1
|
Ozturk OK, Oyardi O, Dundar Y. Quinazoline derivatives as novel bacterial sphingomyelinase enzyme inhibitors. Bioorg Chem 2025; 154:108079. [PMID: 39729766 DOI: 10.1016/j.bioorg.2024.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Bacillus cereus sphingomyelinase C (B. cereus SMase), which plays a crucial role in bacterial virulence, has emerged as a new therapeutic target for treating opportunistic infections caused by this pathogen. It also shares catalytic domain similarity with human neutral sphingomyelinase 2 (nSMase2), which is implicated in Alzheimer's disease. In this study, a series of quinazoline derivatives were synthesized and evaluated for their inhibition of B. cereus SMase, electric eel acetylcholinesterase (EeAChE), and equine butyrylcholinesterase (eqBuChE). Moreover, the antibacterial, anti-hemolytic and metal chelation properties of the selected compounds were determined. Among the synthesized compounds, 6-chloro-2-thioxo-2,3-dihydroquinazolin-4(1H)-one (compound 4) and 6-fluoro-2-thioxo-2,3-dihydroquinazolin-4(1H)-one (compound 5) exhibited promising inhibition of B. cereus SMase, with IC50 values of 6.43 and 6.50 µM, respectively. The mode of inhibition of compound 4 was determined as mixed-type inhibition by enzyme kinetic study. In addition, compounds 4 and 5 showed 59.50% and 51.66% eqBuChE inhibition at 50 µM concentration, respectively. Furthermore, compound 4 reduced B. cereus-induced hemolysis on sheep erythrocytes and able to form a complex with Cu2+ in ligand:metal ratio of 2:1. Additionally, cambinol, an inhibitor of both nSMase2 and B. cereus SMase, was found to exhibit inhibitory activity against eqBuChE, with IC50 value of 7.40 µM. The biological data were also supported by the results of molecular docking studies and in-silico physicochemical properties/ADME predictions of the selected compounds were determined.
Collapse
Affiliation(s)
- Ozge Kuyrukcu Ozturk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Yasemin Dundar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
2
|
Lanka G, Banerjee S, Regula S, Adhikari N, Ghosh B. Pharmacophore modeling, 3D-QSAR, and MD simulation-based overture for the discovery of new potential HDAC1 inhibitors. J Biomol Struct Dyn 2024:1-24. [PMID: 39587443 DOI: 10.1080/07391102.2024.2429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/15/2024] [Indexed: 11/27/2024]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators that modulate the activity of histone and non-histone proteins leading to various cancers. Histone deacetylase 1 (HDAC1) is a member of class 1 HDAC family related to different cancers. However, the nonselective profile of existing HDAC1 inhibitors restricted their clinical utility. Therefore, the identification of new HDAC1 selective inhibitors may be fruitful against cancer therapy. In this present work, a pharmacophore model was built using 60 benzamide-based known HDAC1 selective inhibitors and it was used further to filter the large epigenetic molecular database of small molecules. Further, the 3D-QSAR model was built using the best common pharmacophore hypothesis consisting of higher PLS statistics of R2 of 0.89, Q2 of 0.83, variance ratio (F) of 65.7 and Pearson-r value of 0.94 revealing the model reliability and its high predictive power. The screened hits of the pharmacophore model were then subjected to molecular docking against HDAC1 to identify high-affinity lead molecules. The top 10 hits were ranked from the docking studies using docking scores for lead optimization. The potential hit molecules M1 and M2 identified from the study showed promising interaction during HDAC1 docking and MD simulation studies with acceptable ADME properties. Also, the newly designed lead compounds M11 and M12 may be considered highly potential inhibitors against HDAC1. The 3D-QSAR analysis, conformational requirements, and observations noticed in the MD simulations study will enable the optimization of lead molecules and to design of novel effective, and selective HDAC1 inhibitors in the future.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Sanjeev Regula
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| |
Collapse
|
3
|
Toledano-Pinedo M, Porro-Pérez A, Schäker-Hübner L, Romero F, Dong M, Samadi A, Almendros P, Iriepa I, Bautista-Aguilera ÒM, Rodríguez-Fernández MM, Solana-Manrique C, Sanchis I, Mora-Morell A, Rodrìguez AC, Sànchez-Pérez AM, Knez D, Gobec S, Bellver-Sanchis A, Pérez B, Dobrydnev AV, Artetxe-Zurutuza A, Matheu A, Siwek A, Wolak M, Satała G, Bojarski AJ, Doroz-Płonka A, Handzlik J, Godyń J, Więckowska A, Paricio N, Griñán-Ferré C, Hansen FK, Marco-Contelles J. Contilisant+Tubastatin A Hybrids: Polyfunctionalized Indole Derivatives as New HDAC Inhibitor-Based Multitarget Small Molecules with In Vitro and In Vivo Activity in Neurodegenerative Diseases. J Med Chem 2024; 67:16533-16555. [PMID: 39256214 DOI: 10.1021/acs.jmedchem.4c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Herein, we describe the design, synthesis, and biological evaluation of 15 Contilisant+Tubastatin A hybrids. These ligands are polyfunctionalized indole derivatives developed by juxtaposing selected pharmacophoric moieties of Contilisant and Tubastatin A to act as multifunctional ligands. Compounds 3 and 4 were identified as potent HDAC6 inhibitors (IC50 = 0.012 μM and 0.035 μM, respectively), so they were further evaluated in Drosophila and human cell models of Parkinson's disease (PD). Both compounds attenuated PD-like phenotypes, such as motor defects, oxidative stress, and mitochondrial dysfunction in PD model flies. Ligands 3 and 4 were also studied in the transgenic Caenorhabditis elegans CL2006 model of Alzheimer's disease (AD). Both compounds were nontoxic, did not induce undesirable animal functional changes, inhibited age-related paralysis, and improved cognition in the thrashing assay. These results highlight 3 and 4 as novel multifunctional ligands that improve the features of PD and AD hallmarks in the respective animal models.
Collapse
Affiliation(s)
- Mireia Toledano-Pinedo
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alicia Porro-Pérez
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Fernando Romero
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Min Dong
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, UAE
| | - Pedro Almendros
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Isabel Iriepa
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805 Alcalá de Henares, Madrid, Spain
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 28805 Alcalá de Henares, Madrid, Spain
| | - Òscar M Bautista-Aguilera
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805 Alcalá de Henares, Madrid, Spain
| | | | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Inmaculada Sanchis
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Alba Mora-Morell
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | | | - Ana M Sànchez-Pérez
- Insitute of Advanced Materials, INAM, University of Jaume I, Castellón 12071, Spain
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), 08035 Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology. Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Alexey V Dobrydnev
- Chemistry Department, Taras Shevchenko National University of Kyiv, Lva Tolstoho Street 12, Kyiv 01033, Ukraine
| | | | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain
- CIBERfes, Carlos III Institute, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Małgorzata Wolak
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), 08035 Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Finn K Hansen
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - José Marco-Contelles
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
4
|
Raucci A, Castiello C, Mai A, Zwergel C, Valente S. Heterocycles-Containing HDAC Inhibitors Active in Cancer: An Overview of the Last Fifteen Years. ChemMedChem 2024; 19:e202400194. [PMID: 38726979 DOI: 10.1002/cmdc.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Indexed: 08/30/2024]
Abstract
Cancer is one of the primary causes of mortality worldwide. Despite nowadays are numerous therapeutic treatments to fight tumor progression, it is still challenging to completely overcome it. It is known that Histone Deacetylases (HDACs), epigenetic enzymes that remove acetyl groups from lysines on histone's tails, are overexpressed in various types of cancer, and their inhibition represents a valid therapeutic strategy. To date, some HDAC inhibitors have achieved FDA approval. Nevertheless, several other potential drug candidates have been developed. This review aims primarily to be comprehensive of the studies done so far regarding HDAC inhibitors bearing heterocyclic rings since their therapeutic potential is well known and has gained increasing interest in recent years. Hence, inserting heterocyclic moieties in the HDAC-inhibiting scaffold can be a valuable strategy to provide potent and/or selective compounds. Here, in addition to summarizing the properties of novel heterocyclic HDAC inhibiting compounds, we also provide ideas for developing new, more potent, and selective compounds for treating cancer.
Collapse
Affiliation(s)
- Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carola Castiello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
5
|
Zhou H, Qi Z, Liu D, Xue X, Wang C. Design, Synthesis, and Biological Evaluation of New Urushiol Derivatives as Potent Class I Histone Deacetylase Inhibitors. Chembiochem 2023; 24:e202300238. [PMID: 37366008 DOI: 10.1002/cbic.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023]
Abstract
In the present study, a novel series of 11 urushiol-based hydroxamic acid histone deacetylase (HDAC) inhibitors was designed, synthesized, and biologically evaluated. Compounds 1-11 exhibited good to excellent inhibitory activities against HDAC1/2/3 (IC50 : 42.09-240.17 nM) and HDAC8 (IC50 : 16.11-41.15 nM) in vitro, with negligible activity against HDAC6 (>1409.59 nM). Considering HDAC8, docking experiments revealed some important features contributing to inhibitory activity. According to Western blot analysis, select compounds could notably enhance the acetylation of histone H3 and SMC3 but not-tubulin, indicating their privileged structure is appropriate for targeting class I HDACs. Furthermore, antiproliferation assays revealed that six compounds exerted greater in vitro antiproliferative activity against four human cancer cell lines (A2780, HT-29, MDA-MB-231, and HepG2, with IC50 values ranging from 2.31-5.13 μM) than suberoylanilide hydroxamic acid; administration of these compounds induced marked apoptosis in MDA-MB-231 cells, with cell cycle arrest in the G2/M phase. Collectively, specific synthesized compounds could be further optimized and biologically explored as antitumor agents.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry and Utilization of Forest Resources, Nanjing, 210042, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry and Utilization of Forest Resources, Nanjing, 210042, China
| | - Danyang Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry and Utilization of Forest Resources, Nanjing, 210042, China
| | - Xingyin Xue
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry and Utilization of Forest Resources, Nanjing, 210042, China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry and Utilization of Forest Resources, Nanjing, 210042, China
| |
Collapse
|
6
|
Khetmalis YM, Fathima A, Schweipert M, Debarnot C, Bandaru NVMR, Murugesan S, Jamma T, Meyer-Almes FJ, Sekhar KVGC. Design, Synthesis, and Biological Evaluation of Novel Quinazolin-4(3H)-One-Based Histone Deacetylase 6 (HDAC6) Inhibitors for Anticancer Activity. Int J Mol Sci 2023; 24:11044. [PMID: 37446224 DOI: 10.3390/ijms241311044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
A series of novel quinazoline-4-(3H)-one derivatives were designed and synthesized as histone deacetylase 6 (HDAC6) inhibitors based on novel quinazoline-4-(3H)-one as the cap group and benzhydroxamic acid as the linker and metal-binding group. A total of 19 novel quinazoline-4-(3H)-one analogues (5a-5s) were obtained. The structures of the target compounds were characterized using 1H-NMR, 13C-NMR, LC-MS, and elemental analyses. Characterized compounds were screened for inhibition against HDAC8 class I, HDAC4 class IIa, and HDAC6 class IIb. Among the compounds tested, 5b proved to be the most potent and selective inhibitor of HDAC6 with an IC50 value 150 nM. Some of these compounds showed potent antiproliferative activity in several tumor cell lines (HCT116, MCF7, and B16). Amongst all the compounds tested for their anticancer effect against cancer cell lines, 5c emerged to be most active against the MCF-7 line with an IC50 of 13.7 μM; it exhibited cell-cycle arrest in the G2 phase, as well as promoted apoptosis. Additionally, we noted a significant reduction in the colony-forming capability of cancer cells in the presence of 5c. At the intracellular level, selective inhibition of HDAC6 was enumerated by monitoring the acetylation of α-tubulin with a limited effect on acetyl-H3. Importantly, the obtained results suggested a potent effect of 5c at sub-micromolar concentrations as compared to the other molecules as HDAC6 inhibitors in vitro.
Collapse
Affiliation(s)
- Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Ashna Fathima
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Cécile Debarnot
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Trinath Jamma
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | | |
Collapse
|
7
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
8
|
Komar M, Kraljević TG, Jerković I, Molnar M. Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3 H)-Ones: A Comparison of Selected Green Chemistry Methods. Molecules 2022; 27:558. [PMID: 35056873 PMCID: PMC8780518 DOI: 10.3390/molecules27020558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, deep eutectic solvents (DESs) were used as green and eco-friendly media for the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones from different anthranilic acids and aliphatic or aromatic isothiocyanates. A model reaction on anthranilic acid and phenyl isothiocyanate was performed in 20 choline chloride-based DESs at 80 °C to find the best solvent. Based on the product yield, choline chloride:urea (1:2) DES was found to be the most effective, while DESs acted both as solvents and catalysts. Desired compounds were prepared with moderate to good yields using stirring, microwave-assisted, and ultrasound-assisted synthesis. Significantly, higher yields were obtained with mixing and ultrasonication (16-76%), while microwave-induced synthesis showed lower effectiveness (13-49%). The specific contribution of this research is the use of DESs in combination with the above-mentioned green techniques for the synthesis of a wide range of derivatives. The structures of the synthesized compounds were confirmed by 1H and 13C NMR spectroscopy.
Collapse
Affiliation(s)
- Mario Komar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia;
| | - Tatjana Gazivoda Kraljević
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia;
| |
Collapse
|
9
|
Frühauf A, Meyer-Almes FJ. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules 2021; 26:5151. [PMID: 34500583 PMCID: PMC8434074 DOI: 10.3390/molecules26175151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.
Collapse
Affiliation(s)
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany;
| |
Collapse
|
10
|
Gediya P, Vyas VK, Carafa V, Sitwala N, Della Torre L, Poziello A, Kurohara T, Suzuki T, Sanna V, Raguraman V, Suthindhiran K, Ghosh D, Bhatia D, Altucci L, Ghate MD. Discovery of novel tetrahydrobenzo[b]thiophene-3-carbonitriles as histone deacetylase inhibitors. Bioorg Chem 2021; 110:104801. [PMID: 33756235 DOI: 10.1016/j.bioorg.2021.104801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
The discovery and development of isoform-selective histone deacetylase (HDAC) inhibitor is a challenging task because of the sequence homology among HDAC enzymes. In the present work, novel tetrahydro benzo[b]thiophene-3-carbonitrile based benzamides were designed, synthesized, and evaluated as HDAC inhibitors. Pharmacophore modeling was our main design strategy, and two novel series of tetrahydro benzo[b]thiophene-3-carbonitrile derivatives with piperidine linker (series 1) and piperazine linker (series 2) were identified as HDAC inhibitors. Among all the synthesised compounds, 9h with 4-(aminomethyl) piperidine linker and 14n with piperazine linker demonstrated good activity against human HDAC1 and HDAC6, respectively. Both the compounds also exhibited good antiproliferative activity against several human cancer cell lines. Both these compounds (9h and 14n) also induced cell cycle arrest and apoptosis in U937 and MDA-MB-231 cancer cells. Overall, for the first time, this research discovered potent isoform-selective HDAC inhibitors using cyclic linker instead of the aliphatic chain and aromatic ring system, which were reported in known HDAC inhibitors.
Collapse
Affiliation(s)
- Piyush Gediya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Nikum Sitwala
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Laura Della Torre
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angelita Poziello
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Takashi Kurohara
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibarakishi, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibarakishi, Osaka 567-0047, Japan
| | - Vinod Sanna
- Piramal Pharma Solution, Plot-18 Pharmaceutical Special Economic Zone, Sarkhej-Bawla, NH-8A, Ahmedabad, Gujarat 382213, India
| | - Varalakshmi Raguraman
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - K Suthindhiran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Debarpan Ghosh
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, Gujarat, India
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
11
|
Song Y, Park SY, Wu Z, Liu KH, Seo YH. Hybrid inhibitors of DNA and HDACs remarkably enhance cytotoxicity in leukaemia cells. J Enzyme Inhib Med Chem 2021; 35:1069-1079. [PMID: 32314611 PMCID: PMC7191901 DOI: 10.1080/14756366.2020.1754812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chlorambucil is a nitrogen mustard-based DNA alkylating drug, which is widely used as a front-line treatment of chronic lymphocytic leukaemia (CLL). Despite its widespread application and success for the initial treatment of leukaemia, a majority of patients eventually develop acquired resistance to chlorambucil. In this regard, we have designed and synthesised a novel hybrid molecule, chloram-HDi that simultaneously impairs DNA and HDAC enzymes. Chloram-HDi efficiently inhibits the proliferation of HL-60 and U937 leukaemia cells with GI50 values of 1.24 µM and 1.75 µM, whereas chlorambucil exhibits GI50 values of 21.1 µM and 37.7 µM against HL-60 and U937 leukaemia cells, respectively. The mechanism behind its remarkably enhanced cytotoxicity is that chloram-HDi not only causes a significant DNA damage of leukaemia cells but also downregulates DNA repair protein, Rad52, resulting in the escalation of its DNA-damaging effect. Furthermore, chloram-HDi inhibits HDAC enzymes to induce the acetylation of α-tubulin and histone H3.
Collapse
Affiliation(s)
- Yoojin Song
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sun You Park
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Zhexue Wu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Chen Y, Feng J, Hu Y, Wang X, Song W, Zhang L. Discovery of N-(2-Amino-4-Fluorophenyl)-4-[ bis-(2-Chloroethyl)-Amino]-Benzamide as a Potent HDAC3 Inhibitor. Front Oncol 2020; 10:592385. [PMID: 33178617 PMCID: PMC7593677 DOI: 10.3389/fonc.2020.592385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022] Open
Abstract
In discovery of HDAC inhibitors with improved activity and selectivity, fluorine substitution was performed on our previously derived lead compound. The synthesized molecules N-(2-amino-4-fluorophenyl)-4-[bis-(2-chloroethyl)-amino]-benzamide (FNA) exhibited class I (HDAC1, 2, and 3) selectivity in the in vitro enzymatic assay and especially potent against HDAC3 activity (IC50: 95.48 nM). The results of in vitro antiproliferative assay indicated that FNA exhibited solid tumor cell inhibitory activities with IC50 value of 1.30 μM against HepG2 cells compared with SAHA (17.25 μM). Moreover, the in vivo xenograft model study revealed that FNA could inhibit tumor growth with tumor growth inhibition (TGI) of 48.89% compared with SAHA (TGI of 48.13%). Further HepG2 cell–based apoptosis and cell cycle studies showed that promotion of apoptosis and G2/M phase arrest make contributions to the antitumor activity of FNA. In addition, drug combination results showed that 0.5 μM of FNA could improve the anticancer activity of taxol and camptothecin. The present studies revealed the potential of FNA utilized as a high potent lead compound for further discovery of isoform selective HDAC inhibitors.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinhong Feng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yajie Hu
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xuejian Wang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of coumarin-based N-hydroxycinnamamide derivatives as novel histone deacetylase inhibitors with anticancer activities. Bioorg Chem 2020; 101:104023. [DOI: 10.1016/j.bioorg.2020.104023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
|
14
|
El-Shafey HW, Gomaa RM, El-Messery SM, Goda FE. Quinazoline Based HSP90 Inhibitors: Synthesis, Modeling Study and ADME Calculations Towards Breast Cancer Targeting. Bioorg Med Chem Lett 2020; 30:127281. [PMID: 32527460 DOI: 10.1016/j.bmcl.2020.127281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
A new 2-thioquinazolinones series was designed and synthesized as HSP90 inhibitors based on the structure of hit compound VII obtained by virtual screening approach. Their in vitro anti-proliferative activity was evaluated against three human cancer cell lines rich in HSP90 namely; colorectal carcinoma (HCT-116), and cervical carcinoma (Hela), breast carcinoma (MCF-7). Compounds 5a, 5d, 5e and 9h showed a significant broad spectrum anti-proliferative activity against all tested cell lines. They were characterized by potent effect against breast cancer in particular with IC50 of 11.73, 8.56, 7.35 and 9.48 μM, respectively against Doxorubicin (IC50 4.17 μM). HSP90 ATPase activity inhibition assay were conducted where compound 5d exhibited the best IC50 with 1.58 μM compared to Tanespimycin (IC50 = 2.17 μM). Compounds 5a and 9h showed higher IC50 values of 3.21 and 3.41 μM, respectively. The effects of 5a, 5d and 9h on Her2 (a client proteins of HSP90) and HSP70 were evaluated in MCF-7 cells. All tested compounds were found to reduce Her2 protein expression levels and induce Hsp70 protein expression levels significantly, emphasizing that antibreast cancer effect is a consequence of HSP90 chaperone inhibition. Cell cycle analysis of MCF-7 cells treated with 5d showed cell cycle arrest at G2/M phase 38.89% and pro-apoptotic activity as indicated by annexin V-FITC staining by 22.42%. Molecular docking studies suggested mode of interaction to HSP90 via hydrogen bonding. ADME properties prediction of the active compounds suggested that they could be used as orally absorbed anticancer drug candidates.
Collapse
Affiliation(s)
- Hamed W El-Shafey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O.Box 35516 Mansoura, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O.Box 35516 Mansoura, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O.Box 35516 Mansoura, Egypt.
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O.Box 35516 Mansoura, Egypt
| |
Collapse
|
15
|
Design, synthesis and biological evaluation of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent Kinase2 (CDK2) dual inhibitors against malignant cancer. Eur J Med Chem 2020; 198:112322. [PMID: 32361064 DOI: 10.1016/j.ejmech.2020.112322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/25/2022]
Abstract
In the current study, we have designed and synthesized a series of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent kinase2 (CDK2) dual inhibitors by integrating purine-based pharmacophore into the recognition cap group of CS055. The representative compound 14d with excellent antiproliferative activities towards five solid cancer cells, showed potent inhibitory activities against HDAC1, HDAC2 and CDK2 with IC50 values of 70.7 nM, 23.1 nM and 0.80 μM, respectively. Besides, compound 14d could effectively block the cell cycle in the G2/M phase and induce apoptosis, which might be related to increasing intracellular ROS levels. Importantly, compound 14d exhibited desirable pharmacokinetic (PK) properties with the intraperitoneal bioavailability of 50.8% in ICR mice, and potent in vivo antitumor activity in the HCT116 xenograft model. Therefore, compound 14d could be considered as a promising lead compound for the development of multitargeting anticancer agents.
Collapse
|
16
|
Yan G, Li D, Zhong X, Liu G, Wang X, Lu Y, Qin F, Guo Y, Duan S, Li D. Identification of HDAC6 selective inhibitors: pharmacophore based virtual screening, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:1928-1939. [PMID: 32178584 DOI: 10.1080/07391102.2020.1743760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HDAC6 regulates the expression and activity of various tumor-related proteins, but currently there is no selective inhibitor targeting HDAC6 for clinical application. In order to discover novel HDAC6 inhibitors, virtual screening methods comprised of pharmacophore based virtual screening, molecular docking and molecular dynamics (MD) simulations were employed. 15 molecules were obtained after virtual screening. After in vitro bioassays, two of the hits showed inhibition activity against HDAC6, among which the inhibition activity of G1 to HDAC6 reached 81% at concentration of 20 μM. In addition, the inhibitory activity against HDAC1 and HDAC10 demonstrated that G1 and G10 were highly selective to HDAC6. The analysis of the binding modes of G1 and G10 provides a reference for further development of highly active HDAC6 inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Guoyi Yan
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Dongxiao Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | - Ge Liu
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xueqin Wang
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yuanxiang Lu
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Fangyuan Qin
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Yuqi Guo
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, China
| | - Deyu Li
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
17
|
Zhao N, Yang F, Han L, Qu Y, Ge D, Zhang H. Development of Coumarin-Based Hydroxamates as Histone Deacetylase Inhibitors with Antitumor Activities. Molecules 2020; 25:E717. [PMID: 32046013 PMCID: PMC7036849 DOI: 10.3390/molecules25030717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) have been proved to be promising targets for the treatment of cancer, and five histone deacetylase inhibitors (HDACis) have been approved on the market for the treatment of different lymphomas. In our previous work, we designed a series of novel coumarin-containing hydroxamate HDACis, among which compounds 6 and 7 displayed promising activities against tumor growth. Based on a molecular docking study, we further developed 26 additional analogues with the aim to improve activity of designed compounds. Several of these new derivatives not only showed excellent HDAC1 inhibitory effects, but also displayed significant growth inhibitory activities against four human cancer cell lines. Representative compounds, 13a and 13c, showed potent anti-proliferative activities against solid tumor cell lines with IC50 values of 0.36-2.91 M and low cytotoxicity against Beas-2B and L-02 normal cells. Immunoblot analysis revealed that 13a and 13c dose-dependently increased the acetylation of histone H3 and H4. Importantly, the two compounds displayed much better anti-metastatic effects than SAHA against the MDA-MB-231 cell line. Moreover, 13a and 13c arrested MDA-MB-231 cells at G2/M phase and induced MDA-MB-231 cell apoptosis. Finally, the molecular docking study rationalized the high potency of compound 13c.
Collapse
Affiliation(s)
- Na Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Lina Han
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Yuhua Qu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| |
Collapse
|