cancer and for patients of advanced cancer, but concentrating mostly on the requirements of the population of persons who are healthy or who have constant disease following their repossession from management. It also deliberates choice nutrition and exercise problems such as dietary supplements, food care, food selections, and weight; problems interrelated to designated cancer sites, and common questions about diet, and cancer survival. Decrease the side effects of medicines both during and after treatment.
Collapse
Affiliation(s)
- Sabira Sultana
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, and Genomic Center of Human Pathology, Mohammed V University, Rabat, Morocco
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Aya Khouchlaa
- Laboratory of Human Pathology Biology, Faculty of Sciences, and Genomic Center of Human Pathology, Mohammed V University, Rabat, Morocco
| | - Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) - Faculty of Sciences and Techniques - Mohammedia, Hassan II University Casablanca - Morocco
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Pakistan
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Irina Bogonosova
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
25
|
Yang XC, Zhang PL, Kumar KV, Li S, Geng RX, Zhou CH. Discovery of unique thiazolidinone-conjugated coumarins as novel broad spectrum antibacterial agents. Eur J Med Chem 2022; 232:114192. [DOI: 10.1016/j.ejmech.2022.114192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
|
26
|
Abstract
Bacterial resistance to antibiotics threatens our progress in healthcare, modern medicine, food production and ultimately life expectancy. Antibiotic resistance is a global concern, which spreads rapidly across borders and continents due to rapid travel of people, animals and goods. Derivatives of metabolically stable pyrazole nucleus are known for their wide range of pharmacological properties, including antibacterial activities. This review highlights recent reports of pyrazole derivatives targeting different bacterial strains focusing on the drug-resistant variants. Pyrazole derivatives target different metabolic pathways of both Gram-positive and Gram-negative bacteria.
Collapse
|
27
|
Effect of methylpyrazoles and coumarin association on the growth of Gram-negative bacteria. Arch Microbiol 2022; 204:160. [PMID: 35113268 DOI: 10.1007/s00203-022-02773-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
Abstract
One approach to overcome the antimicrobial resistance of many pathogens is to associate compounds with antimicrobial properties and obtain combinations superior compared to the effect of each compound. To identify a possible potentiating effect, we tested and analyzed the inhibitory effect of the combination of coumarin with two pyrazole derivatives, 1,1'-methandiylbis (3,5-dimethyl-1H-pyrazole (AM4) and 3,5-dimethyl-1H-pyrazol-1-yl) methanol 3,5-dimethyl-1-hydroxymethylpyrazol (SAM4). A clear synergistic effect was recorded when coumarin was associated with SAM4, in which case the Fractional Inhibitory Concentration Index (FICI) had a value equal to 0.468 for Citrobacter freundii, Proteus mirabilis, and E. coli. In the other cases, however, both the association between coumarin and AM4 and coumarin SAM4 had only an additive effect (FICI = 0.937-1.00). The bactericidal effect of the coumarin-pyrazole combination over time was better in all cases compared to the effect of the compounds used separately. The viability of the bacterial cells at sub-inhibitory concentrations of the tested compounds was variable, depending on both the type of compound and the bacterial strain.
Collapse
|
28
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
29
|
AL-Duhaidahawi D, AL-Zubaidy HF, Al-Khafaji K, Al-Amiery A. Synthesis, anti-inflammatory effects, molecular docking and molecular dynamics studies of 4-hydroxy coumarin derivatives as inhibitors of COX-II enzyme. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Ganavi D, Ramu R, Kumar V, Patil SM, Martiz RM, Shirahatti PS, Sathyanarayana R, Poojary B, Holla BS, Poojary V, Kumari KPN, Shivachandra JC. In vitro and in silico studies of fluorinated 2,3-disubstituted thiazolidinone-pyrazoles as potential α-amylase inhibitors and antioxidant agents. Arch Pharm (Weinheim) 2021; 355:e2100342. [PMID: 34923670 DOI: 10.1002/ardp.202100342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
As part of our effort to identify potent α-amylase inhibitors, in the present study, a novel series of fluorinated thiazolidinone-pyrazole hybrid molecules were prepared by the condensation of 3-(aryl/benzyloxyaryl)-pyrazole-4-carbaldehydes with fluorinated 2,3-disubstituted thiazolidin-4-ones. The structures of the newly synthesized compounds were confirmed by infrared, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and liquid chromatography-mass spectrometry data. All the compounds were screened for their α-amylase inhibitory and free radical scavenging activities by DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS methods. Among the tested compounds, compound 8g emerged as a promising α-amylase inhibitor with IC50 = 0.76 ± 1.23 µM, and it was found to be more potent than the standard drug acarbose (IC50 = 0.86 ± 0.81 μM). Compounds 8b and 8g showed strong free radical scavenging activity compared to the standard butylated hydroxyl anisole. The kinetic study of compound 8g revealed the reversible, classical competitive inhibition mode on the α-amylase enzyme. Molecular docking and dynamic simulations studies were performed for the most potent compound 8g, which displayed remarkable hydrogen bonding with the α-amylase protein (PDB ID: 1DHK).
Collapse
Affiliation(s)
- Devaraj Ganavi
- Department of Studies and Research in Chemistry, Mangalore University, Mangalagangothri, India.,Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Vasantha Kumar
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma M Martiz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Reshma Sathyanarayana
- Department of Studies and Research in Chemistry, Mangalore University, Mangalagangothri, India
| | - Boja Poojary
- Department of Studies and Research in Chemistry, Mangalore University, Mangalagangothri, India
| | - B Shivarama Holla
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - Vishwanatha Poojary
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - K P Nanda Kumari
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - Jagadeep Chandra Shivachandra
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
31
|
Payne M, Bottomley AL, Och A, Asmara AP, Harry EJ, Ung AT. Synthesis and biological evaluation of 3,5-substituted pyrazoles as possible antibacterial agents. Bioorg Med Chem 2021; 48:116401. [PMID: 34555556 DOI: 10.1016/j.bmc.2021.116401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
The emergence of multi-drug resistant bacteria has increased the need for novel antibiotics to help overcome what may be considered the greatest threat to modern medicine. Here we report the synthesis of fifteen novel 3,5-diaryl-1H- pyrazoles obtained via one-pot cyclic oxidation of a chalcone and hydrazine-monohydrate. The synthesised pyrazoles were then screened against Staphylococcus aureus and Escherichia coli to determine their antibacterial potential. The results show that compound 7p is bacteriostatic at MIC 8 µg/mL. The compound is non-toxic against healthy mammalian cells, 3T3-L1 at the highest test concentration 50 µg/mL. Furthermore, compound 7p significantly affected bacterial morphogenesis before cell lysis in Bacillus subtilis when treated above the MIC concentration. From the results, a promising lead compound was identified for future development.
Collapse
Affiliation(s)
- Matthew Payne
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Amy L Bottomley
- The ithree Institute, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Anthony Och
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Anjar P Asmara
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Elizabeth J Harry
- The ithree Institute, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Alison T Ung
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia.
| |
Collapse
|
32
|
Kaur M, Mehta V, Arora S, Munshi A, Singh S, Kumar R. Design, Synthesis and Biological Evaluation of New 5‐(2‐Nitrophenyl)‐1‐aryl‐1
H
‐pyrazoles as Topoisomerase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Manpreet Kaur
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| | - Vikrant Mehta
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
33
|
Salem MA, Abbas SY, Helal MH, Alzahrani AY. Synthesis and antimicrobial evaluation of new 2‐pyridinone and 2‐iminochromene derivatives containing morpholine moiety. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mohamed A. Salem
- Department of Chemistry, Faculty of Science and Arts King Khalid University Mohail Saudi Arabia
- Chemistry Department, Faculty of Science (Boys) Al‐Azhar University Nasr Egypt
| | - Samir Y. Abbas
- Department of Organometallic and Organometalloid Chemistry National Research Centre Cairo Egypt
| | - Mohamed H. Helal
- Department of Chemistry, Faculty of Arts and Science Northern Border University Rafha Saudi Arabia
| | - Abdullah Y. Alzahrani
- Department of Chemistry, Faculty of Science and Arts King Khalid University Mohail Saudi Arabia
| |
Collapse
|
34
|
Zhu H, Ying S, Zhou B, Hu X, Liang X, Li W, Wang D, Jin H, Pan Y. Design, synthesis, and evaluation of novel coumarin-dithiocarbamate derivatives (IDs) as anti-colorectal cancer agents. J Enzyme Inhib Med Chem 2021; 36:593-604. [PMID: 33557648 PMCID: PMC8759731 DOI: 10.1080/14756366.2021.1875458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumour of human digestive tract. The high mortality rate of CRC is closely related to the limitations of existing treatments. Thus, there is an urgent need to search for new anti-CRC agents. In this work, twenty novel coumarin-dithiocarbamate derivatives (IDs) were designed, synthesized and evaluated in vitro. The results suggest that the most active compound ID-11 effectively inhibited the proliferation of CRC cell lines while shown little impact on normal colon epithelial cells. Mechanism studies revealed that ID-11 displayed bromodomain-containing protein 4 inhibitory activity, and induced G2/M phase arrest, apoptosis as well as decreased the expression levels of the key genes such as c-Myc and Bcl-2 in CRC cell lines. Moreover, the ADMET properties prediction results shown that ID-11 possess well metabolic characteristics without obvious toxicities. Our data demonstrated that compound ID-11 may be a promising anti-CRC agent and deserved for further development.
Collapse
Affiliation(s)
- Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Shilong Ying
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, P. R. China
| | - Bingluo Zhou
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, P. R. China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, P. R. China
| | - Xiao Liang
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Wangyu Li
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Dungai Wang
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
35
|
Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2021; 222:113628. [PMID: 34139627 DOI: 10.1016/j.ejmech.2021.113628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
The increasing resistance of methicillin-resistant Staphylococcus aureus (MRSA) to antibiotics has led to a growing effort to design and synthesize novel structural candidates of chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids with outstanding bacteriostatic potential. Bioactivity screening showed that hybrid 5i, which was modified with methoxybenzene, exerted a significant inhibitory activity against MRSA (MIC = 0.004 mM), which was 6 times better than the anti-MRSA activity of the reference drug norfloxacin (MIC = 0.025 mM). Compound 5i neither conferred apparent resistance onto MRSA strains even after multiple passages nor triggered evident toxicity to human hepatocyte LO2 cells and normal mammalian cells (RAW 264.7). Molecular docking showed that highly active molecule 5i might bind to DNA gyrase by forming stable hydrogen bonds. In addition, molecular electrostatic potential surfaces were developed to explain the high antibacterial activity of the target compounds. Furthermore, preliminary mechanism studies suggested that hybrid 5i could disrupt the bacterial membrane of MRSA and insert itself into MRSA DNA to impede its replication, thus possibly becoming a potential antibacterial repressor against MRSA.
Collapse
|
36
|
Bahadur A, Iqbal S, Ujan R, Channar PA, Al-Anazy MM, Saeed A, Mahmood Q, Shoaib M, Shah M, Arshad I, Shabir G, Saifullah M, Liu G, Qayyum MA. Effect of organic solvents on solvatochromic, fluorescence, and electrochemical properties of synthesized thiazolylcoumarin derivatives. LUMINESCENCE 2021; 36:1189-1197. [PMID: 33759314 DOI: 10.1002/bio.4044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
In this present investigation, thiazolylcoumarin derivatives (5a-5k) were synthesized from thiosemicarbazide, ethyl acetoacetate, and naphthaldehyde through a multistep route. The formation of thiazolylcoumarin derivatives with bioactive scaffolds was confirmed through nuclear magnetic resonance spectroscopy. A solvatochromic study of synthesized thiazolylcoumarin derivatives was carried out using ultraviolet-visible methods for dimethylformamide (DMF), ethyl acetate, and ethanol solvents. The redox behaviour of as-synthesized thiazolylcoumarin derivatives (5a-5k) was examined in dimethyl sulphoxide by conducting an electrochemical study. Fluorescence properties of thiazolylcoumarin derivatives were studied in DMF, ethanol, and ethyl acetate to visualize the solvent effect on the emitting ability of thiazolylcoumarin derivatives.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Shahid Iqbal
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | | | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qaiser Mahmood
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mazloom Shah
- Department of chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ifzan Arshad
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Muhammad Abdul Qayyum
- Department of Chemistry Division of Science and Technology University of Education Lahore, Pakistan
| |
Collapse
|
37
|
Othman IMM, Gad-Elkareem MAM, Hassane Anouar E, Aouadi K, Snoussi M, Kadri A. New substituted pyrazolones and dipyrazolotriazines as promising tyrosyl-tRNA synthetase and peroxiredoxin-5 inhibitors: Design, synthesis, molecular docking and structure-activity relationship (SAR) analysis. Bioorg Chem 2021; 109:104704. [PMID: 33609915 DOI: 10.1016/j.bioorg.2021.104704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
New substituted pyrazolone and dipyrazolotriazine derivatives have been synthesized, designed and well characterized as promising dual antimicrobial/antioxidant agents to overcome multidrug resistant bacteria (MDR), oxidative stress and their related diseases. Among all strains, S. aureus was found to be the most susceptible for all compounds except 10b and 12b. Out of the three investigated series, sulfonamide analogues 5a-c displayed excellent antibacterial activity with 5b (MIC = 7.61 μM) and 5a (MIC = 8.98 μM) displaying activity that exceeds the reference drug tetracycline (MIC = 11.77 μM). The same sulfonamide derivatives 5a-c demonstrates high ABTS scavenging capacity comparable to standard. Moreover, the structure-activity relationship (SAR) revealed that benzenesulfonamide is a crucial group for enhancing activity. Molecular docking studies of the potent analogues were performed by targeting the crystal structures of S. aureus tyrosyl-tRNA synthetase and human peroxiredoxin-5 enzymes and the obtained results supported well the in vitro data revealing stronger binding interactions. Pharmacokinetics prediction together with modeling outcomes suggests that our sulfonamide derivatives may serve as useful lead compounds for the treatment of infectious disease.
Collapse
Affiliation(s)
- Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | | | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; University of Monastir, Faculty of Sciences of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. 2440, Hail 2440, Saudi Arabia; Laboratory of Genetics, Biodiversity and Valorization of Bio-resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha, Saudi Arabia; Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia.
| |
Collapse
|
38
|
Zheng YG, Pei X, Xia DX, Wang YB, Jiang P, An L, Huang TH, Xue YS. Design, synthesis, and cytotoxic activity of novel 2H-imidazo[1,2-c]pyrazolo[3,4-e]pyrimidine derivatives. Bioorg Chem 2021; 109:104711. [PMID: 33609916 DOI: 10.1016/j.bioorg.2021.104711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 01/06/2023]
Abstract
In this study, a series of novel 2H-imidazo [1, 2-c] pyrazolo [3, 4-e] pyrimidine derivatives were designed, synthesized, and evaluated for their cytotoxic activities. The in vitro cell growth inhibition assay of the target compounds indicated their selectivity in inhibiting the proliferation of blood tumor cells (K562, U937) and solid tumor cells (HCT116, HT-29). Compound 9b exhibited the highest antiproliferative activities against K562 (IC50 = 5.597 µM) and U937 (IC50 = 3.512 µM). Based on the flow cytometry assays, compound 9b caused obvious induction of cell apoptosis and cell arrest at the S phase. Furthermore, western blot analysis revealed that compound 9b upregulated the expression of Bax, downregulated the levels of Bcl-2, and further activated caspase-3 in K562 cells. Therefore, compound 9b may be a potential anticancer agent that deserves further investigation.
Collapse
Affiliation(s)
- You-Guang Zheng
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| | - Xin Pei
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - De-Xin Xia
- Department of Radiology, XuZhou Central Hospital, Xuzhou 221004, PR China
| | - Yuan-Bo Wang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Ping Jiang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Lin An
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Tong-Hui Huang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yun-Sheng Xue
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| |
Collapse
|
39
|
Othman IMM, Gad-Elkareem MAM, Amr AEGE, Al-Omar MA, Nossier ES, Elsayed EA. Novel heterocyclic hybrids of pyrazole targeting dihydrofolate reductase: design, biological evaluation and in silico studies. J Enzyme Inhib Med Chem 2021; 35:1491-1502. [PMID: 32668994 PMCID: PMC7470138 DOI: 10.1080/14756366.2020.1791842] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel series of pyrazole analogues including hydrazones, pyrazolo[4,3-c]-pyridazines, pyrazolo[3,4-e][1,2,4]triazine and pyrazolo[3,4-d][1,2,3]triazoles was designed, synthesised and screened for their in vitro antimicrobial and DHFR inhibition activity. Compounds bearing benzenesulphonamide moiety incorporated with 3-methyl-5-oxo-1H-pyrazol-4(5H)-ylidene) hydrazine 3a or 6-amino-7-cyano-3-methyl-5H-pyrazolo[4,3-c]pyridazine 6a revealed excellent and broad spectrum antimicrobial activity comparable to ciprofloxacin and amphotericin B as positive antibiotic and antifungal controls, respectively. Furthermore, these derivatives proved to be the most active DHFR inhibitors with IC50 values 0.11 ± 1.05 and 0.09 ± 0.91 µM, in comparison with methotrexate (IC50 = 0.14 ± 1.25 µM). The in silico studies were done to calculate the drug-likeness and toxicity risk parameters of the newly synthesised derivatives. Additionally, the high potency of the pyrazole derivatives bearing sulphonamide against DHFR was confirmed with molecular docking and might be used as an optimum lead for further modification.
Collapse
Affiliation(s)
- Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed A M Gad-Elkareem
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, Egypt.,Department of Chemistry, Faculty of Science and Arts of Baljurashi, Albaha University, Saudi Arabia
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Applied Organic Chemistry Department, National Research Centre, Giza, Egypt
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, Faculty of Science, King Saud University, Riyadh, Saudi Arabia.,Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
40
|
|
41
|
Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thiazoles: Antibacterial evaluation and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Kumar R, Yadav N, Leekha A, Bawa R, Gahlyan P, Bhandari M, Arora R, Kamra Verma A, Kakkar R. Novel 1‐Triazolylpyranopyrazoles as Highly Potent Anticancer Agents Obtained
via
MW‐Assisted Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202003680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rakesh Kumar
- Bioorganic Laboratory, Department of Chemistry University of Delhi Delhi 110007 India
| | - Neha Yadav
- Bioorganic Laboratory, Department of Chemistry University of Delhi Delhi 110007 India
| | - Ankita Leekha
- Nano Biotech Laboratory Department of Zoology Kirori Mal College, University of Delhi Delhi 110007 India
| | - Rashim Bawa
- Bioorganic Laboratory, Department of Chemistry University of Delhi Delhi 110007 India
| | - Parveen Gahlyan
- Bioorganic Laboratory, Department of Chemistry University of Delhi Delhi 110007 India
| | - Mamta Bhandari
- Computational Chemistry Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Ritu Arora
- Computational Chemistry Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Anita Kamra Verma
- Nano Biotech Laboratory Department of Zoology Kirori Mal College, University of Delhi Delhi 110007 India
| | - Rita Kakkar
- Computational Chemistry Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
43
|
da Silva MMC, de Araújo-Neto JB, de Araújo ACJ, Freitas PR, de M Oliveira-Tintino CD, Begnini IM, Rebelo RA, da Silva LE, Mireski SL, Nasato MC, Krautler MIL, Ribeiro-Filho J, Coutinho HDM, Tintino SR. Potentiation of Antibiotic Activity by a Meldrum's Acid Arylamino Methylene Derivative against Multidrug-Resistant Bacterial Strains. Indian J Microbiol 2020; 61:100-103. [PMID: 33505100 DOI: 10.1007/s12088-020-00910-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/03/2020] [Indexed: 11/25/2022] Open
Abstract
This study aimed to evaluate the intrinsic antibacterial activity and antibiotic-enhancing effect of an arylamino methylene derivative (MAD) in association with fluoroquinolones. The antibacterial activity against multiresistant Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli was analyzed by determining the minimum inhibitory concentration (MIC) using the broth micro dilution method. A reduction in the MIC of the fluoroquinolones against strains treated simultaneously with the MAD was interpreted as an enhanced antibiotic activity. While the MAD exhibited no clinically effective action (MIC ≥ 1.024 µg/mL), it was found to significantly potentiate the activity of norfloxacin, ofloxacin and lomefloxacin against all the strains, which may be related to structural similarities between the MAD and quinolones. Our findings suggest that Meldrum's acid arylamino derivatives may represent promising molecules in the elaboration of new drugs to reverse resistance to fluoroquinolones.
Collapse
Affiliation(s)
- Maria M C da Silva
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, Regional University of Cariri-URCA, Rua Cel. Antonio Luiz, 1161. Pimenta, Crato, CE CEP: 63105-000 Brazil
| | - José B de Araújo-Neto
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, Regional University of Cariri-URCA, Rua Cel. Antonio Luiz, 1161. Pimenta, Crato, CE CEP: 63105-000 Brazil
| | - Ana C J de Araújo
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, Regional University of Cariri-URCA, Rua Cel. Antonio Luiz, 1161. Pimenta, Crato, CE CEP: 63105-000 Brazil
| | - Priscilla R Freitas
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, Regional University of Cariri-URCA, Rua Cel. Antonio Luiz, 1161. Pimenta, Crato, CE CEP: 63105-000 Brazil
| | - Cícera D de M Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, Regional University of Cariri-URCA, Rua Cel. Antonio Luiz, 1161. Pimenta, Crato, CE CEP: 63105-000 Brazil
| | - Iêda M Begnini
- Department of Chemistry, Regional University of Blumenau-FURB, Blumenau, Brazil
| | - Ricardo A Rebelo
- Department of Chemistry, Regional University of Blumenau-FURB, Blumenau, Brazil
| | - Luiz E da Silva
- Postgraduate Program in Sustainable Territorial Development-Coastal Sector, Federal University of Paraná-UFPR, Curitiba, Brazil
| | - Sandro L Mireski
- Department of Chemistry, Regional University of Blumenau-FURB, Blumenau, Brazil
| | - Michele C Nasato
- Department of Chemistry, Regional University of Blumenau-FURB, Blumenau, Brazil
| | - Maria I L Krautler
- Department of Chemistry, Regional University of Blumenau-FURB, Blumenau, Brazil
| | - Jaime Ribeiro-Filho
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation-IGM-FIOCRUZ/BA, Salvador, BA Brazil
| | - Henrique D M Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, Regional University of Cariri-URCA, Rua Cel. Antonio Luiz, 1161. Pimenta, Crato, CE CEP: 63105-000 Brazil
| | - Saulo R Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, Regional University of Cariri-URCA, Rua Cel. Antonio Luiz, 1161. Pimenta, Crato, CE CEP: 63105-000 Brazil
| |
Collapse
|
44
|
Jaswal S, Nehra B, Kumar S, Monga V. Recent advancements in the medicinal chemistry of bacterial type II topoisomerase inhibitors. Bioorg Chem 2020; 104:104266. [PMID: 33142421 DOI: 10.1016/j.bioorg.2020.104266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Replication proteins are sought as a potential targets for antimicrobial agents. Despite their promising target characteristics, only topoisomerase II inhibitors targeting DNA gyrase and/or topoisomerase IV have reached clinical use. Topoisomerases are the enzymes that are essential for cellular functions and various biological activities. A wide range of natural and synthetic compounds have been identified as potential topoisomerase inhibitors but the resistance is most commonly found in these drugs. The emergence of FQ resistance has increased the need for the development of novel topoisomerase inhibitors with efficacy and high potency against FQ-resistant strains. Besides structural modifications of existing FQ scaffolds, novel non-quinolone topoisomerase II inhibitors, known as novel bacterial topoisomerase inhibitors, have been developed which showed remarkable inhibitory activity against DNA gyrase/topoisomerase IV or both with an improved spectrum of antibacterial potency including drug-resistant strains. This review aims to summarize various recent advancements in the medicinal chemistry of topoisomerase inhibitors with the following objectives: (1) To represent inclusive data on types of topoisomerases and various marketed topoisomerase inhibitors as drugs; (2) To discuss the recent advances in the medicinal chemistry of various topoisomerase inhibitors (DNA gyrase and topo IV) belonging to different structural classes as potential antibacterial agents; (3) To summarizes the structure activity relationship (SAR) including in silico and mechanistic studies to afford ideas and to provide focused direction for the development of new chemical entities which are effective against drug-resistant bacterial pathogens and biofilms.
Collapse
Affiliation(s)
- Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Bhupender Nehra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
45
|
Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 2020; 199:112326. [DOI: 10.1016/j.ejmech.2020.112326] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
|
46
|
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci 2020; 21:E4618. [PMID: 32610556 PMCID: PMC7370201 DOI: 10.3390/ijms21134618] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Cecilia Pinna
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| | - Lucia Tamborini
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| |
Collapse
|
47
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
48
|
Discovery of novel multi-substituted benzo-indole pyrazole schiff base derivatives with antibacterial activity targeting DNA gyrase. Bioorg Chem 2020; 99:103807. [DOI: 10.1016/j.bioorg.2020.103807] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023]
|
49
|
Liu H, Xia DG, Chu ZW, Hu R, Cheng X, Lv XH. Novel coumarin-thiazolyl ester derivatives as potential DNA gyrase Inhibitors: Design, synthesis, and antibacterial activity. Bioorg Chem 2020; 100:103907. [PMID: 32413631 DOI: 10.1016/j.bioorg.2020.103907] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 11/15/2022]
Abstract
The design and synthesis of novel coumarin-thiazolyl ester derivatives of potent DNA gyrase inhibitory activity were the main aims of this study. All the novel synthesized compounds were examined for their antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella. Compound 8p exhibited excellent antibacterial activity against four bacteria strains with MIC values of 0.05, 0.05, 8, and 0.05 μg/mL, respectively. In vitro drug-resistant bacterial inhibition experiments indicated that compound 8p exhibited the best bacteriostatic effect in the selected compounds and four positive control drugs with MIC values of 4 μg/mL. In vitro enzyme inhibitory assay showed that compound 8p exhibited potent inhibition against DNA gyrase with IC50 values of 0.13 μM. The molecular docking model indicated that compounds 8p can bind well to the DNA gyrase by interacting with amino acid residues. This study demonstrated that the compound 8p can act as the most potent DNA gyrase inhibitor in the reported series of compounds and provide valuable information for the commercial DNA gyrase inhibiting bactericides.
Collapse
Affiliation(s)
- Hao Liu
- School of Science, Anhui Agricultural University, 230036 Hefei, People's Republic of China
| | - Dong-Guo Xia
- School of Science, Anhui Agricultural University, 230036 Hefei, People's Republic of China
| | - Zhi-Wen Chu
- School of Science, Anhui Agricultural University, 230036 Hefei, People's Republic of China
| | - Rui Hu
- Central Iron & Steel Research Institute, 100081 Beijing, People's Republic of China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036 Hefei, People's Republic of China
| | - Xian-Hai Lv
- School of Science, Anhui Agricultural University, 230036 Hefei, People's Republic of China.
| |
Collapse
|
50
|
Reddy GM, Garcia JR, Yuvaraja G, Venkata Subbaiah M, Wen J. Design, synthesis of tri‐substituted pyrazole derivatives as promising antimicrobial agents and investigation of structure activity relationships. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guda Mallikarjuna Reddy
- Ural Federal University, Chemical Engineering Institute Yekaterinburg Russian Federation
- Department of ChemistryState University of Ponta Grossa Ponta Grossa Brazil
| | - Jarem Raul Garcia
- Department of ChemistryState University of Ponta Grossa Ponta Grossa Brazil
| | - Gutha Yuvaraja
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and EngineeringGuangzhou University Guangzhou China
| | - Munagapati Venkata Subbaiah
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN)National Yunlin University of Science & Technology Douliou Taiwan Republic of China
| | - Jet‐Chau Wen
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN)National Yunlin University of Science & Technology Douliou Taiwan Republic of China
- Department and Graduate School of Safety and Environment EngineeringNational Yunlin University of Science & Technology Douliou Taiwan Republic of China
| |
Collapse
|