1
|
Li J, Xie L, Lin F, Ling B. Indole derivatives display antimicrobial and antibiofilm effects against extensively drug-resistant Acinetobacter baumannii. Microbiol Spectr 2025; 13:e0338824. [PMID: 40231681 PMCID: PMC12073863 DOI: 10.1128/spectrum.03388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Acinetobacter baumannii is a critical priority gram-negative bacterial species featured with multidrug resistance and biofilm formation. This study screened 46 indole derivative agents for their antimicrobial activities against clinical isolates of extensively drug-resistant A. baumannii (XDRAB) with various degrees of biofilm production. Three selected indole agents-5-iodoindole, 3-methylindole, and 7-hydroxyindole-were revealed to display potent antimicrobial and antibiofilm activity, including synergistic interplay with anti-A. baumannii antimicrobial drugs against XDRAB. Sub-inhibitory concentrations of these agents (particularly 7-hydroxyindole at 1/64 of MIC) not only inhibited XDRAB biofilm formation but also eradicated the mature biofilm. The survival rate of XDRAB-infected Galleria mellonella was improved with the treatment of 7-hydroxyindole. Mechanistically, 7-hydroxyindole was found to reduce the expression of quorum sensing/biofilm-implicated genes abaI and abaR. Together, the findings highlight the potential of indole derivatives against A. baumannii infections. IMPORTANCE Extensively drug-resistant Acinetobacter baumannii (XDRAB) isolates pose a major public health threat to antimicrobial therapy and are highly prevalent in hospital settings. This study identified and characterized indole derivative agents for their antimicrobial and antibiofilm activities against XDRAB. Sub-inhibitory indole agents such as 7-hydroxyindole can both inhibit XDRAB biofilm formation and eradicate the mature biofilm. Indole agents warrant further investigation against hard-to-treat antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Junwei Li
- Key Laboratory of
Structure-Specific Small Molecule Drugs at Chengdu Medical College of
Sichuan Province, School of Pharmacy, Chengdu Medical
College,
Chengdu, China
| | - Lulin Xie
- Key Laboratory of
Structure-Specific Small Molecule Drugs at Chengdu Medical College of
Sichuan Province, School of Pharmacy, Chengdu Medical
College,
Chengdu, China
| | - Fei Lin
- Department of
Pharmacy, Clinical Medical College and The First Affiliated Hospital of
Chengdu Medical College,
Chengdu, China
| | - Baodong Ling
- Key Laboratory of
Structure-Specific Small Molecule Drugs at Chengdu Medical College of
Sichuan Province, School of Pharmacy, Chengdu Medical
College,
Chengdu, China
| |
Collapse
|
2
|
Vaso CO, Bila NM, da Silva RAM, de Carvalho AR, Belizário JA, Pandolfi F, De Vita D, Bortolami M, Mendes-Giannini MJS, Scipione L, Di Santo R, Costi R, Costa-Orlandi CB, Fusco-Almeida AM. Efficacy of nitrofuran derivatives against biofilms of Histoplasma capsulatum strains and their in vivo toxicity. Future Microbiol 2025; 20:305-314. [PMID: 39905948 PMCID: PMC11951717 DOI: 10.1080/17460913.2025.2457286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
AIM To evaluate the efficacy of two nitrofuran derivatives against biofilms formed by two strains of Histoplasma capsulatum and to study the toxicity of these compounds in alternative models: Caenorhabditis elegans, Galleria mellonella, and zebrafish. METHODS The metabolic activity of biofilms was measured after treatment using the XTT reduction assay. Scanning electron microscopy (SEM) and confocal microscopy were used to observe damage to mature biofilms. Survival curves were generated for G. mellonella, while percentage survival was determined for C. elegans and zebrafish. RESULTS The compounds showed efficacy against early and mature biofilms at concentrations equal to or up to two times higher than those required to eliminate planktonic fungal cells (3.90 to 31.25 μg/mL). Micrographs showed a reduction in metabolic activity, biofilm thickness, and extracellular matrix. In addition, the compounds showed little or no toxicity in alternative models, even at the highest concentrations tested. CONCLUSION These results are promising for the development of new therapeutic alternatives, especially for species, such as H. capsulatum, which are recognized as high-priority pathogens. Few studies have investigated resistance and antifungal treatment targeting biofilms of this species, making this work a relevant contribution to future approaches.
Collapse
Affiliation(s)
- Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Níura Madalena Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
- Department of Public and Animal Health, School of Veterinary, University Eduardo Mondlane (UEM), Maputo, Mozambique
| | | | - Angélica Romão de Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Jennyfie Araújo Belizário
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Fabiana Pandolfi
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Martina Bortolami
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, Rome, Italy
| | | | - Luigi Scipione
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Roberto Di Santo
- Department of Chemistry and Technology of Drug, Instituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberta Costi
- Department of Chemistry and Technology of Drug, Instituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
3
|
Huo H, Dan W, Li M, Chen Y, Yang C, Wu L, Shi B, Li J. Design, synthesis, and biological evaluation of steroidal indole derivatives as membrane-targeting antibacterial candidates. Eur J Med Chem 2025; 283:117156. [PMID: 39671876 DOI: 10.1016/j.ejmech.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Rational modification of natural products plays a key role in drug discovery. Herein, a series of steroidal indole derivatives containing various substituents and steroidal skeletons were designed and synthesized with classical Fischer indole synthesis as a key step in an efficient synthetic route for the first time. The in vitro antibacterial activity of all the synthesized derivatives was evaluated against four Gram-positive strains including three Methicillin-Resistant Staphylococcus aureus. Compound 11e displayed the most potent antibacterial activity (MIC = 1-2 μg/mL) with low cytotoxicity and hemolytic activity. Derivative 11e displayed more rapid bactericidal kinetic than vancomycin in the time-kill study and was less likely to induce bacterial resistance. Moreover, the preliminary antibacterial mechanism explorations indicated that compound 11e could effectively inhibit biofilm formation, promote the accumulation of reactive oxygen species, decrease bacterial metabolism, and destroy bacterial cell membranes to exert its antibacterial effects. The study of in vivo antibacterial activity suggested that compound 11e could significantly reduce the bacteria counts in a mouse subcutaneous infection model. These findings provided a bright hope for steroidal indole derivatives as promising antibacterial candidates to settle drug resistance.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Min Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Yanbin Chen
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Chaofu Yang
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China.
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China.
| |
Collapse
|
4
|
do Nascimento Dias J, Hurtado Erazo FA, Bessa LJ, Eaton P, Leite JRDSDA, Paes HC, Nicola AM, Silva-Pereira I, Albuquerque P. Synergic Effect of the Antimicrobial Peptide ToAP2 and Fluconazole on Candida albicans Biofilms. Int J Mol Sci 2024; 25:7769. [PMID: 39063009 PMCID: PMC11276877 DOI: 10.3390/ijms25147769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Candida albicans is one of the agents of invasive candidiasis, a life-threatening disease strongly associated with hospitalization, particularly among patients in intensive care units with central venous catheters. This study aimed to evaluate the synergistic activity of the antifungal peptide ToAP2 combined with fluconazole against C. albicans biofilms grown on various materials. We tested combinations of different concentrations of the peptide ToAP2 with fluconazole on C. albicans biofilms. These biofilms were generated on 96-well plates, intravenous catheters, and infusion tubes in RPMI medium at two maturation stages. Scanning electron microscopy and atomic force microscopy were employed to assess the biofilm structure. We also evaluated the expression of genes previously proven to be involved in C. albicans biofilm formation in planktonic and biofilm cells after treatment with the peptide ToAP2 using qPCR. ToAP2 demonstrated a synergistic effect with fluconazole at concentrations up to 25 µM during both the early and mature stages of biofilm formation in 96-well plates and on medical devices. Combinations of 50, 25, and 12.5 µM of ToAP2 with 52 µM of fluconazole significantly reduced the biofilm viability compared to individual treatments and untreated controls. These results were supported by substantial structural changes in the biofilms observed through both scanning and atomic force microscopy. The gene expression analysis of C. albicans cells treated with 25 µM of ToAP2 revealed a decrease in the expression of genes associated with membrane synthesis, along with an increase in the expression of genes involved in efflux pumps, adhesins, and filamentation. Our results highlight the efficacy of the combined ToAP2 and fluconazole treatment against C. albicans biofilms. This combination not only shows therapeutic potential but also suggests its utility in developing preventive biofilm tools for intravenous catheters.
Collapse
Affiliation(s)
- Jhones do Nascimento Dias
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Fabián Andrés Hurtado Erazo
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Lucinda J. Bessa
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.J.B.); (P.E.)
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.J.B.); (P.E.)
- The Bridge, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Hugo Costa Paes
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil; (H.C.P.); (A.M.N.)
| | - André Moraes Nicola
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil; (H.C.P.); (A.M.N.)
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| |
Collapse
|
5
|
Nair VG, Srinandan CS, Rajesh YBRD, Narbhavi D, Anupriya A, Prabhusaran N, Nagarajan S. Biogenic amine tryptamine in human vaginal probiotic isolates mediates matrix inhibition and thwarts uropathogenic E. coli biofilm. Sci Rep 2024; 14:15387. [PMID: 38965339 PMCID: PMC11224256 DOI: 10.1038/s41598-024-65780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.
Collapse
Affiliation(s)
- Veena G Nair
- Microbial Biofilm Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - C S Srinandan
- Microbial Biofilm Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Y B R D Rajesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Dhiviya Narbhavi
- Department of Obstetrics and Gynaecology, TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - A Anupriya
- Department of Microbiology, TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - N Prabhusaran
- Research Faculty, Institutional Research Board TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
6
|
Zhang R, Ma R, Chen R, Wang L, Ma Y. Regioselective C 3Alkylation of Indoles for the Synthesis of Bis(indolyl)methanes and 3-Styryl Indoles. J Org Chem 2024; 89:1846-1857. [PMID: 38214898 DOI: 10.1021/acs.joc.3c02551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Herein, we describe an efficient transition-metal-free regioselective C3alkylation of indoles for the synthesis of bis(indolyl)methanes and 3-styryl indoles. Nitrobenzene is employed as the oxidant to oxidize the alcohols in the presence of a strong base and the reaction avoids the use of transition metals such as Ru and Mn. The protocol provides a favorable route to access biologically active compounds such as arundine, vibrindole A, and turbomycin B.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| |
Collapse
|
7
|
Babaei F, Mirzababaei M, Tavakkoli A, Nassiri-Asl M, Hosseinzadeh H. Can nonsteroidal anti-inflammatory drugs (NSAIDs) be repurposed for fungal infection? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:59-75. [PMID: 37589736 DOI: 10.1007/s00210-023-02651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of anti-inflammatory drugs widely used for the treatment of musculoskeletal disorders, mild-to-moderate pain, and fever. This review aimed to explain the functional role and possible mechanisms of the antifungal effects of NSAIDs alone or in combination with antifungal drugs in vitro and in vivo. Several studies reported that NSAIDs such as aspirin, ibuprofen, diclofenac, indomethacin, ketorolac, celecoxib, flurbiprofen, and nimesulide had antifungal activities in vitro, either fungistatic or fungicidal, against different strains of Candida, Aspergillus, Cryptococcus, Microsporum, and Trichophyton species. These drugs inhibited biofilm adhesion and development, and yeast-to-hypha conversion which may be related to a prostaglandin E2 (PGE2)/PGEx-dependent mechanism. Modulating PGE2 levels by NSAIDs during fungal infection can be introduced as a possible mechanism to overcome. In addition, some important mechanisms of the antifungal activities of NSAIDs and their new derivatives on fungi and host immune responses are summarized. Overall, we believe that using NSAIDs along with classical antifungal drugs has the potential to be investigated as a novel therapeutic strategy in clinical studies. Furthermore, combination therapy can help manage resistant strains, increase the efficacy of antifungal drugs, and reduce toxicity.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Tavakkoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box 9177948954, Mashhad, Iran.
| |
Collapse
|
8
|
Song S, Zhao S, Sun X, Meng L, Wang Z, Tan H, Liu J, Zhang M, Deng Y. Anti-virulence strategy of diaryl chalcogenide compounds against Candida albicans infection. Virulence 2023; 14:2265012. [PMID: 37771181 PMCID: PMC10549196 DOI: 10.1080/21505594.2023.2265012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Candida albicans is an important opportunistic pathogenic fungus that frequently causes serious systemic infection in humans. Due to the vital roles of biofilm formation and the yeast-to-hypha transition in the infection process, we have selected a series of diaryl chalcogenides and tested their efficacy against C. albicans SC5314 pathogenicity by the inhibition of biofilm formation and the yeast-to-hypha transition. The compounds 5-sulfenylindole and 5-selenylindole were found to have excellent abilities to inhibit both biofilm formation and hyphal formation in C. albicans SC5314. Intriguingly, the two leading compounds also markedly attenuated C. albicans SC5314 virulence in human cell lines and mouse infection models at micromolar levels. Furthermore, our results showed that the presence of the compounds at 100 µM resulted in a marked decrease in the expression of genes involved in the cAMP-PKA and MAPK pathways in C. albicans SC5314. Intriguingly, the compounds 5-sulfenylindole and 5-selenylindole not only attenuated the cytotoxicity of Candida species strains but also showed excellent synergistic effects with antifungal agents against the clinical drug-resistant C. albicans strain HCH12. The compound 5-sulfenylindole showed an obvious advantage over fluconazole as it could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. Together, these results suggest that diaryl chalcogenides can potentially be designed as novel clinical therapeutic agents against C. albicans infection. The diaryl chalcogenides of 5-sulfenylindole and 5-selenylindole discovered in this study can provide new direction for developing antifungal agents against C. albicans infection.
Collapse
Affiliation(s)
- Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shuo Zhao
- School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Xiuyun Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Lili Meng
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zijie Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Hunan Children’s Hospital, Changsha, China
| | - Huihui Tan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jingyun Liu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yinyue Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
Aguilar-Llanos E, Carrera-Pacheco SE, González-Pastor R, Zúñiga-Miranda J, Rodríguez-Pólit C, Mayorga-Ramos A, Carrillo-Naranjo O, Guamán LP, Romero-Benavides JC, Cevallos-Morillo C, Echeverría GA, Piro OE, Alcívar-León CD, Heredia-Moya J. Crystal Structure, Hirshfeld Surface Analysis, and Biological Activities of Schiff-Base Derivatives of 4-Aminoantipyrine. ACS OMEGA 2023; 8:42632-42646. [PMID: 38024734 PMCID: PMC10652364 DOI: 10.1021/acsomega.3c05372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Eight Schiff bases, synthesized by the reaction of 4-aminoantipyrine with different cinnamaldehydes, were studied in the solid state by using vibrational spectroscopy (IR) and X-ray diffraction techniques. The analysis was extended to the solution phase through ultraviolet-vis, fluorescence spectroscopy, and cyclic voltammetry. Finally, the crystal structures of four compounds (3b, 3d, 3g, and 3h) were determined and studied. In addition to the experimental study, theoretical calculations using the semiempirical method PM6/ZDO were performed to understand better the compound's molecular properties, UV-vis, and infrared spectra. The primary difference is the angular conformation of the terminal phenyl rings around the corresponding linking C-N and C-C σ-bonds. Furthermore, as a result of extended bonding, the > C=N- azomethine group-containing Cpyr-N=(CH)-(CR)=(CH)-Cbz chain (with R=H for 3b, 3d, and 3h, and R=CH3 for 3g) is planar, nearly coplanar, with the mean plane of the pyrazole ring. Hirshfeld surface (HS) analysis was used to investigate the crystal packing and intermolecular interactions, which revealed that intermolecular C-H···O and C-H···N hydrogen bonds, π···π stacking, and C-H···π and C=O···π interactions stabilize the compounds. The energy contributions to the lattice energies of potential hydrogen bonds were primarily dispersive and repulsive. All derivatives were tested in vitro on LPS-stimulated mouse macrophages to assess their ability to suppress the LPS-induced inflammatory responses. Only a slight reduction in the level of NO production was found in activated macrophages treated with 3h. Additionally, the derivatives were tested for antimicrobial activity against several clinical bacteria and fungi strains, including three biofilm-forming microorganisms. Nevertheless, only Schiff base 3f showed interesting antibacterial activities with minimum inhibitory concentration (MIC) values as low as 15.6 μM against Enterobacter gergoviae. On the other hand, Schiff base 3f and, to a lesser extent, 3b and 3h showed antifungal activity against clinical isolates of Candida. The lowest MIC value was for 3f against Candida albicans (15.6 μM). It is interesting to note that the same Schiff bases exhibit the highest activity in both biological evaluations.
Collapse
Affiliation(s)
- Esteban Aguilar-Llanos
- Facultad
de Ciencias Químicas, Universidad
Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador
| | - Saskya E. Carrera-Pacheco
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Rebeca González-Pastor
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Cristina Rodríguez-Pólit
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Arianna Mayorga-Ramos
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Oscar Carrillo-Naranjo
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Linda P. Guamán
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Juan Carlos Romero-Benavides
- Departamento
de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Carlos Cevallos-Morillo
- Facultad
de Ciencias Químicas, Universidad
Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador
| | - Gustavo A. Echeverría
- Departamento
de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La
Plata), C. C. 67, La Plata 1900, Argentina
| | - Oscar E. Piro
- Departamento
de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La
Plata), C. C. 67, La Plata 1900, Argentina
| | - Christian D. Alcívar-León
- Facultad
de Ciencias Químicas, Universidad
Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador
| | - Jorge Heredia-Moya
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| |
Collapse
|
10
|
Yu S, Song JH, Kim HS, Hong S, Park SK, Park SH, Lee J, Chae YC, Park JH, Lee YG. Patulin alleviates hepatic lipid accumulation by regulating lipogenesis and mitochondrial respiration. Life Sci 2023:121816. [PMID: 37271452 DOI: 10.1016/j.lfs.2023.121816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
AIMS The aim of this study is to evaluate the effects of patulin on hepatic lipid metabolism and mitochondrial oxidative function and elucidate the underlying molecular mechanisms. MAIN METHODS The effects of patulin on hepatic lipid accumulation were evaluated in free fatty acid-treated AML12 or HepG2 cells through oil red O staining, triglyceride assay, real-time polymerase chain reaction, and western blotting. Alteration of mitochondrial oxidative capacity by patulin treatment was determined using Seahorse analysis to measure the oxygen consumption rate. KEY FINDINGS The increased amounts of lipid droplets induced by free fatty acids were significantly reduced by patulin treatment. Patulin markedly activated the CaMKII/AMP-activated protein kinase (AMPK)/proliferator-activated receptor-γ coactivator (PGC)-1α signaling pathway in hepatocytes, reduced the expression of sterol regulatory element binding protein 1c (SREBP-1c) and lipogenic genes, and increased the expression of genes related to mitochondrial fatty acid oxidation. In addition, patulin treatment enhanced the mitochondrial consumption rate and increased the expression of mitochondrial oxidative phosphorylation proteins in HepG2 hepatocytes. The effects of patulin on anti-lipid accumulation; SREBP-1c, PGC-1α, and carnitine palmitoyltransferase 1 expression; and mitochondrial oxidative capacity were significantly prevented by compound C, an AMPK inhibitor. SIGNIFICANCE Patulin is a potent inducer of the AMPK pathway, and AMPK-mediated mitochondrial activation is required for the efficacy of patulin to inhibit hepatic lipid accumulation. This study is the first to report that patulin is a promising bioactive compound that prevents the development and worsening of fatty liver diseases, including non-alcoholic fatty liver disease, by improving mitochondrial quality and lipid metabolism.
Collapse
Affiliation(s)
- Seungmin Yu
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Ji-Hye Song
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hee Soo Kim
- Aging and Metabolism Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Seulmin Hong
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Seon Kyeong Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Soo Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Jangho Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Ho Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Yu Geon Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| |
Collapse
|
11
|
do Rosário Esteves Guimarães C, de Freitas HF, Barros TF. Candida albicans antibiofilm molecules: analysis based on inhibition and eradication studies. Braz J Microbiol 2023; 54:37-52. [PMID: 36576671 PMCID: PMC9944165 DOI: 10.1007/s42770-022-00876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Biofilms are communities of microbial cells surrounded by an extracellular polysaccharide matrix, recognized as a fungal source for local and systemic infections and less susceptible to antifungal drugs. Thus, treatment of biofilm-related Candida spp. infections with popular antifungals such as fluconazole is limited and species-dependent and alternatively demands the use of expensive and high toxic drugs. In this sense, molecules with antibiofilm activity have been studied but without care regarding the use of important criteria such as antibiofilm concentration lower than antifungal concentration when considering the process of inhibition of formation and concentrations equal to or lower than 300 µM. Therefore, this review tries to gather the most promising molecules regarding the activity against the C. albicans biofilm described in the last 10 years, considering the activity of inhibition and eradication. From January 2011 to July 2021, articles were searched on Scopus, PubMed, and Science Direct, combining the keywords "antibiofilm," "candida albicans," "compound," and "molecule" with AND and OR operators. After 3 phases of selection, 21 articles describing 42 molecules were discussed in the review. Most of them were more promising for the inhibition of biofilm formation, with SM21 (24) being an interesting molecule for presenting inhibitory and eradication activity in biofilms with 24 and 48 h, as well as alizarin (26) and chrysazine (27), with concentrations well below the antifungal concentration. Despite the detection of these molecules and the attempts to determine the mechanisms of action by microscopic analysis and gene expression, no specific target has been determined. Thus, a gap is signaled, requiring further studies such as proteomic analyses to clarify it.
Collapse
Affiliation(s)
- Carolina do Rosário Esteves Guimarães
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Humberto Fonseca de Freitas
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Tânia Fraga Barros
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil.
| |
Collapse
|
12
|
Aminaee H, Hosseini S, Davood A, Askarizadeh E. QSAR study of indole derivatives as active agents against Candida albicans: a DFT calculation. J Recept Signal Transduct Res 2022; 42:614-622. [PMID: 36328061 DOI: 10.1080/10799893.2022.2140166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Indole and its derivatives are common heterocyclic compounds in nature that have a wider range of medicinal activities such as antifungal, anti-inflammatory, and anti-seizure. Virtually all indole derivatives showed outstanding antifungal activity against Candida albicans. The aim of this study was to QSAR modeling of indole derivatives and the design of new drugs that have antifungal activity. In this study, 52 compounds were selected. All optimized compounds and quantum descriptors were obtained using Gaussian software and DFT/B3LYP computational method with 6-31 G (d) basis set al, so other descriptors were determined using Dragon software. To examine the relationship between these descriptors and the activity of these compounds, the MLR linear correlation method was used, and the QSAR equation with R2 = 0.7884 and R = 0.8879 was obtained for it. Likewise, MSE = 0.1897, RMSE = 0.2848, and Q2 = 0.68663 approve the acceptability of the obtained model. The obtained equation reveals that the activity of these compounds is related to the negative coefficient of GATS8p, R7e +, and G2e, which means that with increasing the values of these description nodes, the amount of activity declines. On the other hand, the activity of these compounds depended on the positive coefficients of HATS3p, MATS5e, and RDF045, i.e. with increasing these values, the activity of these compounds also increases, and a good correlation was obtained between the experimental and predicted activity values.
Collapse
Affiliation(s)
- Hanie Aminaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sharieh Hosseini
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asghar Davood
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Askarizadeh
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Orekhova A, Palocci C, Chronopoulou L, De Angelis G, Badiali C, Petruccelli V, D’Angeli S, Pasqua G, Simonetti G. Poly-(lactic-co-glycolic) Acid Nanoparticles Entrapping Pterostilbene for Targeting Aspergillus Section Nigri. Molecules 2022; 27:molecules27175424. [PMID: 36080191 PMCID: PMC9458066 DOI: 10.3390/molecules27175424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
Poly-(lactic-co-glycolic) acid (PLGA) is a biodegradable, biosafe, and biocompatible copolymer. The Aspergillus section Nigri causes otomycosis localized in the external auditory canal. In this research, Aspergillus brasiliensis, a species belonging to the Nigri section, was tested. Coumarin 6 and pterostilbene loaded in poly-(lactic-co-glycolic) acid nanoparticles (PLGA-coumarin6-NPs and PLGA-PTB-NPs) were tested for fungal cell uptake and antifungal ability against A. brasiliensis biofilm, respectively. Moreover, the activity of PLGA-PTB-NPs in inhibiting the A. brasiliensis infection was tested using Galleria mellonella larvae. The results showed a fluorescence signal, after 50 nm PLGA-coumarin6-NPs treatment, inside A. brasiliensis hyphae and along the entire thickness of the biofilm matrix, which was indicative of an efficient NP uptake. Regarding antifungal activity, a reduction in A. brasiliensis biofilm formation and mature biofilm with PLGA-PTB-NPs has been demonstrated. Moreover, in vivo experiments showed a significant reduction in mortality of infected larvae after injection of PLGA-PTB-NPs compared to free PTB at the same concentration. In conclusion, the PLGA-NPs system can increase the bioavailability of PTB in Aspergillus section Nigri biofilm by overcoming the biofilm matrix barrier and delivering PTB to fungal cells.
Collapse
Affiliation(s)
- Anastasia Orekhova
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giulia De Angelis
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Valerio Petruccelli
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Simone D’Angeli
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
Arshad M, Akhter MS. Synthesis, Characterization, Biological, and Molecular Docking Studies of (Z)-N-Substituted-4-(Pyridin-2-yl)-6-(1H-Pyrrolo[2,3-b]Pyridin-4-yl)Pyrimidin-2-Amine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Evaluation of the Anti-Histoplasma capsulatum Activity of Indole and Nitrofuran Derivatives and Their Pharmacological Safety in Three-Dimensional Cell Cultures. Pharmaceutics 2022; 14:pharmaceutics14051043. [PMID: 35631629 PMCID: PMC9147190 DOI: 10.3390/pharmaceutics14051043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Histoplasma capsulatum is a fungus that causes histoplasmosis. The increased evolution of microbial resistance and the adverse effects of current antifungals help new drugs to emerge. In this work, fifty-four nitrofurans and indoles were tested against the H. capsulatum EH-315 strain. Compounds with a minimum inhibitory concentration (MIC90) equal to or lower than 7.81 µg/mL were selected to evaluate their MIC90 on ATCC G217-B strain and their minimum fungicide concentration (MFC) on both strains. The quantification of membrane ergosterol, cell wall integrity, the production of reactive oxygen species, and the induction of death by necrosis–apoptosis was performed to investigate the mechanism of action of compounds 7, 11, and 32. These compounds could reduce the extracted sterol and induce necrotic cell death, similarly to itraconazole. Moreover, 7 and 11 damaged the cell wall, causing flaws in the contour (11), or changing the size and shape of the fungal cell wall (7). Furthermore, 7 and 32 induced reactive oxygen species (ROS) formation higher than 11 and control. Finally, the cytotoxicity was measured in two models of cell culture, i.e., monolayers (cells are flat) and a three-dimensional (3D) model, where they present a spheroidal conformation. Cytotoxicity assays in the 3D model showed a lower toxicity in the compounds than those performed on cell monolayers. Overall, these results suggest that derivatives of nitrofurans and indoles are promising compounds for the treatment of histoplasmosis.
Collapse
|
16
|
Synthesis and Evaluation of the Antifungal and Toxicological Activity of Nitrofuran Derivatives. Pharmaceutics 2022; 14:pharmaceutics14030593. [PMID: 35335969 PMCID: PMC8950151 DOI: 10.3390/pharmaceutics14030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal diseases affect more than 1 billion people worldwide. The constant global changes, the advent of new pandemics, and chronic diseases favor the diffusion of fungal pathogens such as Candida, Cryptococcus, Aspergillus, Trichophyton, Histoplasma capsulatum, and Paracoccidioides brasiliensis. In this work, a series of nitrofuran derivatives were synthesized and tested against different fungal species; most of them showed inhibitory activity, fungicide, and fungistatic profile. The minimal inhibitory concentration (MIC90) values for the most potent compounds range from 0.48 µg/mL against H. capsulatum (compound 11) and P. brasiliensis (compounds 3 and 9) to 0.98 µg/mL against Trichophyton rubrum and T. mentagrophytes (compounds 8, 9, 12, 13 and 8, 12, 13, respectively), and 3.9 µg/mL against Candida and Cryptococcus neoformans strains (compounds 1 and 5, respectively). In addition, all compounds showed low toxicity when tested in vitro on lung cell lines (A549 and MRC-5) and in vivo in Caenorhabditis elegans larvae. Many of them showed high selectivity index values. Thus, these studied nitrofuran derivatives proved to be potent against different fungal species, characterized by low toxicity and high selectivity; for these reasons, they may become promising compounds for the treatment of mycoses.
Collapse
|
17
|
Gil J, Solis M, Higa A, Davis SC. Candida albicans Infections: a novel porcine wound model to evaluate treatment efficacy. BMC Microbiol 2022; 22:45. [PMID: 35120444 PMCID: PMC8815218 DOI: 10.1186/s12866-022-02460-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
Candida albicans is a common cause of opportunistic mycoses worldwide and a major contributor in wound infections. The purpose of this study was to establish a fungal wound model and analyze the effects of a common antifungal agent against the proliferation of three C. albicans strains. Second degree burns were created, and then inoculated with one of three different C. albicans ATCC strains: 10261 reference strain, 64550 fluconazole resistant and 26310 fluconazole sensitive. After fungal inoculation, every wound was covered with dressings for 4 h to allow fungal colonization on every wound bed. After 4 h, the dressings were removed, and each wound was treated either once or twice daily with a topical terbinafine hydrochloride or left untreated. On days 2, 4 and 7 post inoculation, three wounds from each treatment group were scrub cultured and quantified. On day 2, wounds infected with the sensitive strains 26310 and 10261 and treated twice showed a significant reduction when compared against those infected wounds receiving once daily treatment. On day 4, wounds which were infected with C. albicans fluconazole sensitive (ATCC 26310) showed a significant reduction in fungal cell counts with treatment applied twice daily. A significant reduction in the colony counts was exhibited in all three strains at the seventh day with active as compared to the non-treated wounds. Twice daily treatment resulted in a lower fungal count than once daily treatment. Neither treatment was able to entirely eradicate C. albicans during the duration of this study. Establishing a reliable fungal wound model will help in the translational goal of identifying new antifungal that could be used clinically by wound care providers.
Collapse
Affiliation(s)
- Joel Gil
- Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery Wound Healing Research Laboratory Miami, University of Miami, Miami, 33136, FL, United States.
| | - Michael Solis
- Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery Wound Healing Research Laboratory Miami, University of Miami, Miami, 33136, FL, United States
| | - Alexander Higa
- Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery Wound Healing Research Laboratory Miami, University of Miami, Miami, 33136, FL, United States
| | - Stephen C Davis
- Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery Wound Healing Research Laboratory Miami, University of Miami, Miami, 33136, FL, United States
| |
Collapse
|
18
|
Wenholz DS, Miller M, Dawson C, Bhadbhade M, Black DS, Griffith R, Dinh H, Cain A, Lewis P, Kumar N. Inhibitors of bacterial RNA polymerase transcription complex. Bioorg Chem 2021; 118:105481. [PMID: 34801947 DOI: 10.1016/j.bioorg.2021.105481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 01/28/2023]
Abstract
A series of hybrid compounds that incorporated anthranilic acid with activated 1H-indoles through a glyoxylamide linker were designed to target bacterial RNA polymerase holoenzyme formation using computational docking. Synthesis, in vitro transcription inhibition assays, and biological testing of the hybrids identified a range of potent anti-transcription inhibitors with activity against a range of pathogenic bacteria with MICs as low as 3.1 μM. A structure activity relationship study identified the key structural components necessary for inhibition of both bacterial growth and transcription. Correlation of in vitro transcription inhibition activity with in vivo mechanism of action was established using fluorescence microscopy and resistance passaging using Gram-positive bacteria showed no resistance development over 30 days. Furthermore, no toxicity was observed from the compounds in a wax moth larvae model, establishing a platform for the development of a series of new antibacterial drugs with an established mode of action.
Collapse
Affiliation(s)
- Daniel S Wenholz
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Catherine Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, UNSW Sydney, NSW 2052, Australia
| | - David StC Black
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Renate Griffith
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Hue Dinh
- Department of Biological Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amy Cain
- Department of Biological Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peter Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia.
| |
Collapse
|
19
|
Bortolami M, Pandolfi F, Messore A, Rocco D, Feroci M, Di Santo R, De Vita D, Costi R, Cascarino P, Simonetti G, Scipione L. Design, synthesis and biological evaluation of a series of iron and copper chelating deferiprone derivatives as new agents active against Candida albicans. Bioorg Med Chem Lett 2021; 42:128087. [PMID: 33964446 DOI: 10.1016/j.bmcl.2021.128087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022]
Abstract
Candida albicans, in specific conditions, is responsible of severe invasive systemic candidiasis that are related to its ability to produce biofilm on biological and artificial surfaces. Many studies reported the role of iron in fungal growth and virulence and the ability of metal chelating agents to interfere with C. albicans metabolism, virulence and biofilm formation. Here we report the activity of 3-hydroxy-1,2-dimethyl-4(1H)-pyridinone (deferiprone) derivatives against C. albicans planktonic cells and biofilm. Some of the studied compounds (2b and 3b) were able to chelate Fe(III) and Cu(II), and showed an interesting activity on planktonic cells (MIC50 of 32 μg/mL and 16 μg/mL respectively) and on biofilm formation (BMIC50 of 32 μg/mL and 16 μg/mL respectively) in cultured ATCC 10,231C. albicans; this activity was reduced, in a concentration dependent way, by the addition of Fe(III) and Cu(II) to the culture media. Furthermore, the most active compound 3b showed a low toxicity on Galleria mellonella larvae.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, 00161 Rome, Italy
| | - Fabiana Pandolfi
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, 00161 Rome, Italy.
| | - Antonella Messore
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniele Rocco
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, 00161 Rome, Italy
| | - Marta Feroci
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, 00161 Rome, Italy
| | - Roberto Di Santo
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Costi
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paola Cascarino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Luigi Scipione
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
20
|
Santos-Junior PFDS, Nascimento IJDS, da Silva ECD, Monteiro KLC, de Freitas JD, de Lima Lins S, Maciel TMS, Cavalcanti BC, V. Neto JDB, de Abreu FC, Figueiredo IM, Carinhanha C. Santos J, Pessoa CDÓ, da Silva-Júnior EF, de Araújo-Júnior JX, M. de Aquino T. Synthesis of hybrids thiazole–quinoline, thiazole–indole and their analogs: in vitro anti-proliferative effects on cancer cell lines, DNA binding properties and molecular modeling. NEW J CHEM 2021. [DOI: 10.1039/d1nj02105b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A quinoline–thiazole hybrid was synthesized, which showed cytotoxicity against the HL-60 cell line. Electrochemical and spectroscopic experiments suggested DNA as the biological target.
Collapse
|
21
|
Ma S, Zhu L, Fan X, Luo T, Liu D, Liang Z, Hu X, Shi T, Tan W, Wang Z. Melatonin derivatives combat with inflammation-related cancer by targeting the Main Culprit STAT3. Eur J Med Chem 2020; 211:113027. [PMID: 33248852 DOI: 10.1016/j.ejmech.2020.113027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
The combination between two well-studied bioactive compounds melatonin and salicylic acid with proper modifications unexpectedly creates a sharp pair of "scissors" cutting off the vicious connection between inflammation and cancer by targeting a key contributor Signal Transducers and Activators of Transcription 3 (STAT3) in the two pathological processes. A representative compound P-3 with IC50 values on each tested cell line ranging from 7.37 to 18.62 μM among the designed melatonin derivatives is equipped with the ability of curbing inflammation-promoting cancer by down-regulating the expression, activation and nuclear translocation of STAT3, breaking the feedforward loop of STAT3 activation by decreasing the expression of pro-tumorigenic cytokines, and inducing cell apoptosis through ROS triggered Cyto-c/Caspase-3 pathway. This study suggests that the melatonin derivative P-3 is likely to become a promising chemical structure for developing the novel anti-cancer agents taking effect through hindering the mutual-promoting processes between inflammation and cancer.
Collapse
Affiliation(s)
- Shumeng Ma
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Longqing Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ziyi Liang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Mishra P, Gupta P, Pruthi V. Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111450. [PMID: 33321588 DOI: 10.1016/j.msec.2020.111450] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Immunocompromised patients encounter fungal infections more frequently than healthy individuals. Conventional drugs associated health risk and resistance, portrayed fungal infections as a global health problem. This issue needs to be answered immediately by designing a novel anti-fungal therapeutic agent. Phytoactive molecules based therapeutics are most suitable candidate due to their low cytotoxicity and minimal side effects to the host. In this study, cinnamaldehyde (CA), an FDA approved phytoactive molecule present in cinnamon essential oil was incorporated into gellan (GA)/poly vinyl alcohol (PVA) based electrospun nanofibers to resolve the issues like low water solubility, high volatility and irritant effect associated with CA and also to enhance its therapeutic applications. The drug encapsulation, morphology and physical properties of the synthesized CA nanofibers were evaluated by FESEM, AFM, TGA, FTIR and static water contact angle analysis. The average diameters of CA encapsulated GA/PVA nanofibers and GA/PVA nanofibers were recorded to be 278.5 ± 57.8 nm and 204.03 ± 39.14 nm, respectively. These nanofibers were evaluated for their anti-biofilm activity against Candida using XTT (2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium salt) reduction assay. Data demonstrated that CA encapsulated GA/PVA nanofibers can effectively eradicate 89.29% and 50.45% of Candida glabrata and Candida albicans biofilm respectively. CA encapsulated nanofibers exhibited brilliant antimicrobial property against Staphylococcus aureus and Pseudomonas aeruginosa. The cytotoxicity assay demonstrated that nanofibers loaded with CA have anticancer properties as it reduces cell viability of breast cancer cells (MCF-7) by 27.7%. These CA loaded GA/PVA (CA-GA/PVA) nanofibers could be used as novel wound dressing material and coatings on biomedical implants to eradicate biofilm.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
23
|
Kumar D, Sharma S, Kalra S, Singh G, Monga V, Kumar B. Medicinal Perspective of Indole Derivatives: Recent Developments and Structure-Activity Relationship Studies. Curr Drug Targets 2020; 21:864-891. [DOI: 10.2174/1389450121666200310115327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Heterocyclic compounds play a significant role in various biological processes of the human
body and many of them are in clinical use due to their diverse, chemical and biological properties.
Among these, indole is one of the most promising pharmacologically active molecules. Due to its
chemical reactivity, indole has been willingly modified to obtain a variety of new lead molecules,
which has been successfully utilized to obtained novel drug candidates for the treatment of different
pharmacological diseases. Indole-based compounds such as vincristine (anticancer), reserpine (antihypertensive),
amedalin (antidepressant) and many more describe the medicinal and pharmacological
importance of the indole in uplifting human life. In this review, we compiled various reports on indole
derivatives and their biological significance, including antifungal, antiprotozoal, antiplatelet, anti-
Alzheimer’s, anti-Parkinson’s, antioxidant and anticancer potential from 2015 onwards. In addition,
structure-activity relationship studies of the different derivatives have been included. We have also
discussed novel synthetic strategies developed during this period for the synthesis of different indole
derivatives. We believe that this review article will provide comprehensive knowledge about the medicinal
importance of indoles and will help in the design and synthesis of novel indole-based molecules
with high potency and efficacy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Sahil Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Sourav Kalra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
24
|
Susceptibility Profile of Candida albicans Biofilms on Polyvinyl Chloride Endotracheal Tube to Antifungal Azoles. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Fan X, Li J, Deng X, Lu Y, Feng Y, Ma S, Wen H, Zhao Q, Tan W, Shi T, Wang Z. Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation. Eur J Med Chem 2020; 193:112217. [PMID: 32182488 DOI: 10.1016/j.ejmech.2020.112217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Because of the complex etiology in neuroinflammatory process, the design of multifunctional agents is a potent strategy to cure neuroinflammatory diseases including AD and PD. Herein, based on the combination principles, 23 of N-salicyloyl tryptamine derivatives as multifunctional agents were designed and their new application for anti-neuroinflammation was disclosed. In cyclooxygenase assay, two compounds 3 and 16 displayed extremely preferable COX-2 inhibition than N-salicyloyl tryptamine. In LPS-induced C6 and BV2 cell models, some compounds decreased the production of proinflammatory mediators NO, PGE2, TNF-α, iNOS, COX-2 and ROS, while increased the production of IL-10. Among them, compound 3 and 16 showed approximately six-fold better inhibition on nitric oxide production than N-salicyloyl tryptamine in C6. Besides, compounds 3, 13 and 16 attenuated the activation of BV2 and C6 cells. More importantly, in vivo, compounds 3 and 16 reduced GFAP and Iba-1 levels in the hippocampus, and displayed neuroprotection in Nissl staining. Besides, both compounds 3 and 16 had high safety (LD50 > 1000 mg/kg). Longer plasma half-life of compounds 3 and 16 than melatonin supported combination strategy. All these results demonstrated that N-salicyloyl tryptamine derivatives are potential anti-neuroinflammation agents for the treatment of neurodegenerative disorder.
Collapse
Affiliation(s)
- Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shumeng Ma
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huaixiu Wen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
26
|
Arshad M. Design, computational, synthesis, characterization, antimicrobial, MTT and molecular docking assessment of bipyrimidine derivatives possessing indole moiety. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01855-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
In vitro Resistance Pattern of Selected Antifungal Azoles against Candida albicans Biofilms on Silicone Nasogastric Tube. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
De Vita D, Messore A, Toniolo C, Frezza C, Scipione L, Bertea CM, Micera M, Di Sarno V, Madia VN, Pindinello I, Roscilli P, Botto A, Simonetti G, Orekhova A, Manfredini S, Costi R, Di Santo R. Towards a new application of amaranth seed oil as an agent against Candida albicans. Nat Prod Res 2019; 35:4621-4626. [PMID: 31795749 DOI: 10.1080/14786419.2019.1696335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Amaranthus spp. (Amaranthaceae family), known as amaranth, are plants native of Central America, today produced in many parts of the world. due to their popularity popular as a health food. Because of its composition, amaranth can be considered to be attractive not only as a food but also for pharmaceutical and cosmetics uses. To date, antifungal activity of amaranth extracts has not been totally investigated, therefore the scope of this study was to evaluate the antifungal effect of the apolar fraction from Amaranthus cruentus L. seeds extract, alone and in association with antifungal drugs terbinafine, a common antifungal agent, which itself has only fungistatic effect on Candida albicans strains without exerting fungicidal activity. Our results demonstrate that this amaranth oil in combination with terbinafine has synergic fungistatic and fungicidal activity, with FICI of 0.466 and 0.496, respectively. No fungistatic and fungicidal activity of terbinafine alone at concentrations up to 64 μg/mL and amaranth oil alone at concentrations up to 2000 μg/mL, against all tested C. albicans strains, were observed. does not show activity towards Candida albicans strains but it can effectively potentiate the antifungal activity of terbinafine, a common antifungal agent which itself This result suggests the possible application of amaranth oil in the preparation of formulations with terbinafine for topical use.
Collapse
Affiliation(s)
- Daniela De Vita
- Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy
| | - Antonella Messore
- "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chemistry and Technology of Drug, University of Rome "La Sapienza", Rome, Italy
| | - Chiara Toniolo
- Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy
| | - Claudio Frezza
- Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy
| | - Luigi Scipione
- "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chemistry and Technology of Drug, University of Rome "La Sapienza", Rome, Italy
| | | | - Marco Micera
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Exenia Group S.R.L, Pinerolo, Torino, Italy
| | | | - Valentina Noemi Madia
- "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chemistry and Technology of Drug, University of Rome "La Sapienza", Rome, Italy
| | - Ivano Pindinello
- "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chemistry and Technology of Drug, University of Rome "La Sapienza", Rome, Italy
| | | | | | - Giovanna Simonetti
- Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy
| | - Anastasia Orekhova
- Department of "Sanità Pubblica e Malattie Infettive", Sapienza University of Rome, Rome, Italy
| | - Stefano Manfredini
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberta Costi
- "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chemistry and Technology of Drug, University of Rome "La Sapienza", Rome, Italy
| | - Roberto Di Santo
- "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chemistry and Technology of Drug, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|