1
|
Mei Y, Wu Y, Zhai Y, Chen C, Han H, Wan L, Ma W, Ding M, Zheng X, Wu L. C1632 protects against LPS-induced acute lung injury by regulating AXL-mediated MAPK/NF-κB signaling pathway. Int Immunopharmacol 2025; 153:114542. [PMID: 40132459 DOI: 10.1016/j.intimp.2025.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Acute lung injury (ALI), a leading pulmonary inflammatory disorder, is associated with high morbidity and mortality rates. AXL, a member of the TAM family, plays a significant role in the innate immune and inflammatory responses. This study aimed to evaluate the therapeutic potential of C1632 and its mechanisms in the treatment of LPS-induced ALI/ARDS. The results demonstrated that C1632 pretreatment inhibited the transcription, expression, and secretion of LPS-induced inflammatory factors (IL-6, TNF-α) and vascular adhesion molecules (VCAM-1, ICAM-1). Furthermore, it reduced inflammatory cell infiltration in the lungs, thereby alleviating LPS-induced histopathological changes and lung injury in mice. Mechanistically, C1632 suppressed AXL transcription and expression, which inhibited the activation of the MAPK/NF-κB signaling pathway triggered by LPS stimulation. Both in vitro and in vivo studies confirmed that C1632 administration did not exhibit significant cytotoxicity. Additionally, it did not cause functional or structural damage to the liver and kidneys in mice, nor did it induce other acute toxic effects. In summary, these findings suggest that AXL is a novel target for MAPK/NF-κB signaling pathway mediated anti-inflammatory treatment and C1632 is a promising therapeutic agent for ALI/ARDS treatment.
Collapse
Affiliation(s)
- Yanan Mei
- Respiratory Medicine Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yihang Wu
- Respiratory Medicine Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yihui Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chaoyue Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haoyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Wan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenyan Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Meiqing Ding
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Liqin Wu
- Respiratory Medicine Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
2
|
Luo W, Dong K, Dai J, Zhang A, Chen P, Chen Z, Guo M, Sun C, Yang J, Huang N, Zou Y, Zheng Z, Cho WJ, Chen X, Cho YC, Sun J, Liang G, Tang Q. Discovery of c-Kit as a New Therapeutic Target in LPS-Induced Acute Lung Injury through Novel Phenylamide Derivative D9. J Med Chem 2025; 68:7499-7517. [PMID: 40125948 DOI: 10.1021/acs.jmedchem.4c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Discovering effective anti-inflammatory drugs and targets is a critical research priority. Herein, 28 novel phenylamide derivatives were designed and synthesized. Compound D9 showed favorable anti-inflammatory activities in acute lung injury (ALI) and sepsis mouse models. The target of D9 was predicted and studied, and c-Kit was identified by surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA), which demonstrated high selectivity in kinase activity profiling. It was further verified that c-Kit participated in the LPS-induced inflammatory response in J774A.1, RAW264.7, MPMs, and lung tissue. Additionally, c-Kit is proved to be essential for LPS-induced activation of the NF-κB pathway. Finally, c-Kit was confirmed as a therapeutic target in the LPS-induced ALI with c-Kit gene knockdown and was further verified as the target of D9. Notably, there has been no report of c-Kit's influence on the LPS-induced inflammatory response. Therefore, c-Kit was identified as a new therapeutic target for the LPS-induced ALI.
Collapse
Affiliation(s)
- Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ke Dong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jintian Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Anqi Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenhui Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nan Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Xiaojun Chen
- Department of Pharmacy, Wenzhou Nursing School, Wenzhou, Zhejiang 325000, China
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin 133002, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin 133002, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
3
|
Kobe B, Nanson JD, Hoad M, Blumenthal A, Gambin Y, Sierecki E, Stacey KJ, Ve T, Halfmann R. Signalling by co-operative higher-order assembly formation: linking evidence at molecular and cellular levels. Biochem J 2025; 482:275-294. [PMID: 40040472 DOI: 10.1042/bcj20220094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The concept of higher-order assembly signalling or signalling by co-operative assembly formation (SCAF) was proposed based on the structures of signalling assemblies formed by proteins featuring domains from the death-fold family and the Toll/interleukin-1 receptor domain family. Because these domains form filamentous assemblies upon stimulation and activate downstream pathways through induced proximity, they were envisioned to sharpen response thresholds through the extreme co-operativity of higher-order assembly. Recent findings demonstrate that a central feature of the SCAF mechanism is the nucleation barrier that allows a switch-like, digital or 'all-or-none' response to minute stimuli. In agreement, this signalling mechanism features in cell-death and innate immunity activation pathways where a binary decision is required. Here, we broaden the concept of SCAF to encapsulate the essential kinetic properties of open-ended assembly in signalling, compare properties of filamentous assemblies and other co-operative assemblies such as biomolecular condensates, and review how this concept operates in cells.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey D Nanson
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Mikayla Hoad
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Antje Blumenthal
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Yann Gambin
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Sierecki
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, U.S.A
| |
Collapse
|
4
|
Xie W, Li H, Yu T, Zhu Y, Gao J, Yang X, Cheng H, Qiao H, Zhang X, Gao X, Zhang L, Fang X, Zhang L, Bi Y. Design and Synthesis of Hederagenin Derivatives for the Treatment of Sepsis by Targeting TAK1 and Regulating the TAK1-NF-κB/MAPK Signaling. J Med Chem 2025; 68:2694-2719. [PMID: 39817810 DOI: 10.1021/acs.jmedchem.4c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Sepsis is a systemic inflammatory response caused by infection and is a leading cause of death worldwide. We designed and synthesized a series of hederagenin analogues with anti-inflammatory activity. The most effective compound, 14, reduced the release of TNF-α and IL-6 in RAW264.7 cells induced by lipopolysaccharide by affecting NF-κB/MAPK signaling. It demonstrated significant protection against sepsis in vivo and ameliorated histopathological changes in the liver, lungs, and kidneys. It exhibited good safety in subacute toxicity assays. Western blotting results indicated that it reduced the generation of p-p65, p-IκB, p-p38, p-JNK, and p-ERK. Immunofluorescence assay results suggested that the compound inhibited nuclear translocation of p65 and c-Fos. It was found to target TAK1 with a novel molecular backbone, distinct from the few TAK1 inhibitors previously reported. This work provides a new lead structure for the study of TAK1 inhibitors and a potential target for TAK1 in sepsis therapy.
Collapse
Affiliation(s)
- Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Haixia Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Tao Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yatong Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Jing Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaoli Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Haoran Cheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hui Qiao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaojin Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Lei Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xianhe Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| |
Collapse
|
5
|
Chen P, Chen P, Wang X. Design, synthesis and bioactivity evaluation of cinnamic acid derivatives as potential anti-inflammatory agents against LPS-induced acute lung injury. Bioorg Med Chem Lett 2025; 116:130036. [PMID: 39580004 DOI: 10.1016/j.bmcl.2024.130036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Acute lung injury (ALI), a common critical disease in clinical practice, has a mortality rate as high as 30-40 %, yet currently, no effective treatment methods are available. Research on ALI indicated that inhibition of overexpressed inflammatory factors might be a potential treatment for ALI. In this study, a series of cinnamic acid derivatives were obtained by introducing diverse aminothiazole fragments into the natural product cinnamic acid. Among these derivatives, compound 22 displayed excellent activity of inhibiting the release of IL-6 in J774A.1 cells. Moreover, it also ameliorated the LPS-induced ALI in mouse model by suppressing cytokine expression, reducing lung edema and macrophage infiltration. These findings indicated that compound 22 might provide a new lead structure for the development of drugs for ALI.
Collapse
Affiliation(s)
- Pengqin Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Pan Chen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiemin Wang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
6
|
Shen C, Mao Z, Chen T, Wei Y, Zhou T, Zhong N, Zhu G, Shi Q, Xie Z, Zhao H, Zhang X. Design, Synthesis, and Biological Evaluation of 2-Arylaminopyrimidine Derivatives as Dual Cathepsin L and JAK Inhibitors for the Treatment of Acute Lung Injury. J Med Chem 2025; 68:361-386. [PMID: 39699557 DOI: 10.1021/acs.jmedchem.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Acute lung injury (ALI) is a disease characterized by pulmonary inflammation, blood barrier functional disorder, and hypoxemia. Herein, a series of 2-aminopyrimidine derivatives were synthesized. Most of them exhibited inhibitory effects on inflammatory cytokines IL-6 and IL-8 in human bronchial epithelial (HBE) cells at a concentration of 5 μM without significant cytotoxicity. Compound A8 displayed an excellent anti-inflammatory activity, achieving inhibition rates of 83% for IL-6 and 85% for IL-8. Besides, A8 has a strong binding affinity to CTSL and a good inhibitory activity on JAKs. Western blot analysis indicated that compound A8 strongly blocked the maturation of CTSL and the phosphorylation of p-38, p-65, and STATs, thereby repressing the activation of the MAPK, NF-κB, and JAK/STAT signaling pathway. Moreover, animal experiments showed that A8 played a protective and therapeutic role in ALI in mice, validating its potential as a treatment for ALI.
Collapse
Affiliation(s)
- Chunwei Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhengtong Mao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianpeng Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yingying Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P. R. China
| | - Tao Zhou
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ningyuan Zhong
- Shaoxing Institute for Food and Drug Control, Shaoxing, Zhejiang 312071, P. R. China
| | - Gaoyang Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zheyu Xie
- Shaoxing Institute for Food and Drug Control, Shaoxing, Zhejiang 312071, P. R. China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P. R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Chen P, Zou Y, Wang X, Chen Z, Dong K, Yang J, Cui Y, Gu J, Wu X, Li X, Zhou Y, Guo M, Zheng Z, Chen Q, Zhu W, Wu D, Yin L, Chen L, Ouyang Q, Liang G, Tang Q. Discovery of Novel MyD88 Inhibitor A5S to Alleviate Acute Lung Injury with Favorable Drug-like Properties. J Med Chem 2024; 67:22263-22281. [PMID: 39644263 DOI: 10.1021/acs.jmedchem.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Myeloid differentiation primary response 88 (MyD88) plays a central role in inflammatory responses and diseases. However, only a few inhibitors of MyD88 with some limits have been reported currently. Herein, we identified a lead compound (L7) through virtual screening and synthesized twenty-seven L7 derivatives. An optimal compound (A5) was determined through enzyme-linked immunosorbent assay (ELISA), 2,5-diphenyl-2H-tetrazolium bromide (MTT), and biolayer interferometry (BLI) assay. The potent isomer A5S showed a high MyD88 binding ability and exerted an anti-inflammatory effect through the NF-κB/MAPK pathway. A5S had good stability and safety, showed the highest distribution concentration in the lungs, and exhibited good therapeutic effects on LPS-induced and sepsis-induced ALI mouse models. Most importantly, A5S showed advantages in PK properties, and was identified as a promising MyD88 inhibitor with favorable drug-like properties, compared to the only approved MyD88 inhibitor, TJ-M2010-5, which is currently undergoing a Phase I study, and our previously reported MyD88 inhibitors LM8.
Collapse
Affiliation(s)
- Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiemin Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Dong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yaqian Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Gu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xinyi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
8
|
Li H, Guo J, Zhang G, Zhou J, Wang Q. Protective Effect of a Isothiazolinone Derivative on Acute Lung Injury by Regulating PI3K-AKT Signaling Pathway. Chem Biodivers 2024; 21:e202400892. [PMID: 38924251 DOI: 10.1002/cbdv.202400892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Acute lung injury (ALI) is a prevalent organ injury in sepsis, characterized by an inflammatory reactive disorder. Both the incidence and mortality rates of ALI have been steadily increasing. Isothiazolinone derivatives have displayed anti-inflammatory activity and have shown effectiveness in treating pneumonia. The objective of the study is to assess the effects and mechanisms of the isothiazolinone derivative 4-benzoyl-2-butyl-5-(ethylsulfinyl)isothiazol-3(2H)-one (C6) on sepsis-induced ALI.The analysis of biological function and signal pathway enrichment demonstrated that C6 primarily exhibited anti-inflammatory effects. Administration of different doses of C6 through intraperitoneal injection significantly improved the survival rate, body temperature, and body mass of mice with ALI induced by cecal ligation and puncture (CLP). Additionally, it mitigated lung tissue injury, pulmonary edema, lung permeability, inflammatory cell infiltration, apoptosis, and the expression of inflammatory cytokines. Network targeting analysis and experimental validation in mouse leukemia cells of monocyte macrophage (RAW264.7) cells and CLP-induced ALI mice revealed that the anti-inflammatory effect of C6 was mediated by the inhibition of the phosphatidylinositol 3 kinase -protein kinase B (PI3K-AKT) signaling pathway. The research suggest that C6 has protective effects against ALI by inhibiting the PI3K-AKT signaling pathway. This information could be valuable in developing potential treatments for ALI.
Collapse
Affiliation(s)
- Hua Li
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Jie Guo
- The Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Gaiyue Zhang
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Jing Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Qiang Wang
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| |
Collapse
|
9
|
Zou Y, Wang X, Chen P, Zheng Z, Li X, Chen Z, Guo M, Zhou Y, Sun C, Wang R, Zhu W, Zheng P, Cho WJ, Cho YC, Liang G, Tang Q. Fragment-Based Anti-inflammatory Agent Design and Target Identification: Discovery of AF-45 as an IRAK4 Inhibitor to Treat Ulcerative Colitis and Acute Lung Injury. J Med Chem 2024; 67:10687-10709. [PMID: 38913701 DOI: 10.1021/acs.jmedchem.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
UC and ALI are inflammatory diseases with limited treatment in the clinic. Herein, fragment-based anti-inflammatory agent designs were carried out deriving from cyclohexylamine/cyclobutylamine and several fragments from anti-inflammatory agents in our lab. AF-45 (IC50 = 0.53/0.60 μM on IL-6/TNF-α in THP-1 macrophages) was identified as the optimal molecule using ELISA and MTT assays from the 33 synthesized compounds. Through mechanistic studies and a systematic target search process, AF-45 was found to block the NF-κB/MAPK pathway and target IRAK4, a promising target for inflammation and autoimmune diseases. The selectivity of AF-45 targeting IRAK4 was validated by comparing its effects on other kinase/nonkinase proteins. In vivo, AF-45 exhibited a good therapeutic effect on UC and ALI, and favorable PK proprieties. Since there are currently no clinical or preclinical trials for IRAK4 inhibitors to treat UC and ALI, AF-45 provides a new lead compound or candidate targeting IRAK4 for the treatment of these diseases.
Collapse
Affiliation(s)
- Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Xiemin Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Chenhui Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| |
Collapse
|
10
|
Fu L, Cheng L, Lu J, Ye Q, Shu C, Sun C, Liu Z, Liang G, Zhao W. Bicyclol mitigates lipopolysaccharide-induced acute lung injury through myeloid differentiation factor 88 inhibition. Toxicol Appl Pharmacol 2024; 487:116958. [PMID: 38735591 DOI: 10.1016/j.taap.2024.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Acute lung injury (ALI) remains a significant clinical challenge due to the absence of effective treatment alternatives. This study presents a new method that employs a screening platform focusing on MyD88 affinity, anti-inflammatory properties, and toxicity. This platform was used to evaluate a 300-compound library known for its anti-inflammatory potential. Among the screened compounds, Bicyclol emerged as a standout, exhibiting MyD88 binding and a significant reduction in LPS-stimulated pro-inflammatory factors production in mouse primary peritoneal macrophages. By targeting MyD88, Bicyclol disrupts the MyD88/TLR4 complex and MyD88 polymer formation, thereby mitigating the MAPKs and NF-κB signaling pathways. In vivo experiments further confirmed Bicyclol's efficacy, demonstrating alleviated ALI symptoms, decreased inflammatory cytokines level, and reduced inflammatory cells presence in lung tissues. These findings were associated with a decrease in mortality in LPS-challenged mice. Overall, Bicyclol represents a promising treatment option for ALI by specifically targeting MyD88 and limiting inflammatory responses.
Collapse
Affiliation(s)
- Lili Fu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linting Cheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Junliang Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qianru Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Cong Shu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chuchu Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhiguo Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China.
| | - Weixin Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
11
|
Ding H, Shi S, Hou Y, Cui W, Sun R, Lv Y, Yue H, Wei W, Yi D. Visible-Light-Promoted Cascade Coupling of 2-Isocyanonaphthalenes with Elemental Sulfur and Amines to Construct Naphtho[2,1-d]thiazol-2-Amines. Chemistry 2024; 30:e202400719. [PMID: 38462510 DOI: 10.1002/chem.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A visible-light-induced strategy has been explored for the synthesis of naphtho[2,1-d]thiazol-2-amines through ortho-C-H sulfuration of 2-isocyanonaphthalenes with elemental sulfur and amines under external photocatalyst-free conditions. This three-component reaction, which utilizes elemental sulfur as the odorless sulfur source, molecular oxygen as the clean oxidant, and visible light as the clean energy source, provides a mild and efficient approach to construct a series of naphtho[2,1-d]thiazol-2-amines. Preliminary mechanistic studies indicated that visible-light-promoted photoexcitation of reaction intermediates consisting of thioureas and DBU might be involved in this transformation.
Collapse
Affiliation(s)
- Hongyu Ding
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Siyu Shi
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yanan Hou
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Wenxiu Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Rong Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, P. R. China
| |
Collapse
|
12
|
Bilget Guven E, Durmaz Sahin I, Altiparmak D, Servili B, Essiz S, Cetin-Atalay R, Tuncbilek M. Newly synthesized 6-substituted piperazine/phenyl-9-cyclopentyl containing purine nucleobase analogs act as potent anticancer agents and induce apoptosis via inhibiting Src in hepatocellular carcinoma cells. RSC Med Chem 2023; 14:2658-2676. [PMID: 38107180 PMCID: PMC10718522 DOI: 10.1039/d3md00440f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
Newly synthesized 6-substituted piperazine/phenyl-9-cyclopentyl-containing purine nucleobase analogs were tested for their in vitro anticancer activity against human cancer cells. Compounds 15, 17-24, 49, and 56 with IC50 values less than 10 μM were selected for further examination on an enlarged panel of liver cancer cell lines. Experiments revealed that compound 19 utilizes its high cytotoxic potential (IC50 < 5 μM) to induce apoptosis in vitro. Compound 19 displayed a KINOMEscan selectivity score S35 of 0.02 and S10 of 0.01 and demonstrated a significant selectivity against anaplastic lymphoma kinase (ALK) and Bruton's tyrosine kinase (BTK) over other kinases. Compounds 19, 21, 22, 23, and 56 complexed with ALK, BTK, and (discoidin domain-containing receptor 2) DDR2 were analyzed structurally for binding site interactions and binding affinities via molecular docking and molecular dynamics simulations. Compounds 19 and 56 displayed similar interactions with the activation loop of the kinases, while only compound 19 reached toward the multiple subsites of the active site. Cell cycle and signaling pathway analyses exhibited that compound 19 decreases phosho-Src, phospho-Rb, cyclin E, and cdk2 levels in liver cancer cells, eventually inducing apoptosis.
Collapse
Affiliation(s)
- Ebru Bilget Guven
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University 06560, Yenimahalle Ankara Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University 34083, Cibali-Fatih Istanbul Turkey
| | - Irem Durmaz Sahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University 06800, Bilkent Ankara Turkey
- School of Medicine, Koc University 34450, Sarıyer İstanbul Turkey
| | - Duygu Altiparmak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University 06560, Yenimahalle Ankara Turkey
| | - Burak Servili
- Graduate School of Science and Engineering, Bioinformatics and Genetics Program, Kadir Has University Fatih 34083 Istanbul Turkey
| | - Sebnem Essiz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University 34083, Cibali-Fatih Istanbul Turkey
- Graduate School of Science and Engineering, Bioinformatics and Genetics Program, Kadir Has University Fatih 34083 Istanbul Turkey
| | - Rengul Cetin-Atalay
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University 06800 Ankara Turkey
- Section of Pulmonary and Critical Care Medicine, The University of Chicago Chicago IL 60637 USA
| | - Meral Tuncbilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University 06560, Yenimahalle Ankara Turkey
| |
Collapse
|
13
|
Chen P, Yang J, Zhou Y, Li X, Zou Y, Zheng Z, Guo M, Chen Z, Cho WJ, Chattipakorn N, Wu W, Tang Q, Liang G. Design, synthesis, and bioactivity evaluation of novel amide/sulfonamide derivatives as potential anti-inflammatory agents against acute lung injury and ulcerative colitis. Eur J Med Chem 2023; 259:115706. [PMID: 37572538 DOI: 10.1016/j.ejmech.2023.115706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
The uneven regulation of inflammation is related to various diseases, making anti-inflammation a potential option for the development of novel therapies. In this study, we designed and synthesized a total of fifty-eight novel amide/sulfonamide derivatives based on our previously reported anti-inflammatory compounds. The anti-inflammatory activities of these compounds were evaluated upon LPS-stimulated J774A.1 cells. Compounds 11a, 11b, 11c, and 11d potently reduced the release of IL-6 and TNF-α, and decreased the mRNA level of cytokines in J774A.1 cells. The most active compound 11d with IC50 value of 0.61 μM for IL-6 inhibition, and 4.34 μM for TNF-α inhibition restored IκB α and inhibited the translocation of phosphorylated p65 into the nucleus. In vivo evaluation indicated that 11d improved LPS-induced ALI and alleviated DSS-induced ulcerative colitis in mice. In conclusion, these results suggested compound 11d can be a new lead structure for the development of anti-inflammatory drugs against ALI and ulcerative colitis.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
14
|
Liao J, Yang J, Li X, Hu C, Zhu W, Zhou Y, Zou Y, Guo M, Chen Z, Li X, Dai J, Xu Y, Zheng Z, Chen P, Cho WJ, Liang G, Tang Q. Discovery of the Diphenyl 6-Oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide Analogue J27 for the Treatment of Acute Lung Injury and Sepsis by Targeting JNK2 and Inhibiting the JNK2-NF-κB/MAPK Pathway. J Med Chem 2023; 66:12304-12323. [PMID: 37643372 DOI: 10.1021/acs.jmedchem.3c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Acute lung injury (ALI) and sepsis are both serious and complex conditions associated with high mortality, yet there are no effective treatments. Herein, we designed and synthesized a series of diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogues exhibiting anti-inflammatory activity. The optimal compound J27 decreased the release of TNF-α and IL-6 in mouse and human cells J774A.1 and THP-1 (IL-6 IC50 = 0.22 μM) through the NF-κB/MAPK pathway. J27 demonstrated remarkable protection against ALI and sepsis in vivo and exhibited good safety in subacute toxicity experiments. Pharmacokinetic study indicated that J27 had good bioavailability (30.74%). To our surprise, J27 could target JNK2 with a totally new molecular skeleton compared with the only few JNK2 inhibitors reported. Moreover, there is no report that JNK2 inhibitors could apply for ALI and sepsis. Therefore, this work provides a new lead structure for the study of JNK2 inhibitors and a new target of JNK2 to treat ALI and sepsis.
Collapse
Affiliation(s)
- Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Yuye Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| |
Collapse
|
15
|
Zhang C, Liu Y, Zhou Q, Fan H, Liu X, Hu J. Recent research advances in ATX inhibitors: An overview of primary literature. Bioorg Med Chem 2023; 90:117374. [PMID: 37354726 DOI: 10.1016/j.bmc.2023.117374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
The autoglobulin gene is the main enzyme for circulating LPA production and has lysophosphatidylcholine D activity, which catalyzes the production of lysophosphatidic acid and choline with lysophosphatidylcholine as substrate. A growing body of experimental evidence suggests that autoglobulin is involved in the pathogenesis of a variety of diseases. This review summarizes the different structural ATX inhibitors classified according to their binding mode to the ATX triple orientation site, and summarizes the conformational relationships and molecular docking of each type with ATX structure, hoping to contribute to the development of novel ATX inhibitors.
Collapse
Affiliation(s)
- Cheng Zhang
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Yue Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Qinjiang Zhou
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Hongze Fan
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Xiaoxiao Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| |
Collapse
|
16
|
Jin B, Wang J, Chen Y, Zuo W, Hong B, Li J, Huang F, Zhang M, Wang Y. Focal adhesion kinase induces cardiac remodeling through NF-κB-mediated inflammatory responses in diabetic cardiomyopathy. Int Immunopharmacol 2023; 120:110280. [PMID: 37216798 DOI: 10.1016/j.intimp.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Hyperglycemia-induced chronic inflammation is a crucial risk factor that causes undesirable cardiac alternations in diabetic cardiomyopathy (DCM). Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that primarily regulates cell adhesion and migration. Based on recent studies, FAK is involved in inflammatory signaling pathway activation in cardiovascular diseases. Here, we evaluated the possibility of FAK as a therapeutic target for DCM. METHODS A small molecular selective FAKinhibitor, PND-1186 (PND), was used to evaluate the effect of FAK on DCM in both high glucose-stimulated cardiomyocytes and streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) mice. RESULTS Increased FAK phosphorylation was found in the hearts of STZ-induced T1DM mice. PND treatment significantly decreased the expression of inflammatory cytokines and fibrogenic markers in cardiac specimens of diabetic mice. Notably, these reductions were correlated with improved cardiac systolic function. Furthermore, PND suppressed transforming growth factor-β-activated kinase 1 (TAK1) phosphorylation and NF-κB activation in the hearts of diabetic mice. Cardiomyocytes were identified as the main contributor to FAK-mediated cardiac inflammation and the involvement of FAK in cultured primary mouse cardiomyocytes and H9c2 cells was identified. Both FAK inhibition or FAK deficiency prevented hyperglycemia-induced inflammatory and fibrotic responses in cardiomyocytes owing to the inhibition of NF-κB. Herein, FAK activation was revealed to FAK directly binding to TAK1, leading to activation of TAK1 and downstream NF-κB signaling pathway. CONCLUSIONS FAK is a key regulator of diabetes-associated myocardial inflammatory injury by directly targeting to TAK1.
Collapse
Affiliation(s)
- Bo Jin
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Bo Hong
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jie Li
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Fang Huang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Mengpei Zhang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China.
| | - Yi Wang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Chen P, Zhou Y, Li X, Yang J, Zheng Z, Zou Y, Li X, Liao J, Dai J, Xu Y, Yin L, Chen G, Gu J, Ouyang Q, Cho WJ, Tang Q, Liang G. Design, Synthesis, and Bioevaluation of Novel MyD88 Inhibitor c17 against Acute Lung Injury Derived from the Virtual Screen. J Med Chem 2023; 66:6938-6958. [PMID: 37130331 DOI: 10.1021/acs.jmedchem.3c00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Myeloid differentiation primary response protein 88 (MyD88) is crucial to immune cascades mediated by Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 dysregulation has been linked to a wide variety of inflammatory diseases, making it a promising new target for anti-inflammatory and cancer therapy development. In this study, 46 compounds were designed and synthesized inspired by virtual screen hit. The anti-inflammatory activity of designed compounds was evaluated biologically, and c17 was discovered to have a high binding affinity with MyD88. It inhibited the interaction of TLR4 and MyD88 and suppressed the NF-κB pathway. In addition, c17 treatment led to the accumulation in the lungs of rats and attenuated LPS-induced ALI mice model. Furthermore, c17 showed negligible toxicity in vivo. Together, these findings suggest that c17 may serve as a potential therapeutical method for the treatment of ALI and as a lead structure for the continued development of MyD88 inhibitors.
Collapse
Affiliation(s)
- Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuye Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Gu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
18
|
Luo W, Jin Y, Jiang Y, Yang L, Xu H, Wu D, Zhang Y, Yin L, Khan ZA, Liang G, Wang Y. Doublecortin-like kinase 1 activates NF-κB to induce inflammatory responses by binding directly to IKKβ. Cell Death Differ 2023; 30:1184-1197. [PMID: 36914767 PMCID: PMC10154386 DOI: 10.1038/s41418-023-01147-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a microtubule-associated protein kinase, is involved in neurogenesis, and its levels are elevated in various human cancers. Recent studies suggest that DCLK1 may relate to inflammatory responses in the mouse model of colitis. However, cellular pathways engaged by DCLK1, and potential substrates of the kinase remain undefined. To understand how DCLK1 regulates inflammatory responses, we utilized the well-established lipopolysaccharide (LPS)-stimulated macrophages and mouse model. Through a range of macrophage-based and cell-free platforms, we discovered that DCLK1 binds directly with the inhibitor of κB kinase β (IKKβ) and induces IKKβ phosphorylation on Ser177/181 to initiate nuclear factor-κB (NF-κB) pathway. Deficiency in DCLK1, achieved by silencing or through pharmacological inhibition, prevented LPS-induced NF-κB activation and cytokine production in macrophages. We further show that mice with myeloid-specific DCLK1 knockout or DCLK1 inhibitor treatment are protected against LPS-induced acute lung injury and septic death. Our studies report a novel functional role of macrophage DCLK1 as a direct IKKβ regulator in inflammatory signaling and suggest targeted therapy against DCLK1 for inflammatory diseases.
Collapse
Affiliation(s)
- Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuchen Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Haowen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China
| | - Zia Ali Khan
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
19
|
Zhu W, Wang M, Jin L, Yang B, Bai B, Mutsinze RN, Zuo W, Chattipakorn N, Huh JY, Liang G, Wang Y. Licochalcone A protects against LPS-induced inflammation and acute lung injury by directly binding with myeloid differentiation factor 2 (MD2). Br J Pharmacol 2023; 180:1114-1131. [PMID: 36480410 DOI: 10.1111/bph.15999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a challenging clinical syndrome that leads to various respiratory sequelae and even high mortality in patients with severe disease. The novel pharmacological strategies and therapeutic drugs are urgently needed. Natural products have played a fundamental role and provided an abundant pool in drug discovery. EXPERIMENTAL APPROACH A compound library containing 160 natural products was used to screen potential anti-inflammatory compounds. Mice with LPS-induced ALI was then used to verify the preventive and therapeutic effects of the selected compounds. KEY RESULTS Licochalcone A was discovered from the anti-inflammatory screening of natural products in macrophages. A qPCR array validated the inflammation-regulatory effects of licochalcone A and indicated that the potential targets of licochalcone A may be the upstream proteins in LPS pro-inflammatory signalling. Further studies showed that licochalcone A directly binds to myeloid differentiation factor 2 (MD2), an assistant protein of toll-like receptor 4 (TLR4), to block both LPS-induced TRIF- and MYD88-dependent pathways. LEU61 and PHE151 in MD2 protein are the two key residues that contribute to the binding of MD2 to licochalcone A. In vivo, licochalcone A treatment alleviated ALI in LPS-challenged mice through significantly reducing immunocyte infiltration, suppressing activation of TLR4 pathway and inflammatory cytokine induction. CONCLUSION AND IMPLICATIONS In summary, our study identified MD2 as a direct target of licochalcone A for its anti-inflammatory activity and suggested that licochalcone A might serve as a novel MD2 inhibitor and a potential drug for developing ALI/ARDS therapy.
Collapse
Affiliation(s)
- Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rumbidzai Natasha Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zuo
- Affiliated Xiangshan Hospital of Wenzhou Medical University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,College of Pharmacy, Chonnam National University, Gwangju, Korea.,Affiliated Xiangshan Hospital of Wenzhou Medical University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, China
| |
Collapse
|
20
|
Yang J, Wang M, Xu Y, Liao J, Li X, Zhou Y, Dai J, Li X, Chen P, Chen G, Cho WJ, Chattipakorn N, Samorodov AV, Pavlov VN, Wang Y, Liang G, Tang Q. Discovery of 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives as novel anti-inflammatory agents for the treatment of acute lung injury and sepsis. Eur J Med Chem 2023; 249:115144. [PMID: 36708679 DOI: 10.1016/j.ejmech.2023.115144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Acute lung injury (ALI) and sepsis, characterized by systemic inflammatory response syndrome, remain the major causes of death in severe patients. Inhibiting the release of proinflammatory cytokines is considered to be a promising method for the treatment of inflammation-related diseases. In this study, a total of 28 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives were designed and synthesized and their anti-inflammatory activities in J774A.1 were evaluated. Among them, derivative 13a was found to significantly inhibit lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) on J774A.1, THP-1 and LX-2 cells, and inhibited the activation of the NF-κB pathway. Furthermore, administration of 13ain vivo significantly improved the symptoms in LPS-induced ALI mice, including alleviation of pathological changes in the lung tissue, reduction of pulmonary edema, and inhibition of macrophage infiltration. Moreover, the administration of 13ain vivo significantly promoted survival in LPS-induced sepsis mice. 13a demonstrated favorable pharmacokinetic properties with T1/2 value of 11.8 h and F value of 36.3%. Therefore, this study has identified a novel 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivative, 13a, which is an effective anti-inflammatory agent. The findings have laid a foundation for the further development of agents to treat ALI and sepsis.
Collapse
Affiliation(s)
- Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yulan Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, Zhejiang, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China.
| |
Collapse
|
21
|
Chen P, Yu Y, Su S, Du Z, Cai B, Sun X, Chattipakorn N, Samorodov AV, Pavlov VN, Tang Q, Cho WJ, Liang G. Design, synthesis, and bioactivity evaluation of novel 1-(4-(benzylsulfonyl)-2-nitrophenyl) derivatives as potential anti-inflammatory agents against LPS-induced acute lung injury. Bioorg Med Chem Lett 2023; 80:129097. [PMID: 36462751 DOI: 10.1016/j.bmcl.2022.129097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
Acute lung injury (ALI) is a devastating disease with a high mortality rate of 30%-40%. There is an unmet clinical need owing to limited treatment strategies and little clinical benefit. The pathology of ALI indicates that reducing the inflammatory response could be a highly desirable strategy to treat ALI. In this study, we designed and synthesized 36 novel 1-(4-(benzylsulfonyl)-2-nitrophenyl) derivatives and evaluated their anti-inflammatory activities by measuring the release of cytokines in lipopolysaccharide (LPS)-challenged J774A.1 cells. Compounds 19, 20, and 39 potently reduced the release of IL-6 and TNF-α in J774A.1 cells. Additionally, 39 improved LPS-induced ALI in vivo and inhibited cytokine production in lung tissues. Furthermore, 39 reduced inflammatory infiltration and downregulated p-p65 levels in lung tissues. Thus, compound 39 could serve as a new lead structure for the development of anti-inflammatory drugs to treat ALI.
Collapse
Affiliation(s)
- Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yiming Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sijia Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiteng Du
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoyu Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
22
|
Zhu W, Luo W, Han J, Zhang Q, Ji L, Samorodov AV, Pavlov VN, Zhuang Z, Yang D, Yin L, Huang L, Liang G, Huh JY, Wang Y. Schisandrin B protects against LPS-induced inflammatory lung injury by targeting MyD88. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154489. [PMID: 36270224 DOI: 10.1016/j.phymed.2022.154489] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a challenging clinical syndrome that manifests as an acute inflammatory response. Schisandrin B (Sch B), a bioactive lignan from Schisandra genus plants, has been shown to suppress inflammatory responses and oxidative stress. However, the underlying molecular mechanisms have remained elusive. HYPOTHESIS/PURPOSE This study performed an in-depth investigation of the anti-inflammatory mechanism of Sch B in macrophages and in an animal model of ALI. METHODS qPCR array was used to probe the differential effects and potential target of Sch B. ALI was induced by intratracheal administration of LPS in experimental mice with or without Sch B treatment. RESULTS Our studies show that Sch B differentially modulates inflammatory factor induction by LPS in macrophages by directly binding myeloid differentiation response factor-88 (MyD88), an essential adaptor protein in the toll-like receptor-4 (TLR4) pathway. Sch B spares non-MyD88-pathways downstream of TLR4. Such inhibition suppressed key signaling mediators such as TAK1, MAPKs, and NF-κB, and pro-inflammatory factor induction. Pull down assay using biotinylated-Sch B validate the direct interaction between Sch B and MyD88 in macrophages. Treatment of mice with Sch B prior to LPS challenge reduced inflammatory cell infiltration in lungs, induction of MyD88-pathway signaling proteins, and prevented inflammatory cytokine induction. CONCLUSION In summary, our studies have identified MyD88 as a direct target of Sch B for its anti-inflammatory activity, and suggest that Sch B may have therapeutic value for acute lung injury and other MyD88-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Wu Luo
- Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiuyan Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lijun Ji
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa 450005, Russia
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Daona Yang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Lijiang Huang
- Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China.
| |
Collapse
|
23
|
Luo W, Wu G, Chen X, Zhang Q, Zou C, Wang J, Liu J, Chattipakorn N, Wang Y, Liang G. Blockage of MyD88 in cardiomyocytes alleviates cardiac inflammation and cardiomyopathy in experimental diabetic mice. Biochem Pharmacol 2022; 206:115292. [DOI: 10.1016/j.bcp.2022.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
|
24
|
Yang B, Luo W, Wang M, Tang Y, Zhu W, Jin L, Wang M, Wang Y, Zhang Y, Zuo W, Huang LJ, Zhao Y, Liang G. Macrophage-specific MyD88 deletion and pharmacological inhibition prevents liver damage in non-alcoholic fatty liver disease via reducing inflammatory response. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166480. [PMID: 35811033 DOI: 10.1016/j.bbadis.2022.166480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Activation of the innate immune system through toll-like receptors (TLRs) has been repeatedly demonstrated in non-alcoholic fatty liver disease (NAFLD) and several TLRs have been shown to contribute. Myeloid differentiation primary response 88 (MyD88) is as an adapter protein for the activation of TLRs and bridges TLRs to NF-κB-mediated inflammation in macrophages. However, whether myeloid cell MyD88 contributes to NAFLD are largely unknown. To test this approach, we generated macrophage-specific MyD88 knockout mice and show that these mice are protected against high-fat diet (HFD)-induced hepatic injury, lipid accumulation, and fibrosis. These protective effects were associated with reduced macrophage numbers in liver tissues and surpassed inflammatory responses. In cultured macrophages, saturated fatty acid palmitate utilizes MyD88 to activate NF-κB and induce inflammatory and fibrogenic factors. In hepatocytes, these factors may cause lipid accumulation and a further elaboration of inflammatory cytokines. In hepatic stellate cells, macrophage-derived factors, especially TGF-β, cause activation and hepatic fibrosis. We further show that pharmacological inhibition of MyD88 is also able to reduce NAFLD injury in HFD-fed mice. Therefore, our study has provided empirical evidence that macrophage MyD88 participates in HFD-induced NAFLD and could be targeted to prevent the development and progression of NAFLD/NASH.
Collapse
Affiliation(s)
- Bin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yelin Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Meihong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wei Zuo
- Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Li-Jiang Huang
- Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
25
|
Singh A, Malhotra D, Singh K, Chadha R, Bedi PMS. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Lin K, Luo W, Yang N, Su L, Zhou H, Hu X, Wang Y, Khan ZA, Huang W, Wu G, Liang G. Inhibition of MyD88 attenuates angiotensin II-induced hypertensive kidney disease via regulating renal inflammation. Int Immunopharmacol 2022; 112:109218. [PMID: 36116148 DOI: 10.1016/j.intimp.2022.109218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Kidney damage is a frequent event in the course of hypertension. Recent researches highlighted a critical role of non-hemodynamic activities of angiotensin II (Ang II) in hypertension-associated kidney fibrosis and inflammation. These activities are mediated through toll-like receptors (TLRs) but the mechanisms by which Ang II links TLRs to downstream inflammatory and fibrogenic responses is not fully known. In this study, we investigated the role of TLR adapter protein called myeloid differentiation primary-response protein-88 (MyD88) as the potential link. METHODS C57BL/6 mice were administered Ang II by micro-osmotic pump infusion for 4 weeks to develop nephropathy. Mice were treated with small-molecule MyD88 inhibitor LM8. In vitro, MyD88 was blocked using siRNA or LM8 in Ang II-challenged renal tubular epithelial cells. RESULTS We show that MyD88 is mainly located in tubular epithelial cells and Ang II increases the interaction between TLR4 and MyD88. This interaction activates MAPKs and nuclear factor-κB (NF-κB), leading to increased production of inflammatory and fibrogenic factors. Inhibition of MyD88 by siRNA or selective inhibitor LM8 supresses MyD88-TLR4 interaction, NF-κB activation, and elaboration of inflammatory cytokines and fibrosis-associated factors. These protective actions resulted in decreased renal pathological changes and preserved renal function in LM8-treated hypertensive mice, without affecting hypertension. CONCLUSION These results demonstrate that Ang II induces inflammation and fibrosis in renal tubular epithelial cells through MyD88 and present MyD88 as a potential point of intervention for hypertension-associated kidney disease.
Collapse
Affiliation(s)
- Ke Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Na Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lan Su
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Zhou
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Weijian Huang
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gaojun Wu
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
27
|
Venkateswara Rao B, Pavan Kumar P, Ramalingam V, Karthik G, Andugulapati SB, Suresh Babu K. Piperazine tethered bergenin heterocyclic hybrids: design, synthesis, anticancer activity, and molecular docking studies. RSC Med Chem 2022; 13:978-985. [PMID: 36092140 PMCID: PMC9383709 DOI: 10.1039/d2md00116k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 09/29/2023] Open
Abstract
In an attempt to develop natural product-based anticancer agents, a series of novel piperazine-linked bergenin heterocyclic hybrids bearing arylthiazolyl (5a-e), benzothiazolyl (10a-i), and arylsulfonyl (13a-o) were synthesized using the classical Mannich reaction and evaluated for their anticancer activity. All the synthesized derivatives were assessed for in vitro cytotoxic activity against a panel of human cancer and normal cell lines and the results showed that most of the compounds exhibited significant cytotoxic activity against cancer cells and mild cytotoxicity against normal cells. In particular, the compounds 5a, 5c, 10f, and 13o showed potent cytotoxic activity against tongue and oral cancer cell lines compared to the parent compound (<100 μM). Considering the efficacy, the compounds 5a, 5c, 10f, and 13o were subjected to cell cycle analysis and the results indicated that the compounds mitigated the cell cycle progression at the G0/G1 phase in the tongue and oral cancer cell lines. Subsequently, the annexin V/PI staining assay demonstrated that the compounds 5a, 5c, 10f, and 13o induced early and late apoptosis against tongue cancer and necrosis against oral cancer. Further, gene expression analysis revealed that 5a, 5c, and 13o treatment regulated the BAX and BcL-2 expression and also the selected compounds significantly reduced the expression level of vimentin, oct-4, and nanog. In addition, molecular docking studies revealed that the selected derivatives have strong binding energy with the BcL2 protein and downregulates the expression. Taken together, the study results implied that these compounds are promising anticancer candidates by modulating the epithelial to mesenchymal transition axis and could be considered for further development of novel anticancer drugs.
Collapse
Affiliation(s)
- Banoth Venkateswara Rao
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - P Pavan Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Vaikundamoorthy Ramalingam
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - G Karthik
- Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
- Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| |
Collapse
|
28
|
Flavokawain B alleviates LPS-induced acute lung injury via targeting myeloid differentiation factor 2. Acta Pharmacol Sin 2022; 43:1758-1768. [PMID: 34737421 PMCID: PMC9253132 DOI: 10.1038/s41401-021-00792-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI) is a sudden onset systemic inflammatory response. ALI causes severe morbidity and death and currently no effective pharmacological therapies exist. Natural products represent an excellent resource for discovering new drugs. Screening anti-inflammatory compounds from the natural product bank may offer viable candidates for molecular-based therapies for ALI. In this study, 165 natural compounds were screened for anti-inflammatory activity in lipopolysaccharide (LPS)-challenged macrophages. Among the screened compounds, flavokawain B (FKB) significantly reduced LPS-induced pro-inflammatory IL-6 secretion in macrophages. FKB also reduced the formation of LPS/TLR4/MD2 complex by competitively binding to MD2, suppressing downstream MAPK and NF-κB signaling activation. Finally, FKB treatment of mice reduced LPS-induced lung injury, systemic and local inflammatory cytokine production, and macrophage infiltration in lungs. These protective activities manifested as increased survival in the ALI model, and reduced mortality upon bacterial infection. In summary, we demonstrate that the natural product FKB protects against LPS-induced lung injury and sepsis by interacting with MD2 and inhibiting inflammatory responses. FKB may potentially serve as a therapeutic option for the treatment of ALI.
Collapse
|
29
|
Wang B, Xu J, Ren Q, Cheng L, Guo F, Liang Y, Yang L, Tan Z, Fu P, Ma L. Fatty acid-binding protein 4 is a therapeutic target for septic acute kidney injury by regulating inflammatory response and cell apoptosis. Cell Death Dis 2022; 13:333. [PMID: 35410456 PMCID: PMC9001746 DOI: 10.1038/s41419-022-04794-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Sepsis is a systemic inflammatory state in response to infection, and concomitant acute kidney injury (AKI) significantly increases morbidity and mortality. Growing evidence suggests that fatty acid-binding protein 4 (FABP4) is critically involved in kidney diseases, while its role in septic AKI remains unknown. Here, FABP4 was mainly upregulated in renal tubular epithelial cells (RTECs) following cecal ligation and puncture (CLP)- or lipopolysaccharide (LPS)-induced septic AKI. FABP4 inhibition by genetic deletion or BMS309403 treatment both attenuated kidney dysfunction and pathological injury in CLP- or LPS-treated mice. Notably, RTEC-specific deletion of FABP4 also showed similar renoprotective effects. Moreover, FABP4 inhibition alleviated inflammation and apoptosis in CLP-injured kidneys and LPS-stimulated mouse tubular epithelial cells. Mechanistically, TLR4 blockage improved sepsis-induced kidney injury, as well as suppressed c-Jun phosphorylation and FABP4 expression, where c-Jun knockdown also inhibited LPS-stimulated FABP4 level. Meanwhile, FABP4 inhibition reduced the elevated phosphorylated c-Jun, while the levels of TLR4 and MyD88 were uninfluenced. Collectively, the increased FABP4 in RTECs is dependent on TLR4/c-Jun signaling activation and contributes to kidney injury, by forming a positive feedback loop with c-Jun to aggravate inflammation and apoptosis in septic AKI. Thus, FABP4 may be a therapeutic target for septic AKI.
Collapse
Affiliation(s)
- Bo Wang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Jun Xu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Qian Ren
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Lu Cheng
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Fan Guo
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Letian Yang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Zhouke Tan
- Division of Nephrology, ZunYi Medical University Affiliated Hospital, 563003, ZunYi, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
30
|
Zhang QY, Xu SJ, Qian JC, Yang LB, Chen PQ, Wang Y, Hu X, Zhang YL, Luo W, Liang G. Pharmacological inhibition of MyD88 suppresses inflammation in tubular epithelial cells and prevents diabetic nephropathy in experimental mice. Acta Pharmacol Sin 2022; 43:354-366. [PMID: 34552217 PMCID: PMC8792016 DOI: 10.1038/s41401-021-00766-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Emerging evidence shows that chronic inflammation mediated by toll-like receptors (TLRs) contributes to diabetic nephropathy. Myeloid differentiation primary-response protein-88 (MyD88) is an essential adapter protein of all TLRs except TLR3 in innate immunity. It is unclear whether MyD88 could be a therapeutic target for diabetic nephropathy. Here, we used a new small-molecule MyD88 inhibitor, LM8, to examine the pharmacological inhibition of MyD88 in protecting kidneys from inflammatory injury in diabetes. We showed that MyD88 was significantly activated in the kidney of STZ-induced type 1 diabetic mice in tubular epithelial cells as well as in high glucose-treated rat tubular epithelial cells NRK-52E. In cultured tubular epithelial cells, we show that LM8 (2.5-10 μM) or MyD88 siRNA attenuated high-concentration glucose-induced inflammatory and fibrogenic responses through inhibition of MyD88-TLR4 interaction and downstream NF-κB activation. Treatment with LM8 (5, 10 mg/kg, i.g.) significantly reduced renal inflammation and fibrosis and preserved renal function in both type 1 and type 2 diabetic mice. These renoprotective effects were associated with reduced MyD88-TLR4 complex formation, suppressed NF-κB signaling, and prevention of inflammatory factor expression. Collectively, our results show that hyperglycemia activates MyD88 signaling cascade to induce renal inflammation, fibrosis, and dysfunction. Pharmacological inhibition of MyD88 may be a therapeutic approach to mitigate diabetic nephropathy and the inhibitor LM8 could be a potential candidate for such therapy.
Collapse
Affiliation(s)
- Qiu-yan Zhang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Su-jing Xu
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027 China
| | - Jian-chang Qian
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Li-bin Yang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Peng-qin Chen
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yi Wang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Xiang Hu
- grid.268099.c0000 0001 0348 3990Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ya-li Zhang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Wu Luo
- grid.268099.c0000 0001 0348 3990Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Guang Liang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.506977.a0000 0004 1757 7957School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399 China ,grid.410726.60000 0004 1797 8419Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| |
Collapse
|
31
|
Song J, Chen D, Pan Y, Shi X, Liu Q, Lu X, Xu X, Chen G, Cai Y. Discovery of a Novel MyD88 Inhibitor M20 and Its Protection Against Sepsis-Mediated Acute Lung Injury. Front Pharmacol 2021; 12:775117. [PMID: 34912226 PMCID: PMC8666603 DOI: 10.3389/fphar.2021.775117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid differentiation factor 88 (MyD88) is a hub protein in the Toll-like receptor signaling pathway, which acts as a master switch for numerous inflammatory diseases, including acute lung injury (ALI). Although this protein is considered as a crucial therapeutic target, there are currently no clinically approved MyD88-targeting drugs. Based on previous literature, here we report the discovery via computer-aided drug design (CADD) of a small molecule, M20, which functions as a novel MyD88 inhibitor to efficiently relieve lipopolysaccharide-induced inflammation both in vitro and in vivo. Computational chemistry, surface plasmon resonance detection (SPR) and biological experiments demonstrated that M20 forms an important interaction with the MyD88-Toll/interleukin-1 receptor domain and thereby inhibits the protein dimerization. Taken together, this study found a MyD88 inhibitor, M20, with a novel skeleton, which provides a crucial understanding in the development and modification of MyD88 inhibitors. Meanwhile, the favorable bioactivity of the hit compound is also conducive to the treatment of acute lung injury or other more inflammatory diseases.
Collapse
Affiliation(s)
- Jiali Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Daoxing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingqiao Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueqin Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Bayer AL, Alcaide P. MyD88: At the heart of inflammatory signaling and cardiovascular disease. J Mol Cell Cardiol 2021; 161:75-85. [PMID: 34371036 PMCID: PMC8629847 DOI: 10.1016/j.yjmcc.2021.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide and is associated with systemic inflammation. In depth study of the cell-specific signaling mechanisms mediating the inflammatory response is vital to improving anti-inflammatory therapies that reduce mortality and morbidity. Cellular damage in the cardiovascular system results in the release of damage associated molecular patterns (DAMPs), also known as "alarmins," which activate myeloid cells through the adaptor protein myeloid differentiation primary response 88 (MyD88). MyD88 is broadly expressed in most cell types of the immune and cardiovascular systems, and its role often differs in a cardiovascular disease context and cell specific manner. Herein we review what is known about MyD88 in the setting of a variety of cardiovascular diseases, discussing cell specific functions and the relative contributions of MyD88-dependent vs. independent alarmin triggered inflammatory signaling. The widespread involvement of these pathways in cardiovascular disease, and their largely unexplored complexity, sets the stage for future in depth mechanistic studies that may place MyD88 in both immune and non-immune cell types as an attractive target for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Abraham L Bayer
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| |
Collapse
|
33
|
Yang L, Luo W, Zhang Q, Hong S, Wang Y, Samorodov AV, Chattipakorn N, Pavlov VN, Liang G. Cardamonin inhibits LPS-induced inflammatory responses and prevents acute lung injury by targeting myeloid differentiation factor 2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153785. [PMID: 34638032 DOI: 10.1016/j.phymed.2021.153785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a systemic inflammatory process, which has no pharmacological therapy in clinic. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-inflammatory efficacy in several disease models, which could be the potential candidates for the treatment of ALI. HYPOTHESIS/PURPOSE Anti-inflammatory screening from natural product bank may provide new anti-inflammatory compounds for therapeutic target discovery and ALI treatment. METHODS 165 natural compounds were screened for their anti-inflammatory activity in LPS-stimulated macrophages. PCR array, SPR and ELISA were used to determine the potential target of the most active compound, Cardamonin (CAR). The pharmacological effect of CAR was further evaluated in both LPS-stimulated macrophages and ALI mice model. RESULTS Out of the screened 165 compounds, CAR significantly inhibited LPS-induced inflammatory cytokine secretion in macrophages. We further showed that CAR significantly inhibited NF-κB and JNK signaling activation, and thereby inflammatory cytokine production via directly interacting with MD2 in vitro. In vivo, our data show that CAR treatment inhibited LPS-induced lung damage, systemic inflammatory cytokine production, and reduced macrophage infiltration in the lungs, accompanied with reduced TLR4/MD2 complex in lung tissues, Treatment with CAR also dose-dependently increased survival in the septic mice induced by DH5α bacterial infection. CONCLUSION We demonstrate that a natural product, CAR, attenuates LPS-induced lung injury and sepsis by inhibiting inflammation via interacting with MD2, leading to the inactivation of the TLR4/MD2-MyD88-MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Libin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiuyan Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shanshan Hong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
34
|
Reyes Romero A, Lunev S, Popowicz GM, Calderone V, Gentili M, Sattler M, Plewka J, Taube M, Kozak M, Holak TA, Dömling ASS, Groves MR. A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Commun Biol 2021; 4:949. [PMID: 34376783 PMCID: PMC8355244 DOI: 10.1038/s42003-021-02442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
Malate dehydrogenases (MDHs) sustain tumor growth and carbon metabolism by pathogens including Plasmodium falciparum. However, clinical success of MDH inhibitors is absent, as current small molecule approaches targeting the active site are unselective. The presence of an allosteric binding site at oligomeric interface allows the development of more specific inhibitors. To this end we performed a differential NMR-based screening of 1500 fragments to identify fragments that bind at the oligomeric interface. Subsequent biophysical and biochemical experiments of an identified fragment indicate an allosteric mechanism of 4-(3,4-difluorophenyl) thiazol-2-amine (4DT) inhibition by impacting the formation of the active site loop, located >30 Å from the 4DT binding site. Further characterization of the more tractable homolog 4-phenylthiazol-2-amine (4PA) and 16 other derivatives are also reported. These data pave the way for downstream development of more selective molecules by utilizing the oligomeric interfaces showing higher species sequence divergence than the MDH active site. Romero et al. perform NMR-based screening of 1500 fragments to identify fragments that bind at the oligomeric interface of malate dehydrogenase (MDH). Their study indicates an allosteric mechanism impacting enzymatic activity, paving the way for development of more selective molecules and a starting point for the future development of specific MDH inhibitors.
Collapse
Affiliation(s)
- Atilio Reyes Romero
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands
| | - Serjey Lunev
- EV Biotech, Zernikelaan 8, Groningen, the Netherlands
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Vito Calderone
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | | | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Alexander S S Dömling
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands
| | - Matthew R Groves
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands.
| |
Collapse
|
35
|
Sheena Mary Y, Shyma Mary Y, Temiz-Arpaci O, Yadav R, Celik I. DFT, docking, MD simulation, and vibrational spectra with SERS analysis of a benzoxazole derivative: an anti-cancerous drug. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01659-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Alhusadi NA, Turgutalp B, Deniz I, Acar ET, Sipahi H, Yarim M, Gurdal EE. Synthesis, Antimicrobial, Antioxidant and Molecular Docking Studies on Novel 6-Methoxybenzothiazole-piperazine Derivatives with Propanamide Chain. Curr Top Med Chem 2021; 20:1733-1741. [PMID: 32552651 DOI: 10.2174/1568026620666200618122500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infectious diseases are a major threat in the developing world and the discovery of novel antimicrobial agents remains to be crucial due to acquired resistance by the microorganisms. Additionally, various diseases can be prevented with antioxidant agents as they can eliminate the harmful effects of reactive oxygen species. OBJECTIVE In this study, it was aimed to synthesize novel compounds bearing N-(6- methoxybenzothiazol-2-yl)-3-(4-substitued piperazinyl)propanamide backbone that had antimicrobial and antioxidant activities. Mechanisms of activity were aimed to be revealed by docking studies. METHODS Antimicrobial activities were tested by agar-based disc diffusion assay, and antioxidant activities were determined by CUPRAC assay. RESULTS In agar-based disc diffusion assay, the most active compounds were 2b and 2e against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Compounds 2e and 2j showed promising antioxidant activity in CUPRAC assay. Docking studies were performed to optimize the interactions of compounds with DNA gyrase subunit B of S. aureus. Under the light of docking studies, a new compound with potential GyrB inhibition was designed. Antioxidant activity was also supported by docking studies on superoxide dismutase 1 enzyme in which interactions with key residues were observed. CONCLUSION Ten novel benzothiazole-piperazine derivatives were synthesized and their antimicrobial and antioxidant activities were evaluated. Superoxide dismutase 1 enzyme was suggested to be a possible target for the antioxidant activity of the series.
Collapse
Affiliation(s)
- Nesrin Atiah Alhusadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755 Atasehir, Istanbul, Turkey
| | - Bengisu Turgutalp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755 Atasehir, Istanbul, Turkey
| | - Inci Deniz
- Laboratory of Microbiological Analysis, Faculty of Pharmacy, Yeditepe University, 34755 Atasehir, Istanbul, Turkey
| | - Ebru Turkoz Acar
- Department of Analytical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755 Atasehir, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755 Atasehir, Istanbul, Turkey
| | - Mine Yarim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755 Atasehir, Istanbul, Turkey
| | - Enise Ece Gurdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755 Atasehir, Istanbul, Turkey
| |
Collapse
|
37
|
Liu H, Jia W, Tang Y, Zhang W, Qi J, Yan J, Ding W, Cao H, Liang G, Zhu Z, Zheng H, Zhang Y. Inhibition of MyD88 by LM8 Attenuates Obesity-Induced Cardiac Injury. J Cardiovasc Pharmacol 2021; 76:63-70. [PMID: 32398475 DOI: 10.1097/fjc.0000000000000846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity-induced cardiomyopathy involves chronic and sustained inflammation. The toll-like receptor 4 (TLR4) signaling pathway can associate innate immunity with obesity. Myeloid differentiation primary response 88 (MyD88), an indispensable downstream adaptor molecule of TLR4, has been reported to mediate obesity complications. However, whether inhibition of MyD88 can mitigate obesity-induced heart injury remains unclear. LM8, a new MyD88 inhibitor, exhibits prominent anti-inflammatory activity in lipopolysaccharide-treated macrophages. In this study, the protective effects of LM8 on a high-fat diet (HFD)-induced heart injury were assessed in a mouse model of obesity. As suggested from the achieved results, LM8 treatment alleviated HFD-induced pathological and functional damages of the heart in mice. Meantime, the treatment of mice with LM8 could significantly inhibit myocardial hypertrophy, fibrosis, inflammatory cytokines expression, and inflammatory cell infiltration induced by HFD. Besides, LM8 administration inhibited the formation of MyD88/TLR4 complex, phosphorylation of ERK, and activation of nuclear factor-κB induced by HFD. According to the achieved results, MyD88 inhibitor LM8 ameliorated obesity-induced heart injury by inhibiting MyD88-ERK/nuclear factor-κB dependent cardiac inflammatory pathways. Furthermore, targeting MyD88 might be a candidate of a therapeutic method to treat obesity-induced heart injury.
Collapse
Affiliation(s)
- Hui Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Yihui Biotechnology Company Limited, Zhuji, Shaoxing, Zhejiang, China
| | - Wenjing Jia
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yelin Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wentao Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayu Qi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jueqian Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenting Ding
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huixin Cao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zaisheng Zhu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Zheng
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Yihui Biotechnology Company Limited, Zhuji, Shaoxing, Zhejiang, China
| |
Collapse
|
38
|
Wang J, Zhang C, Ye XQ, Du W, Zeng S, Xu JH, Yin H. An efficient and practical aerobic oxidation of benzylic methylenes by recyclable N-hydroxyimide. RSC Adv 2021; 11:3003-3011. [PMID: 35424255 PMCID: PMC8693865 DOI: 10.1039/d0ra10475b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient and practical benzylic aerobic oxidation catalyzed by cheap and simple N-hydroxyimide organocatalyst has been achieved with high yields and broad substrate scope. The organocatalyst used can be recycled and reused by simple workup and only minute amount (1 mol% in most cases) of simple iron salt is used as promoter. Phenyl substrates with mild and strong electron-withdrawing group could also be oxygenated in high yields as well as other benzylic methylenes. Influence of substituents, gram-scale application, catalysts decay and general mechanism of this methodology has also been discussed. An efficient and practical benzylic aerobic oxidation catalyzed by cheap and simple N-hydroxyimide organocatalyst has been achieved with high yields and broad substrate scope.![]()
Collapse
Affiliation(s)
- Jian Wang
- School of Pharmacy
- Hangzhou Medical College
- Hangzhou 310053
- China
| | - Cheng Zhang
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310000
- China
| | - Xiao-Qing Ye
- School of Pharmacy
- Hangzhou Medical College
- Hangzhou 310053
- China
| | - Wenting Du
- School of Pharmacy
- Hangzhou Medical College
- Hangzhou 310053
- China
| | - Shenxin Zeng
- School of Pharmacy
- Hangzhou Medical College
- Hangzhou 310053
- China
| | - Jian-Hong Xu
- School of Pharmacy
- Hangzhou Medical College
- Hangzhou 310053
- China
| | - Hong Yin
- School of Pharmacy
- Hangzhou Medical College
- Hangzhou 310053
- China
| |
Collapse
|
39
|
Chen T, Zhu G, Meng X, Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur J Med Chem 2020; 207:112660. [DOI: 10.1016/j.ejmech.2020.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
|
40
|
Bao W, Wang Z, Cao Z, Wang X, Ma X, Yu X, He W. Visible‐Light‐Initiated Cascade Reaction of 2‐Isothiocyanatonaphthalenes and Amines under Additive‐ and External Photocatalyst‐Free and Mild Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Wen‐Hu Bao
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Zheng Wang
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation Changsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Xin‐Chang Wang
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Xin‐Ran Ma
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Xian‐Yong Yu
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Wei‐Min He
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| |
Collapse
|
41
|
Chen L, Zheng L, Chen P, Liang G. Myeloid Differentiation Primary Response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. J Med Chem 2020; 63:13316-13329. [DOI: 10.1021/acs.jmedchem.0c00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Pengqin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
42
|
Zheng XY, Sun CC, Liu Q, Lu XY, Fu LL, Liang G, Zhang XH, Chen GZ. Compound LM9, a novel MyD88 inhibitor, efficiently mitigates inflammatory responses and fibrosis in obesity-induced cardiomyopathy. Acta Pharmacol Sin 2020; 41:1093-1101. [PMID: 32341464 PMCID: PMC7468329 DOI: 10.1038/s41401-020-0410-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
Mechanisms of cardiomyopathy caused by obesity/hyperlipidemia are complicated. Obesity is usually associated with chronic low-grade inflammation and may lead to the onset and progression of myocardial fibrosis and remodeling. TLR4/MyD88 signaling pathway, as a key regulator of inflammation, plays an important role in the pathogenesis of obesity-induced cardiomyopathy. We previously demonstrated that LM9, a novel MyD88 inhibitor, attenuated inflammatory responses and fibrosis in obesity-induced cardiomyopathy by inhibiting the formation of TLR4/MyD88 complex. In this study, we investigated the protective effects of LM9 on obesity-induced cardiomyopathy in vitro and in vivo. We showed that LM9 (5, 10 μM) significantly attenuates palmitic acid (PA)-induced inflammation in mouse peritoneal macrophages, evidenced by decreased expression of proinflammatory genes including TNF-α, IL-6, IL-1β, and ICAM-1. In cardiac-derived H9C2 cells, LM9 treatment suppressed PA-induced inflammation, lipid accumulation, and fibrotic responses. In addition, LM9 treatment also inhibited PA-activated TLR4/MyD88/NF-κB signaling pathway. We further revealed in HEK293 cells that LM9 treatment blocked the TLR4/MyD88 binding and MyD88 homodimer formation. In HFD-fed mice, administration of LM9 (5, 10 mg/kg, ig, every other days for 8 weeks) dose-dependently alleviated inflammation and fibrosis in heart tissues and decreased serum lipid concentration. In conclusion, this study demonstrates that MyD88 inhibitor LM9 exerts protective effects against obesity-induced cardiomyopathy, suggesting LM9 to be a promising therapeutic candidate drug for the obesity-related cardiac complications.
Collapse
Affiliation(s)
- Xu-Yong Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Chu-Chu Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, China
| | - Qian Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiao-Yao Lu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li-Li Fu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiu-Hua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Gao-Zhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
43
|
Simplified Procedure for General Synthesis of Monosubstituted Piperazines-From a Batch Reaction Vessel to a Flow (Microwave) Reactor. Molecules 2020; 25:molecules25092168. [PMID: 32384633 PMCID: PMC7249161 DOI: 10.3390/molecules25092168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
We reported a novel simplified synthetic procedure for the preparation of monosubstituted piperazine derivatives which can now be easily prepared in a one-pot-one-step way from a protonated piperazine with no need of introduction of a protecting group. Reactions, proceeding either at room or higher temperatures in common solvents, involve heterogeneous catalysis by metal ions supported on commercial polymeric resins. A general synthetic scheme was successfully applied to afford a wide range of monosubstituted piperazines. Furthermore, we picked up a set of piperazine derivatives and studied the possibilities of microwave acceleration of given synthetic reactions to make them even more efficient. Our research proceeded from a simple batch technique to the construction of a flow microwave reactor prototype and resulted in promising findings which are summarized and discussed in the article.
Collapse
|
44
|
Novel resveratrol-based flavonol derivatives: Synthesis and anti-inflammatory activity in vitro and in vivo. Eur J Med Chem 2019; 175:114-128. [DOI: 10.1016/j.ejmech.2019.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
|
45
|
Ding Y, Feng Q, Chen J, Song J. TLR4/NF-κB signaling pathway gene single nucleotide polymorphisms alter gene expression levels and affect ARDS occurrence and prognosis outcomes. Medicine (Baltimore) 2019; 98:e16029. [PMID: 31261506 PMCID: PMC6617146 DOI: 10.1097/md.0000000000016029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To study the occurrence and prognosis of acute respiratory distress syndrome (ARDS) using single nucleotide polymorphisms (SNPs) of TNF-α rs1800629, IL-6 rs1800796, and MyD88 rs7744 loci in the TLR4/NF-κB pathway. METHODS Genotypes were analyzed for TNF-α rs1800629, IL-6 rs1800796, and MyD88 rs7744 loci. Plasma TNF-α and IL-6 levels and MyD88 mRNA expression in peripheral blood mononuclear cells (PBMCs) of 300 ARDS patients and 300 non-ARDS patients (control group) were examined. The patients were followed up for 60 days, and the prognosis outcome was recorded. RESULTS The TNF-α rs1800629 locus A allele and the IL-6 rs1800796 locus G allele were found to be risk factors for ARDS (adjusted OR = 1.452, 95% CI: 1.211-1.689, P < .001 and adjusted OR = 1.205, 95% CI: 1.058-1.358, P = .005, respectively). The G allele at MyD88 rs7744 locus was a protective factor against ARDS (adjusted OR = 0.748, 95% CI: 0.631-0.876, P < .001). Compared with the other groups, homozygotes for TNF-α rs1800629, IL-6 rs1800796, and MyD88 rs7744 loci had higher expression levels, of which homozygotes for TNF-α rs1800629 and IL-6 rs1800796 loci had lower 60-day survival rates, while MyD88 rs7744 locus homozygotes had a higher 60-day survival rate. CONCLUSION The effect of TNF-α rs1800629, IL-6 rs1800796, and MyD88 rs7744 SNPs on gene expression level is a likely cause of ARDS occurrence and poor prognosis.
Collapse
Affiliation(s)
- Yueping Ding
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road
| | - Qijia Feng
- Department of Intensive Care Unit, Hangzhou Lin’an District People's Hospital, 548# Yijin Road, Jincheng Town, Lin’an, Hangzhou
| | - Jianshi Chen
- Department of Intensive Care Unit, the Sencond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou
| | - Jia Song
- Department of Emergency, the Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou, Zhejiang, PR China
| |
Collapse
|
46
|
Chen T, Luo W, Wu G, Wu L, Huang S, Li J, Wang J, Hu X, Huang W, Liang G. A novel MyD88 inhibitor LM9 prevents atherosclerosis by regulating inflammatory responses and oxidative stress in macrophages. Toxicol Appl Pharmacol 2019; 370:44-55. [DOI: 10.1016/j.taap.2019.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/01/2023]
|