1
|
Guo J, Zhu Y, Zhi J, Lou Q, Bai R, He Y. Antioxidants in anti-Alzheimer's disease drug discovery. Ageing Res Rev 2025; 107:102707. [PMID: 40021094 DOI: 10.1016/j.arr.2025.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Oxidative stress is widely recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). While not the sole factor, it is closely linked to critical pathological features, such as the formation of senile plaques and neurofibrillary tangles. The development of agents with antioxidant properties has become an area of growing interest in AD research. Between 2015 and 2024, several antioxidant-targeted drugs for AD progressed to clinical trials, with increasing attention to the evaluation of antioxidant properties during their development. Oxidative stress plays a pivotal role in linking various AD hypotheses, underscoring its importance in understanding the disease mechanisms. Despite this, comprehensive reviews addressing advancements in AD drug development from the perspective of antioxidant capacity remain limited, hindering the design of novel compounds. This review aims to explore the mechanistic relationship between oxidative stress and AD, summarize methods for assessing antioxidant capacity, and provide an overview of antioxidant compounds with anti-AD properties reported over the past decade. The goal is to offer strategies for identifying effective antioxidant-based therapies for AD and to deepen our understanding of the role of oxidative stress in AD pathology.
Collapse
Affiliation(s)
- Jianan Guo
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Jia Zhi
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiuwen Lou
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| |
Collapse
|
2
|
Nagani A, Shah M, Patel S, Patel H, Parikh V, Patel A, Patel S, Patel K, Parmar H, Bhimani B, Yadav MR. Unveiling piperazine-quinoline hybrids as potential multi-target directed anti-Alzheimer's agents: design, synthesis and biological evaluation. Mol Divers 2025; 29:1453-1478. [PMID: 38990393 DOI: 10.1007/s11030-024-10927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Multi-target directed ligands (MTDLs) have recently been popularized due to their outstanding efficacy in combating the complicated features of Alzheimer's disease. This study details the synthesis of piperazine-quinoline-based MTDLs through a multicomponent Petasis reaction, targeting multiple factors such as AChE, BuChE, metal chelation to restore metal dyshomeostasis, and antioxidant activity. Some of the synthesized compounds exhibited notable inhibitory activity against AChE and BuChE enzymes at specific concentrations. Among the synthesized compounds compound (95) containing a 4-chloroaniline moiety and a 4-methoxybenzyl group displayed the most promising inhibitory activities against AChE (IC50 3.013 µM) and BuChE (IC50 = 3.144 µM). Compound (83) featuring 2-methoxyaniline and 4-fluorobenzyl substituents, exhibited the highest BuChE inhibition (IC50 1.888 µM). Notably, compound (79) demonstrated 93-times higher selectivity for BuChE over AChE. Molecular docking and molecular dynamics simulations were also performed to explore the binding modes and stability of these compounds with the AChE amd BuChE proteins. Further, kinetics study was performed against AChE for comounds (83 and 95) which indicated mixed inhibition of the enzyme by these compounds, Amongs the synthesized compounds, nine compounds were assessed for their antioxidant activity, displaying significant antioxidant properties with IC50 values ranging from 156 µM to 310 µM. Moreover, all the compounds demonstrated metal chelating tendency with Cu+2, Zn+2, Fe+2, Fe+3 and Al+3. This study provides insights into the design of novel MTDLs, highlighting compound (95) as a potential candidate for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Afzal Nagani
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
- Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Moksh Shah
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Salman Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Harnisha Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Vruti Parikh
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, India
| | - Sagar Patel
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON, Canada
| | - Kirti Patel
- Faculty of Pharmacy, The M.S University of Baroda, Vadodara, Gujarat, India
| | - Hardik Parmar
- Faculty of Pharmacy, The M.S University of Baroda, Vadodara, Gujarat, India
| | | | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
3
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
4
|
Patowary P, Shakya A, Ghosh SK, Jamir L, Sahariah BJ, Gogoi N, Singh UP, Bhat HR. In Silico Study, Synthesis, and In Vitro Evaluation of Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activity of Novel N-Thiazole Substituted Acetamide Coumarin Derivatives. Chem Biodivers 2025:e202401524. [PMID: 39903847 DOI: 10.1002/cbdv.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
In this study, a structurally directed pharmacophore hybridization technique is used to combine the two essential structural scaffolds coumarin and thiazoles in search of a new class of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor for Alzheimer's disease (AD). A library of 120 compounds was designed in two series 5a(1-15), 5b(16-30), 5c(31-45), 5d(46-60), and 6a(61-75), 6b(76-90), 6c(91-105), 6d(106-120) using various substituted phenol, β-ketoesters, and thiazole derivatives. Eleven compounds were identified as potential hybrids using molecular property filter analysis and molecular docking studies, and they comprise N-substituted thiazole coumarin derivatives. The docking results indicated that compounds 5b16 and 5c35 exhibited strong binding interactions with GLY116, GLY117, TYR332, and HIS438 (ranging from -27.42 to -24.18 kcal/mol) and GLY119, ASP72, and PHE288 (ranging from -32.21 to -25.92 kcal/mol) when tested against AChE (1EVE) and BuChE (1P0I) inhibitors. These compounds were synthesized via conventional methods and characterized by different spectroscopic methods. In vitro anti-cholinesterase activity results indicated that two compounds, for example, 5b16 and 5c35 showed potent to moderate activity against AChE and BuChE with IC50 (2.00 ± 0.09-29.63 ± 0.48) µM and (34.93 ± 0.62-17.92 ± 0.42) µM, respectively. Our study demonstrated the development of a novel class of hybrid coumarin thiazole derivatives as AChE and BuChE inhibitors, and these compounds could be utilized against ADs.
Collapse
Affiliation(s)
- Pooja Patowary
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
- Institute of Pharmaceutical Science, NETES, Mirza, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Lipoksangla Jamir
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | | | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Udaya Pratap Singh
- Department of Pharmaceutical Sciences, Drug Design and Discovery Laboratory, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
5
|
Massaga C, Paul L, Kwiyukwa LP, Vianney JM, Chacha M, Raymond J. Computational analysis of Urolithin A as a potential compound for anti-inflammatory, antioxidant, and neurodegenerative pathways. Free Radic Biol Med 2025; 227:508-520. [PMID: 39643139 DOI: 10.1016/j.freeradbiomed.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/24/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Urolithin A, an active precursor derived from the metabolism of ellagitanins in rats and humans, is known for its potential health benefits, including stimulating mitophagy and promoting muscular skeletal function. While experimental studies have demonstrated Urolithin A's potential to enhance cellular health, the detailed molecular interactions through which Urolithin A exerts its effects are not fully elucidated. In this study, we investigated the anti-inflammatory, antioxidation and neuroprotective abilities of Urolithin A in selected targets using molecular docking and molecular dynamics simulation methods. Molecular docking studies revealed the strong affinity for receptors involved in inflammation activities, including human p38 MAP kinase (4DLI) with -10.1 kcal/mol interacting with SER252, LYS249, and ASP294 residues. The binding energy in the 5KIR target was -8.6 kcal/mol, interacting with GLN203 through hydrogen bond, and lastly, 1A9U with an affinity of -6.8 with no hydrogen bond formed with Urolithin A and interacts with van der Waals interactions. In oxidant targets, the influence of Urolithin was observed in 1OG5 with -7.9 kcal/mol interacting with GLN185, PHE447. For the 1M17 target, the binding affinity was -7.7 kcal/mol interacting with THR95 residue and 1ZXM target at -7.4 kcal/mol interacting with TYR36, TYR216, and LEU234 residues. The neuroprotective ability of urolithin A was observed in selected targets for acetylcholinesterase; the binding energy was -9.7 kcal/mol interacting with van der Waals and π interactions; for the 1GQR target, the binding energy was -9.9 kcal/mol interacting with van der Waals and π interactions and for β-amylase (1iyt) the binding energy was -5.5 forming hydrogen bond with SER8, GLN15 residues. Molecular Dynamics simulations at 100 ns of Urolithin A compared with reference 4DLI. The Urolithin A-4DLI complex exhibited greater stability than the reference receptor, as confirmed by RMSD, RMSF, Radius of Gyration, Hydrogen bond, and SASA analyses.
Collapse
Affiliation(s)
- Caroline Massaga
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Lucas Paul
- Department of Chemistry, Dar es Salaam University College of Education, P.O. Box 2329, Dar es Salaam, Tanzania.
| | - Lucas P Kwiyukwa
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania.
| | - John-Mary Vianney
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Musa Chacha
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Jofrey Raymond
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| |
Collapse
|
6
|
Wang H, Wu Y, Liu A, Li S, Zhu P, Zuo J, Kuang Y, Li J, Jiang X. Design, synthesis and biological evaluation of novel pyrazolinone derivatives as multifunctional ligands for the treatment of Alzheimer's disease. Bioorg Chem 2025; 154:108052. [PMID: 39675097 DOI: 10.1016/j.bioorg.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the depletion of cholinergic neurons and the accumulation of amyloid β (Aβ) plaques. The complexity and multifaceted nature of AD necessitate further exploration of multi-target drugs for its treatment. In this study, a series of novel pyrazolinone-based compounds were designed, synthesized, and evaluated as acetylcholinesterase (AChE) inhibitors and antioxidants. The lead compounds ET11 and ET21 showed strong inhibitory activity against human AChE, with IC50 values of 6.34 and 1.81 nM, respectively. In vitro DPPH and ORACFL assays confirmed the compounds' strong antioxidant capabilities. ET11 exhibited excellent neuroprotective activity in the tBHP-induced SH-SY5Y cell damage model. Benefiting from the pyridopyrazolone moiety, ET11 showed significant Cu2+ chelating ability and effectively inhibited Cu2+-induced Aβ aggregation. In vivo behavioral studies and histopathology analysis preliminarily confirmed the compound's cognitive improvement and neuroprotective effects. Overall, these findings suggested that compound ET11 is expected to play a synergistic role in the treatment of AD, potentially slowing disease progression.
Collapse
Affiliation(s)
- Huabo Wang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yulu Wu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anran Liu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Siyi Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jianguo Zuo
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Kuang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jiaming Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China.
| | - Xueyang Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Abd El-Mageed MMA, Fattah Ezzat MA, Moussa SA, Abdel-Aziz HA, Elmasry GF. Rational design, synthesis and computational studies of multi-targeted anti-Alzheimer's agents integrating coumarin scaffold. Bioorg Chem 2025; 154:108024. [PMID: 39642754 DOI: 10.1016/j.bioorg.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The traditional theory of "one drug, one target, one illness" has come under scrutiny owing to the multifactorial nature of Alzheimer's disease (AD) and the failure of most of its medications, therefore multi-target directed ligands (MTDLs) are prospective therapeutics for AD. In the present study, we synthesized novel series of coumarin derivatives and assessed their inhibitory actions against hAChE, hBuChE, GSK-3β, tau protein and Aβ aggregation. Compounds 6c and 6h stood out among the others with their multifunctional profile. With IC50 values of 28.88 and 26.03 nM, respectively, compounds 6c and 6h showed outstanding activity as hAChE inhibitors and demonstrated good inhibitory activity against hBuChE with IC50 values of 103.90 and 90.09 nM along with appropriate action against GSK-3β in nanomolar range. Also, both compounds 6c and 6h were found to outperform the reported anti-AD donepezil as tau protein aggregation and amyloid aggregation (Aβ) inhibitors as well as low cytotoxicity on healthy neuroblastoma SHSY5Y and hepatic THLE2 cells. Kinetic analysis and docking studies indicated hAChE dual site (mixed) inhibitory effect of compound 6h. Both compounds 6c and 6h complied with Lipinski's rule of five and were virtually able to cross the BBB. All the data suggested that compounds 6c and 6h have potential as a multifunctional therapy for AD.
Collapse
Affiliation(s)
- Menna M A Abd El-Mageed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Manal Abdel Fattah Ezzat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Shaimaa A Moussa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, 21648, Alexandria, Egypt
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
8
|
Plunkett S, Diccianni JB, Panish R, Balsells J. Synthesis of 3-Aminoazaindazoles via Cu-Catalyzed Cross Coupling of Isocyanides. Org Lett 2024; 26:6933-6938. [PMID: 39101578 DOI: 10.1021/acs.orglett.4c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Nitrogen-containing heterocycles are commonly encountered in drug discovery, but the synthesis of such ring structures is not always efficient. Fused heterocyclic rings, in particular, can be challenging to synthesize. Herein, we report a highly convergent synthesis of 3-aminoazaindazoles via a Cu-catalyzed reaction between isocyanides and 3-halo-2-hydrazineylpyridines (and analogues). Reaction optimization through high-throughput experimentation (HTE) identified a novel set of exogenous ligand-free Cu conditions utilizing a cheap and readily available catalyst. The reaction displays high functional group tolerance and has the potential to be highly enabling for medicinal chemistry efforts. A putative mechanism is described as well as preliminary mechanistic experiments.
Collapse
Affiliation(s)
- Shane Plunkett
- Discovery Process Research, Janssen R&D, Spring House, Pennsylvania 19477, United States
| | - Justin B Diccianni
- Global Discovery Chemistry, Janssen R&D, Spring House, Pennsylvania 19477, United States
| | - Robert Panish
- Discovery Process Research, Janssen R&D, San Diego, California 92121, United States
| | - Jaume Balsells
- Discovery Process Research, Janssen R&D, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
9
|
Ayoup MS, Ghanem M, Abdel-Hamid H, Abu-Serie MM, Masoud A, Ghareeb DA, Hawsawi MB, Sonousi A, Kassab AE. New 1,2,4-oxadiazole derivatives as potential multifunctional agents for the treatment of Alzheimer's disease: design, synthesis, and biological evaluation. BMC Chem 2024; 18:130. [PMID: 39003489 PMCID: PMC11246588 DOI: 10.1186/s13065-024-01235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
A series of new 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their anti-AD potential. The results revealed that eleven compounds (1b, 2a-c, 3b, 4a-c, and 5a-c) exhibited excellent inhibitory potential against AChE, with IC50 values ranging from 0.00098 to 0.07920 µM. Their potency was 1.55 to 125.47 times higher than that of donepezil (IC50 = 0.12297 µM). In contrast, the newly synthesized oxadiazole derivatives with IC50 values in the range of 16.64-70.82 µM exhibited less selectivity towards BuChE when compared to rivastigmine (IC50 = 5.88 µM). Moreover, oxadiazole derivative 2c (IC50 = 463.85 µM) was more potent antioxidant than quercetin (IC50 = 491.23 µM). Compounds 3b (IC50 = 536.83 µM) and 3c (IC50 = 582.44 µM) exhibited comparable antioxidant activity to that of quercetin. Oxadiazole derivatives 3b (IC50 = 140.02 µM) and 4c (IC50 = 117.43 µM) showed prominent MAO-B inhibitory potential. They were more potent than biperiden (IC50 = 237.59 µM). Compounds 1a, 1b, 3a, 3c, and 4b exhibited remarkable MAO-A inhibitory potential, with IC50 values ranging from 47.25 to 129.7 µM. Their potency was 1.1 to 3.03 times higher than that of methylene blue (IC50 = 143.6 µM). Most of the synthesized oxadiazole derivatives provided significant protection against induced HRBCs lysis, revealing the nontoxic effect of the synthesized compounds, thus making them safe drug candidates. The results unveiled oxadiazole derivatives 2b, 2c, 3b, 4a, 4c, and 5a as multitarget anti-AD agents. The high AChE inhibitory potential can be computationally explained by the synthesized oxadiazole derivatives' significant interactions with the AChE active site. Compound 2b showed good physicochemical properties. All these data suggest that 2b could be considered as a promising candidate for future development.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Mariam Ghanem
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Aliaa Masoud
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Cairo, Egypt
- University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Cairo, Egypt.
| |
Collapse
|
10
|
Fahmy NM, Fayez S, Zengin G, Selvi S, Uba AI, Mollica A, Bouyahya A, Ponniya SKM, Nilofar, Lekmine S, Ferrante C, Eldahshan OA. Chemical exploration of different extracts from Phytolacca americana leaves and their potential utilization for global health problems: ın silico and network pharmacology validation. J Biomol Struct Dyn 2024:1-21. [PMID: 38288952 DOI: 10.1080/07391102.2024.2308770] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2025]
Abstract
Phytolacca americana L. is of great interest as a traditional additive in various folk remedies in several countries, including Turkey. We aimed to determine the chemical profile (assisted by high-Performance liquid chromatography-electrospray ionization-tandem mass apectrometry (HPLC-ESI-MS/MS) experiments of three extracts obtained by different polarity solvents viz. ethyl acetate (to extract semipolar compounds), methanol and water (to extract highly polar metabolites) from P. americana leaves. Their anti-diabetic effects were investigated in vitro by assessing their inhibition toα-amylase and α-glucosidase. Assessment of the neuroprotective potential of the three extracts was carried out against acetyl-(AChE) and butyryl-(BChE) cholinesterase enzymes. HPLC-ESI-MS/MS experiments showed a total of 17 chromatographic peaks primarily classified to six flavonoids, two saponins, and six fatty acids. Antioxidant assays revealed remarkable activity for the ethyl acetate and methanol extracts. The BChE inhibition was considerably more significant (4.08 mg galantamine equivalent (GALAE)/g) for the ethyl acetate extract, whereas the methanol extract had good inhibitory efficacy for AChE (2.05 mg GALAE/g). Through network pharmacology, the compounds' mechanism of action of targeted key gene in their associated diseases were identified. The hubb gene signal transducer and activator of transcription 3 (STAT3) and tumour necrosis factor (TNFα) where the P. americana compound's site of action in inflammation bowel disease. The results offer possibilities for the prospective application of P. americana in metabolic regulation, blood glucose control, and as a source of bioactive compounds with cholinesterase enzyme inhibitory characteristics which could be of relevance in the cosmetic or pharmaceutical industry for combating melanogenesis.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Adriano Mollica
- Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara, Chieti, Italy
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino deiSemplici", Universitàdegli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela, Algeria
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino deiSemplici", Universitàdegli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center of Drug Development Research and Discovery, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Waly OM, El-Sayed SM, Ghaly MA, El-Subbagh HI. Multi-targeted anti-Alzheimer's agents: Synthesis, biological evaluation, and molecular modeling study of some pyrazolopyridine hybrids. Eur J Med Chem 2023; 262:115880. [PMID: 37871406 DOI: 10.1016/j.ejmech.2023.115880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
A new series of compounds bearing a pyrazolopyridine scaffold was synthesized as integrated anti-Alzheimer's disease (AD) multi-targeted ligands. Compounds 49 and 51 showed remarkable activity as hAChE inhibitors with IC50 values of 0.17 and 0.16 μM, respectively; and proved to be active hBuChE inhibitors with IC50 values 0.17 and 0.69 μM, eight and two-fold more active than the reference compound rivastigmine, respectively. Compounds 49 and 51 showed potent GSK3β inhibition with IC50 values of 0.21 and 0.26 μM, respectively compared to L807mts. Also, 49 and 51 showed 66.0 and 60.0% as tau protein aggregation inhibitors; and Aβ1-42 self-aggregation inhibitors with 79.0 and 75.0% respectively. Furthermore, 49 and 51 could bind virtually with the PAS affecting Aβ aggregation, thus preventing Aβ-dependent neurotoxicity. They proved to have the ability to chelate bio-metals such as Fe2+, Cu2+, and Zn2+ preventing their oxidative damage in the brain of AD patients, in addition to their safety upon WI-38 cell line. Both compounds could virtually penetrate BBB and obeyed Lipinski's rule of five. Compounds 49 and 51 could be considered as MTDLs for AD patients and the obtained model and pattern of substitution could be used for further development of new multi-targeted anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Omnia M Waly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mariam A Ghaly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
12
|
Swift EC, Sales ZS, Wu D, Matviitsuk A, Pippel DJ, Lebold TP. Synthesis of Highly Functionalized 4-Iodo-7-azaindazoles via Condensation/Diels-Alder/Retro-Diels-Alder Cyclization of Iodoalkynones and 2-Hydrazineylpyrimidines. Org Lett 2023. [PMID: 37991557 DOI: 10.1021/acs.orglett.3c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A method for the preparation of highly functionalized 4-iodo-7-azaindazoles is reported. These valuable heterocycles are synthesized via condensation of 2-hydrazineylpyrimidines with various iodoalkynones followed by Diels-Alder/retro-Diels-Alder cyclization. The method is general to the formation of products with a variety of C3, C5, and C6 substituents while preserving the C4 iodide functional handle for further late-stage functionalization. The utility of this transformation is demonstrated through the rapid synthesis of several bioactive azaindazole targets.
Collapse
Affiliation(s)
- Elizabeth C Swift
- Discovery Process Research, Janssen R&D, San Diego, California 92121, United States
| | - Zachary S Sales
- Discovery Process Research, Janssen R&D, San Diego, California 92121, United States
| | - Dongpei Wu
- Discovery Chemistry, Janssen R&D, San Diego, California 92121, United States
| | | | - Daniel J Pippel
- Discovery Process Research, Janssen R&D, San Diego, California 92121, United States
| | - Terry P Lebold
- Discovery Chemistry, Janssen R&D, San Diego, California 92121, United States
| |
Collapse
|
13
|
Hu Z, Zhou S, Li J, Li X, Zhou Y, Zhu Z, Xu J, Liu J. Design, synthesis and biological evaluation of novel indanones derivatives as potent acetylcholinesterase/monoamine oxidase B inhibitors. Future Med Chem 2023; 15:1823-1841. [PMID: 37902028 DOI: 10.4155/fmc-2023-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Aim: Based on a multitarget design strategy, a series of novel indanone-1-benzyl-1,2,3,6-tetrahydropyridin hybrids were identified for the potential treatment of Alzheimer's disease (AD). Results: These compounds exhibited significant inhibitory activities against acetylcholinesterase (AChE) and moderate inhibitory activities toward monoamine oxidase B (MAO-B). The optimal compound A1 possessed excellent dual AChE/MAO-B inhibition both in terms of potency (AChE: IC50 = 0.054 ± 0.004 μM; MAO-B: IC50 = 3.25 ± 0.20 μM), moderate inhibitory effects on self-mediated amyloid-β (Aβ) aggregation and antioxidant activity. In addition, compound A1 exhibited low neurotoxicity. More importantly, compound A1 showed significant cognitive and spatial memory improvements in the scopolamine-induced AD mouse model. Conclusion: All results suggest that compound A1 may become a promising lead of anti-AD drug for further development.
Collapse
Affiliation(s)
- Zhaoxin Hu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shengnan Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Junda Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| |
Collapse
|
14
|
Gowda D, Harsha KB, Shalini VG, Rangappa S, Rangappa KS. Microwave assisted one-pot access to pyrazolo quinolinone and tetrahydroisoxazolo quinolinone derivatives via T3P®-DMSO catalysed tandem oxidative-condensation reaction. RSC Adv 2023; 13:28362-28370. [PMID: 37795377 PMCID: PMC10545979 DOI: 10.1039/d3ra05235d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
A new approach for the synthesis of two important annulated pyrazolo quinolinone and tetrahydroisoxazolo quinolinone derivatives from multicomponent reactions was achieved by using T3P®-DMSO-catalysed reactions of stable alcohols, cyclic 1,3-dicarbonyl compounds and amino derivatives of phenyl pyrazoles and isoxazole and has been reported for the first time. This reaction occurred via a tandem oxidative-condensation reaction under microwave irradiation and notable characteristics of this protocol are MCR reactions, shorter reaction time, less waste creation, ease of workup, stable precursors, broad substrate scope and functional group tolerance.
Collapse
Affiliation(s)
- Darshini Gowda
- DOS in Chemistry, University of Mysore Mysuru-57006 India
| | - Kachigere B Harsha
- Department of Chemistry, School of Engineering, University of Mysore Mysuru-570006 India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine Nagamangala-571448 India
| | | |
Collapse
|
15
|
Fares S, El Husseiny WM, Selim KB, Massoud MAM. Modified Tacrine Derivatives as Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease: Synthesis, Biological Evaluation, and Molecular Modeling Study. ACS OMEGA 2023; 8:26012-26034. [PMID: 37521639 PMCID: PMC10373466 DOI: 10.1021/acsomega.3c02051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
To develop multitarget-directed ligands (MTDLs) as potential treatments for Alzheimer's disease (AD) and to shed light on the effect of the chromene group in designing these ligands, 35 new tacrine-chromene derivatives were designed, synthesized, and biologically evaluated. Compounds 5c and 5d exhibited the most desirable multiple functions for AD; they were strong hAChE inhibitors with IC50 values of 0.44 and 0.25 μM, respectively. Besides, their potent BuChE inhibitory activity was 10- and 5-fold more active than rivastigmine with IC50 = 0.08 and 0.14 μM, respectively. Moreover, they could bind to the peripheral anionic site (PAS), influencing Aβ aggregation and decreasing Aβ-related neurodegeneration, especially compound 5d, which was 8 times more effective than curcumin with IC50 = 0.74 μM and 76% inhibition at 10 μM. Compounds 5c and 5d showed strong BACE-1 inhibition at the submicromolar level with IC50 = 0.38 and 0.44 μM, respectively, which almost doubled the activity of curcumin. They also showed single-digit micromolar inhibitory activity against MAO-B with IC50 = 5.15 and 2.42 μM, respectively. They also had antioxidant activities and showed satisfactory metal-chelating properties toward Fe+2, Zn+2, and Cu+2, inhibiting oxidative stress in AD brains. Furthermore, compounds 5c and 5d showed acceptable relative safety upon normal cells SH-SY5Y and HepG2. It was shown that 5c and 5d were blood-brain barrier (BBB) penetrants by online prediction. Taken together, these multifunctional properties highlight that compounds 5c and 5d can serve as promising candidates for the further development of multifunctional drugs against AD.
Collapse
Affiliation(s)
- Salma Fares
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department
of Pharmaceutical Chemistry, Delta University
For science and Technology, Gamasa 11152, Egypt
| | - Walaa M. El Husseiny
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Khalid B. Selim
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. M. Massoud
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
16
|
Madhav H, Abdel-Rahman SA, Hashmi MA, Rahman MA, Rehan M, Pal K, Nayeem SM, Gabr MT, Hoda N. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer's agents: In-silico design, synthesis, and characterization. Eur J Med Chem 2023; 254:115354. [PMID: 37043996 DOI: 10.1016/j.ejmech.2023.115354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Multi-target directed ligands (MTDLs) have recently attracted significant interest due to their exceptional effectiveness against multi-factorial Alzheimer's disease. The present work described the development of pyrazine-based MTDLs using multicomponent Petasis reaction for the dual inhibition of tau-aggregation and human acetylcholinesterase (hAChE). The molecular structure of synthesized ligands was validated by 1H & 13C NMR and mass spectrometry. The screened compounds were shown to have a strong inhibitory effect at 10 μM concentration against tau-oligomerization and hAChE, but only moderate inhibitory activity against Aβ42. Among all the compounds, the half-maximal inhibitory concentration (IC50) for 21 and 24 against hAChE were 0.71 μM and 1.09 μM, respectively, while they displayed half-maximal effective concentrations (EC50) values of 2.21 μM and 2.71 μM for cellular tau-oligomerization, respectively. Additionally, an MTT experiment using tau-expressing SH-SY5Y neuroblastoma cells revealed that 21 was more neuroprotective than the FDA-approved medication donepezil. Furthermore, an MD simulation study was performed to investigate the dynamics and stability of AChE-21 and AChE-24 complexes in an aqueous environment. The MM-PBSA calculations were performed to evaluate the binding of 21 and 24 with AChE, and the relative binding energy was calculated as -870.578 and -875.697 kJ mol-1, respectively. As a result, the study offered insight into the design of new MTDLs and highlighted 21 as a potential roadblock to the development of anti-AD medications.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Somaya A Abdel-Rahman
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Md Ataur Rahman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mohammad Rehan
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
17
|
Jameel E, Madhav H, Agrawal P, Raza MK, Ahmedi S, Rahman A, Shahid N, Shaheen K, Gajra CH, Khan A, Malik MZ, Imam MA, Kalamuddin M, Kumar J, Gupta D, Nayeem SM, Manzoor N, Mohammad A, Malhotra P, Hoda N. Identification of new oxospiro chromane quinoline-carboxylate antimalarials that arrest parasite growth at ring stage. J Biomol Struct Dyn 2023; 41:15485-15506. [PMID: 36970842 DOI: 10.1080/07391102.2023.2188959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Malaria still threatens half the globe population despite successful Artemisinin-based combination therapy. One of the reasons for our inability to eradicate malaria is the emergence of resistance to current antimalarials. Thus, there is a need to develop new antimalarials targeting Plasmodium proteins. The present study reported the design and synthesis of 4, 6 and 7-substituted quinoline-3-carboxylates 9(a-o) and carboxylic acids 10(a-b) for the inhibition of Plasmodium N-Myristoyltransferases (NMTs) using computational biology tools followed by chemical synthesis and functional analysis. The designed compounds exhibited a glide score of -9.241 to -6.960 kcal/mol for PvNMT and -7.538 kcal/mol for PfNMT model proteins. Development of the synthesized compounds was established via NMR, HRMS and single crystal X-ray diffraction study. The synthesized compounds were evaluated for their in vitro antimalarial efficacy against CQ-sensitive Pf3D7 and CQ-resistant PfINDO lines followed by cell toxicity evaluation. In silico results highlighted the compound ethyl 6-methyl-4-(naphthalen-2-yloxy)quinoline-3-carboxylate (9a) as a promising inhibitor with a glide score of -9.084 kcal/mol for PvNMT and -6.975 kcal/mol for PfNMT with IC50 values of 6.58 µM for Pf3D7 line. Furthermore, compounds 9n and 9o exhibited excellent anti-plasmodial activity (Pf3D7 IC50 = 3.96, 6.71 µM, and PfINDO IC50 = 6.38, 2.8 µM, respectively). The conformational stability of 9a with the active site of the target protein was analyzed through MD simulation and was found concordance with in vitro results. Thus, our study provides scaffolds for the development of potent antimalarials targeting both Plasmodium vivax and Plasmodium falciparum.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ehtesham Jameel
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Hari Madhav
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Prakhar Agrawal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Md Kausar Raza
- Department of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, CA, USA
| | - Saiema Ahmedi
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdur Rahman
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Nida Shahid
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Kashfa Shaheen
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Chhaya Haresh Gajra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Zubbair Malik
- School of Computational Biology, Jawaharlal Nehru University, New Delhi, India
| | - Md Ali Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Kalamuddin
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Jitendra Kumar
- Department of Chemistry, Sardar Vallabhbhai Patel College, Bhabua, India
- V. K. S. U., Ara, Bihar, India
| | - Dinesh Gupta
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nikhat Manzoor
- Department of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, CA, USA
| | - Asif Mohammad
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Nasimul Hoda
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Elmorsy MR, Abdel-Latif E, Gaffer HE, Mahmoud SE, Fadda AA. Anticancer evaluation and molecular docking of new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives. Sci Rep 2023; 13:2782. [PMID: 36797448 PMCID: PMC9935538 DOI: 10.1038/s41598-023-29908-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
3-Amino-4,6-dimethylpyrazolopyridine was applied as a precursor for the synthesis of some new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives through diazotization, followed by coupling with many 2-cyanoacetamide compounds, ethyl 3-(phenylamino)-3-thioxopropanoate, 3-oxo-N-phenylbutanethioamide, and α-bromo-ketone reagents [namely; 2-bromo-1-(4-fluorophenyl)ethan-1-one, 5-bromo-2-(bromoacetyl)thiophene, 3-(2-bromoacetyl)-2H-chromen-2-one and/or 3-chloroacetylacetone]. The prepared compounds were identified by spectroscopic analyses as IR, 1H NMR, and mass data. The anticancer activity of these pyrazolopyridine analogues was investigated in colon, hepatocellular, breast, and cervix carcinoma cell lines. The pyridopyrazolo-triazine compound 5a substituted with a carboxylate group gave a distinguished value of IC50 = 3.89 µM against the MCF-7 cell line compared to doxorubicin as a reference drug. Also, the pyridopyrazolo-triazine compound 6a substituted with the carbothioamide function gave good activity toward HCT-116 and MCF-7 cell lines with IC50 values of 12.58 and 11.71 µM, respectively. The discovered pyrazolopyridine derivatives were studied theoretically by molecular docking, and this study exhibited suitable binding between the active sides of pyrazolopyridine ligands and proteins (PDB ID: 5IVE). The pyridopyrazolo-triazine compound 6a showed the highest free binding energy (- 7.8182 kcal/mol) when docked inside the active site of selected proteins.
Collapse
Affiliation(s)
- Mohamed R. Elmorsy
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ehab Abdel-Latif
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Hatem E. Gaffer
- grid.419725.c0000 0001 2151 8157Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, 12622 Egypt
| | - Samar E. Mahmoud
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed A. Fadda
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
19
|
Li L, Liu Y, Zhou S, Li J, Qi C, Zhang F. Synthesis of 4-hydroxy-3-benzoylpyridin-2(1 H)-one derivatives using pyrrolidine as catalyst. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2177872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Linbo Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuxiao Liu
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shujing Zhou
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jinjing Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chenze Qi
- School of Pharmacy, Jiamusi University, Jiamusi, China
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| |
Collapse
|
20
|
Design, Synthesis and Pharmacological Evaluation of New Quinoline-Based Panx-1 Channel Blockers. Int J Mol Sci 2023; 24:ijms24032022. [PMID: 36768344 PMCID: PMC9916356 DOI: 10.3390/ijms24032022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Pannexins are an interesting new target in medicinal chemistry, as they are involved in many pathologies such as epilepsy, ischemic stroke, cancer and Parkinson's disease, as well as in neuropathic pain. They are a family of membrane channel proteins consisting of three members, Panx-1, Panx-2 and Panx-3, and are expressed in vertebrates. In the present study, as a continuation of our research in this field, we report the design, synthesis and pharmacological evaluation of new quinoline-based Panx-1 blockers. The most relevant compounds 6f and 6g show an IC50 = 3 and 1.5 µM, respectively, and are selective Panx-1 blockers. Finally, chemical stability, molecular modelling and X-ray crystallography studies have been performed providing useful information for the realization of the project.
Collapse
|
21
|
Thakur R, Karwasra R, Umar T. Understanding Alzheimer's Disease and its Metal Chelation Therapeutics: A Narrative Review. Curr Pharm Des 2023; 29:2377-2386. [PMID: 37859328 DOI: 10.2174/0113816128263992231012113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
The neurodegenerative disorders are age-related illnesses that cause the morphology or activity of neurons to deteriorate over time. Alzheimer's disease is the most frequent neurodegenerative illness in the long run. The rate of advancement might vary, even though it is a progressive neurological illness. Various explanations have been proposed, however the true etiology of Alzheimer's disease remains unclear. Most pharmacological interventions are based on the cholinergic theory, that is earliest idea. In accordance with the amyloid hypothesis, the buildup of beta-amyloid in brain regions is the primitive cause of illness. There is no proof that any one strategy is useful in avoiding Alzheimer's disease, though some epidemiological studies have suggested links within various modifiable variables, such as cardiovascular risk, diet and so on. Different metals like zinc, iron, and copper are naturally present in our bodies. In metal chelation therapy drugs are used to jam the metal ions from combining with other molecules in the body. Clioquinol is one of the metal chelation drugs used by researchers. Research on metal chelation is still ongoing. In the present review, we go over the latest developments in prevalence, incidence, etiology, or pathophysiology of our understanding of Alzheimer's disease. Additionally, a brief discussion on the development of therapeutic chelating agents and their viability as Alzheimer's disease medication candidates is presented. We also assess the effect of clioquinol as a potential metal chelator.
Collapse
Affiliation(s)
- Ritik Thakur
- Department of Chemistry, Chandigarh University, Mohali, Punjab, India
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Government of India, Janakpuri, New Delhi 110058, India
| | - Tarana Umar
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Government of India, Janakpuri, New Delhi 110058, India
| |
Collapse
|
22
|
Polo-Cuadrado E, Rojas-Peña C, Acosta-Quiroga K, Camargo-Ayala L, Brito I, Cisterna J, Moncada F, Trilleras J, Rodríguez-Núñez YA, Gutierrez M. Design, synthesis, theoretical study, antioxidant, and anticholinesterase activities of new pyrazolo-fused phenanthrolines. RSC Adv 2022; 12:33032-33048. [PMID: 36425206 PMCID: PMC9671100 DOI: 10.1039/d2ra05532e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 10/19/2023] Open
Abstract
Pyrazole-fused phenanthroline compounds were obtained through several synthetic routes. NMR, HRMS, and IR techniques were used to characterize and confirm the chemical structures. Crystal structures were obtained from compounds 3a, 5b, 5j, 5k, and 5n and analyzed using X-ray diffraction. Compounds were evaluated as acetyl (AChE) and butyrylcholinesterase (BChE) inhibitors, and the results showed a moderate activity. Compound 5c presented the best activity against AChE (IC50 = 53.29 μM) and compound 5l against BChE enzyme (IC50 = 119.3 μM). Furthermore, the ability of the synthetic compounds to scavenge cationic radicals DPPH and ABTS was evaluated. Compound 5e (EC50 = 26.71 μg mL-1) presented the best results in the DPPH assay, and compounds 5e, 5f and 5g (EC50 = 11.51, 3.10 and <3 μg mL-1, respectively) showed better ABTS cationic radical scavenging results. Finally, in silico analyses indicated that 71% of the compounds show good oral availability and are within the ranges established by the Lipinski criteria.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Cristian Rojas-Peña
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Karen Acosta-Quiroga
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica (LSO-Act-Bio), Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Félix Moncada
- Departamento de Química, Universidad Nacional de Colombia Av. Cra 30 # 45-03 Bogotá Colombia
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico Puerto Colombia 081007 Colombia
| | - Yeray A Rodríguez-Núñez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello Republica 275 Santiago 8370146 Chile
| | - Margarita Gutierrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
23
|
Costantino AR, Charbe N, Duarte Y, Gutiérrez M, Giordano A, Prasher P, Dua K, Mandolesi S, Zacconi FC. Toward the cholinesterase inhibition potential of TADDOL derivatives: Seminal biological and computational studies. Arch Pharm (Weinheim) 2022; 355:e2200142. [PMID: 35892245 DOI: 10.1002/ardp.202200142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease characterized by gradual loss of cognitive skills and memory. The exact pathogenesis involved still remains unrevealed, but several studies indicate the involvement of an array of different enzymes, underlining the multifactorial character of the disease. Inhibition of these enzymes is therefore a powerful approach in the development of AD treatments, with promising candidates, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase. Interestingly, AChE is the target of a major pesticide family (organophosphates), with several reports indicating an intersection between the pesticide's activity and AD. In this study, various TADDOL derivatives were synthesized and their in vitro activities as AChE/BuChE inhibitors as well as their antioxidant activities were studied. Molecular modeling studies revealed the capability of TADDOL derivatives to bind to AChE and induce inhibition, especially compounds 2b and 3c furnishing IC50 values of 36.78 ± 8.97 and 59.23 ± 5.31 µM, respectively. Experimental biological activities and molecular modeling studies clearly demonstrate that TADDOL derivatives with specific stereochemistry have an interesting potential for the design of potent AChE inhibitors. The encouraging results for compounds 2b and 3c indicate them as promising scaffolds for selective and potent AChE inhibitors.
Collapse
Affiliation(s)
- Andrea R Costantino
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Nitin Charbe
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Margarita Gutiérrez
- Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile
| | - Ady Giordano
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sandra Mandolesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- The Research Center for Nanotechnology and Advanced Materials, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Nayl AA, Ibrahim HM, Dawood KM, Arafa WAA, Abd-Elhamid AI, Ahmed IM, Abdelgawad MA, Ali HM, Alsohaimi IH, Aly AA, Bräse S, Mourad AK. High-Pressure Metal-Free Catalyzed One-Pot Two-Component Synthetic Approach for New 5-Arylazopyrazolo[3,4-b]Pyridine Derivatives. Molecules 2022; 27:molecules27196369. [PMID: 36234905 PMCID: PMC9572034 DOI: 10.3390/molecules27196369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
An appropriate and efficient Q-tube-assisted ammonium acetate-mediated protocol for the assembly of the hitherto unreported 5-arylazopyrazolo[3,4-b]pyridines was demonstrated. This methodology comprises the cyclocondensation reaction of 5-amino-2-phenyl-4H-pyrazol-3-one with an assortment of arylhydrazonals in an NH4OAc/AcOH buffer solution operating a Q-tube reactor. This versatile protocol exhibited several outstanding merits: easy work-up, mild conditions, scalability, broad substrate scope, safety (the Q-tube kit is simply for pressing and sealing), and a high atom economy. Consequently, performing such reactions under elevated pressures and utilizing the Q-tube reactor seemed preferable for achieving the required products in comparison to the conventional conditions. Diverse spectroscopic methods and X-ray single-crystal techniques were applied to confirm the proposed structure of the targeted compounds.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence: (A.A.N.); (H.M.I.); (S.B.)
| | - Hamada Mohamed Ibrahim
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Faiyum, Egypt
- Correspondence: (A.A.N.); (H.M.I.); (S.B.)
| | - Kamal M. Dawood
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Giza, Egypt
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Alexandria, Egypt
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Hazim M. Ali
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Ibrahim Hotan Alsohaimi
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Menia, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (A.A.N.); (H.M.I.); (S.B.)
| | - Asmaa Kamal Mourad
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Faiyum, Egypt
| |
Collapse
|
25
|
Umar T, Meena RP, Mustehasan, Kumar P, Khan AA. Recent Updates in Development of Small Molecules as Potential Clinical Candidates for Alzheimer's Disease: A Review. Chem Biol Drug Des 2022; 100:674-681. [PMID: 35996229 DOI: 10.1111/cbdd.14133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/08/2022]
Abstract
Alzheimer's disease (AD) is one of the prominent causes for disability and lowered quality of life worldwide in elderly population. It has fostered immense burden to AD patients, families and society. Burgeoning progress in the field of pathogenesis over last two decades has persuaded the investigation of novel pharmacological therapeutics that focuses towards the pathophysiological events of AD. Miscellaneous clinical trials, development and testing of interventions aimed at various targets, such as anti-tau and anti-amyloid interventions, neurotransmitter modification, neuroprotection and anti-neuroinflammation interventions, cognitive enhancement, and interventions to palliate behavioral symptoms have been carried out. Despite massive efforts to find disease modifying therapies there lingers a vital need for continuing the advancement in progress of the AD research. This review features the new developments of small molecule compounds that will be beneficial in evolution of new AD therapies. In particular, this review briefly describes summary of mechanistic causes chiefly associated with AD and focuses on medicinal approach via small molecule inhibitors that can manage cognitive impairment and dysfunction and may combat Alzheimer's development.
Collapse
Affiliation(s)
- Tarana Umar
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - R P Meena
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Mustehasan
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Pawan Kumar
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| |
Collapse
|
26
|
Durmaz Ş, Evren AE, Sağlık BN, Yurttaş L, Tay NF. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives. Arch Pharm (Weinheim) 2022; 355:e2200294. [PMID: 35972839 DOI: 10.1002/ardp.202200294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Two new series of 1,3,4-oxadiazoles bearing pyridine and thiazole heterocycles (4a-h and 5a-h) were synthesized (2,5-disubstituted-1,3,4-oxadiazoles). The structures of these newly synthesized compounds were confirmed by 1 H nuclear magnetic resonance (NMR), 13 C NMR, high-resolution mass spectrometric and Fourier transform infrared spectroscopic methods. All these compounds were evaluated for their enzyme inhibitory activities against two cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the studies, we identified compounds 4a, 4h, 5a, 5d, and 5e as selective AChE inhibitors, with IC50 values ranging from 0.023 to 0.037 μM. Furthermore, docking studies of these compounds were performed at the active sites of their target enzymes. The molecular docking study showed that 5e possessed an ideal docking pose with interactions inside AChE.
Collapse
Affiliation(s)
- Şeyma Durmaz
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Begüm N Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Naime F Tay
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
27
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
28
|
Ahmed AAM, Mekky AEM, Sanad SMH. New bis(pyrazolo[3,4-b]pyridines) and bis(thieno[2,3-b]pyridines) as potential acetylcholinesterase inhibitors: synthesis, in vitro and SwissADME prediction study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02614-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Al-Shuaeeb RAA, Alekseeva AY, Yashchenko NN, Zhitar SV, Mel’nik EA, Bardasov IN. Synthesis and Optical Properties of 3,4-Diamino-6-aryl-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022070089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Atukuri D. Pyrazolopyridine: An efficient pharmacophore in recent drug design and development. Chem Biol Drug Des 2022; 100:376-388. [PMID: 35661410 DOI: 10.1111/cbdd.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
Among the various heterocyclic molecules employed for drug design and discovery, pyrazolopyridine is one of the promising pharmacophores. Pyrazolopyridine is a result of fusion of pyrazole and pyridine rings. The potent pharmacology of pyrazolopyridine may be the synergistic effect of pyrazole and pyridine moieties in a single framework. It has been used in drug design of a wide range of diseases such as anticancer, antimicrobial, anti-inflammatory, and neuroprotection. Cancer has become a common disease among elderly people now a days that might be because of genetic inheritance to some extent, carcinogens, pollution, and some infectious diseases. Whatever may be the reason, cancer is one of the major causes of deaths worldwide. In addition, over-usage and improper usage of antibiotics have led to drug resistance of microbes. Further, inflammation is a cause of various diseases such as arthritis, and other diseases. Thus, proinflammatory kinases are considered as primary target for inhibition of inflammation. In view of this, a work that compiles potent pharmacology of recently reported pyrazolopyridine analogs has been planned. The review is aimed to discuss pharmacology in brief along with structure-activity relationship (SAR). The review would emphasize importance of pyrazolopyridines in future drug design and discovery and may help in design of potent pharmacological agents.
Collapse
|
31
|
Smolobochkin AV, Gazizov AS, Garifzyanov AR, Burilov AR, Pudovik MA. Methods for the synthesis of 1H-pyrazolo[3,4-b]pyridine derivatives. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Aisha, Raza MA, Farwa U, Rashid U, Maurin JK, Budzianowski A. Synthesis, single crystal, in-silico and in-vitro assessment of the thiazolidinones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Ahmed AAM, Mekky AEM, Sanad SMH. New piperazine-based bis(thieno[2,3- b]pyridine) and bis(pyrazolo[3,4- b]pyridine) hybrids linked to benzofuran units: Synthesis and in vitro screening of potential acetylcholinesterase inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmed A. M. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Common First Year Deanship, Jouf University, Sakaka, KSA
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
34
|
Waly OM, Saad KM, El-Subbagh HI, Bayomi SM, Ghaly MA. Synthesis, biological evaluation, and molecular modeling simulations of new heterocyclic hybrids as multi-targeted anti-Alzheimer's agents. Eur J Med Chem 2022; 231:114152. [DOI: 10.1016/j.ejmech.2022.114152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
|
35
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
36
|
Keating JJ, Alam RM. An Expedient Approach to Pyrazolo[3,4-b]pyridine-3-carboxamides via Palladium-Catalyzed Aminocarbonylation. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractPyrazolo[3,4-b]pyridine is a privileged scaffold found in many small drug molecules that possess a wide range of pharmacological properties. Efforts to further develop and exploit synthetic methodologies that permit the functionalization of this heterocyclic moiety warrant investigation. To this end, a series of novel 1,3-disubstituted pyrazolo[3,4-b]pyridine-3-carboxamide derivatives have been prepared by introducing the 3-carboxamide moiety using palladium-catalyzed aminocarbonylation methodology and employing CO gas generated ex situ using a two-chamber reactor (COware®). The functional group tolerance of this optimized aminocarbonylation protocol is highlighted through the synthesis of a range of diversely substituted C-3 carboxamide pyrazolo[3,4-b]pyridines in excellent yields of up to 99%.
Collapse
Affiliation(s)
- John J. Keating
- Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork
- School of Chemistry
- School of Pharmacy
| | - Ryan M. Alam
- Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork
- School of Chemistry
| |
Collapse
|
37
|
Barghash RF, Eldehna WM, Kovalová M, Vojáčková V, Kryštof V, Abdel-Aziz HA. One-pot three-component synthesis of novel pyrazolo[3,4-b]pyridines as potent antileukemic agents. Eur J Med Chem 2021; 227:113952. [PMID: 34731763 DOI: 10.1016/j.ejmech.2021.113952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 01/10/2023]
Abstract
In the current study, we report on the development of novel series of pyrazolo[3,4-b]pyridine derivatives (8a-u, 11a-n, and 14a,b) as potential anticancer agents. The prepared pyrazolo[3,4-b]pyridines have been screened for their antitumor activity in vitro at NCI-DTP. Thereafter, compound 8a was qualified by NCI for full panel five-dose assay to assess its GI50, TGI and LC50 values. Compound 8a showed broad-spectrum anti-proliferative activities over the whole NCI panel, with outstanding growth inhibition full panel GI50 (MG-MID) value equals 2.16 μM and subpanel GI50 (MG-MID) range: 1.92-2.86 μM. Furthermore, pyrazolo[3,4-b]pyridines 8a, 8e-h, 8o, 8u, 11a, 11e, 11h, 11l and 14a-b were assayed for their antiproliferative effect against a panel of leukemia cell lines (K562, MV4-11, CEM, RS4;11, ML-2 and KOPN-8) where they possessed moderate to excellent anti-leukemic activity. Moreover, pyrazolo[3,4-b]pyridines 8o, 8u, 14a and 14b were further explored for their effect on cell cycle on RS4;11 cells, in which they dose-dependently increased populations of cells in G2/M phases. Finally we analyzed the changes of selected proteins (HOXA9, MEIS1, PARP, BcL-2 and McL-1) related to cell death and viability in RS4;11 cells via Western blotting. Collectively, the obtained results suggested pyrazolo[3,4-b]pyridines 8o, 8u, 14a and 14b as promising lead molecules for further optimization to develop more potent and efficient anticancer candidates.
Collapse
Affiliation(s)
- Reham F Barghash
- Institute of Chemical Industries Researches, National Research Centre, Dokki, Giza, P.O. Box 12622, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Markéta Kovalová
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| |
Collapse
|
38
|
Reddy MVK, Rao KY, Anusha G, Kumar GM, Damu AG, Reddy KR, Shetti NP, Aminabhavi TM, Reddy PVG. In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. ENVIRONMENTAL RESEARCH 2021; 199:111320. [PMID: 33991570 DOI: 10.1016/j.envres.2021.111320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Cholinesterase enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) cause hydrolysis of acetylcholine (ACh), a neurotransmitter responsible for the cognitive functions of the brain such as acquiring knowledge and comprehension. Therefore, inhibition of these enzymes is an effective process to curb the progressive and fatal neurological Alzheimer's disease (AD). Herein, we explored the potential inhibitory activities of various pyridine, quinoxaline, and triazine derivatives (3a-k, 6a-j and 11a-h) against AChE and BuChE enzymes by following the modified Ellman's method. Further, anti-oxidant property of these libraries was monitored using DPPH (2,2'-diphenyl-1-picryl-hydrazylhydrate) radical scavenging analysis. From the studies, we identified that compounds 6e, 6f, 11b and 11f behaved as selective AChE inhibitors with IC50 values ranging from 7.23 to 10.35 μM. Further studies revealed good anti-oxidant activity by these compounds with IC50 values in the range of 14.80-27.22 μM. The kinetic studies of the active analogues demonstrated mixed-type of inhibition due to their interaction with both the catalytic active sites (CAS) and peripheral anionic sites (PAS) of the AChE. Additionally, molecular simulation in association with fluorescence and circular dichroism (CD) spectroscopic analyses explained strong affinities of inhibitors to bind with AChE enzyme at the physiological pH of 7.2. Binding constant values of 5.4 × 104, 4.3 × 104, 3.2 × 104 and 4.9 × 104 M-1 corresponding to free energy changes -5.593, -6.799, -6.605 and -8.104 KcalM-1 were obtained at 25 °C from fluorescence emission spectroscopic studies of 6e, 6f, 11b and 11f, respectively. Besides, CD spectroscopy deliberately explained the secondary structure of AChE partly unfolded upon binding with these dynamic molecules. Excellent in vitro profiles of distinct quinoxaline and triazine compounds highlighted them as the potential leads compared to pyridine derivatives, suggesting a path towards developing preventive or therapeutic targets to treat the Alzheimer's disease.
Collapse
Affiliation(s)
- M V K Reddy
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - K Y Rao
- Department of Chemistry, Natural Products Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - G Anusha
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - G M Kumar
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - A G Damu
- Department of Chemistry, Natural Products Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | | | - Peddiahgari Vasu Govardhana Reddy
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| |
Collapse
|
39
|
Wang M, Fang L, Liu T, Chen X, Zheng Y, Zhang Y, Chen S, Li Z. Discovery of 7-O-1, 2, 3-triazole hesperetin derivatives as multi-target-directed ligands against Alzheimer's disease. Chem Biol Interact 2021; 342:109489. [PMID: 33905740 DOI: 10.1016/j.cbi.2021.109489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The development of multi-target-directed ligands (MTDLs) may improve complex central nervous system diseases such as Alzheimer's disease (AD). Here, a series of 7-O-1, 2, 3-triazole hesperetin derivatives was evaluated for their inhibition of cholinesterase, anti-neuroinflammatory, and neuroprotective activity. Among the hesperetin derivatives, compound a8 (7-O-((1-(3-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)hesperetin) possessed excellent anti-butyrylcholinesterase activity (IC50 = 3.08 ± 0.29 μM) and exhibited good anti-neuroinflammatory activity (IC50 = 2.91 ± 0.47 μM) against NO production through remarkably blocking the NF-κB signaling pathway and inhibiting the phosphorylation of P65. In addition, a8 showed a remarkable neuroprotective effect and lacked neurotoxicity up to 50 μM concentration. Furthermore, possessing significant self-mediated Aβ1-42 aggregation inhibitory activity, chelated biometals and reduced ROS production were found in compound a8. In the bi-directional transport assay, a8 exhibited a blood-brain barrier penetrating ability. In this study, the Morris water maze task showed that compound a8 significantly improved the learning and memory impairment of the scopolamine-induced AD mice model. Results highlighted the potential of compound a8 to be a potential MTDL for the development of anti-AD agents.
Collapse
Affiliation(s)
- Min Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Longji Fang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xuejie Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yan Zheng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yilong Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
40
|
Amin S, Alam MM, Akhter M, Najmi AK, Siddiqui N, Husain A, Shaquiquzzaman M. A review on synthetic procedures and applications of phosphorus oxychloride (POCl 3) in the last biennial period (2018–19). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1831499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - A. K. Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
41
|
Synthesis and Characterization for New Nanometer Cu(II) Complexes, Conformational Study and Molecular Docking Approach Compatible with Promising in Vitro Screening. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04814-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Maqbool M, Rajvansh R, Srividya K, Hoda N. Deciphering the robustness of pyrazolo-pyridine carboxylate core structure-based compounds for inhibiting α-synuclein in transgenic C. elegans model of Synucleinopathy. Bioorg Med Chem 2020; 28:115640. [PMID: 32773095 DOI: 10.1016/j.bmc.2020.115640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD), a calamitous neurodegenerative disorder with no cure till date, is closely allied with the misfolding and aggregation of α-Synuclein (α -Syn). Inhibition of α-Syn aggregation is one of the optimistic approaches for the treatment for PD. Here, we carried out hypothesis-driven studies towards synthesising a series of pyrazolo-pyridine carboxylate containing compounds (7a-7m) targeted at reducing deleterious α-Syn aggregation. The target compounds were synthesized through multi-step organic synthesis reactions. From docking studies, compounds 7b, 7g and 7i displayed better interaction with the key residues of α-Syn with values: -6.8, -8.9 and -7.2 Kcal/mol, respectively. In vivo transgenic C. elegans model of Synucleinopathy was used to evaluate the ability of the designed and synthesized compounds to inhibit α-Syn aggregation. These lead compounds 7b, 7g and 7i displayed 1.7, 2.4 and 1.5-fold inhibition of α-Syn with respect to the control. Further, the strategy of employing pyrazolo-pyridine-based compounds worked with success and these scaffolds could be further modified and validated for betterment of endpoints associated with PD.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Drug Design and Synthesis Lab, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Roshani Rajvansh
- Laboratory of Functional Genomics and Molecular Toxicology, CSIR-Central Drug Research Institute, (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kottapalli Srividya
- Laboratory of Functional Genomics and Molecular Toxicology, CSIR-Central Drug Research Institute, (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Nasimul Hoda
- Drug Design and Synthesis Lab, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
43
|
El-Azzouny AMAES, Aboul-Enein MN, Hamissa MF. Structural and biological survey of 7-chloro-4-(piperazin-1-yl)quinoline and its derivatives. Drug Dev Res 2020; 81:786-802. [PMID: 32385857 DOI: 10.1002/ddr.21678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 12/27/2022]
Abstract
The 7-chloro-4-(piperazin-1-yl)quinoline structure is an important scaffold in medicinal chemistry. It exhibited either alone or as hybrid with other active pharmacophores diverse pharmacological profiles such as: antimalarial, antiparasitic, anti-HIV, antidiabetic, anticancer, sirtuin Inhibitors, dopamine-3 ligands, acetylcholinesterase inhibitors, and serotonin antagonists. In the presented review, a comprehensive discussion of compounds having this structural core is surveyed and illustrated.
Collapse
Affiliation(s)
- Aida M Abd El-Sattar El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza, Egypt
| | - Mohamed Farouk Hamissa
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza, Egypt.,Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic.,Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
44
|
Synthesis, pharmacological evaluation and structure-activity relationship of recently discovered enzyme antagonist azoles. Heliyon 2020; 6:e03656. [PMID: 32274429 PMCID: PMC7132078 DOI: 10.1016/j.heliyon.2020.e03656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Global people are suffering from the legion of diseases. Cytotoxic property of the chemical compound would not solely influence effective drug properties and reduce unnecessary side effects. Proteins/enzymes responsible for microbe proliferation or survival are specifically targeted and inhibited successfully making the cells to undergo apoptosis. Furthermore, isoforms of essential enzymes have distinct physiological functions; thereby inhibition of essential enzyme isoforms is an apt way to the clinical approach of disease neutralization. Drugs are designed so as to play significant roles such as signaling pathways in the oncogenic process including cell proliferation, invasion, and angiogenesis. The present review comprises collective information of the recent synthesis of various organic drug compounds in brief, which could inhibit particular enzyme. The review also covers the correlation of the structure of a drug molecule designed and its inhibitory activity. Also, the most significant enzyme inhibitors are highlighted and structural moieties/core units responsible for remarkable inhibitory values are emphasized.
Collapse
|
45
|
Zhang F, Li C, Qi C. A one-pot three-component strategy for highly diastereoselective synthesis of spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives using recyclable solid acid as a catalyst. Org Chem Front 2020. [DOI: 10.1039/d0qo00591f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient and eco-friendly approach for highly diastereoselective synthesis of spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives has been developed.
Collapse
Affiliation(s)
- Furen Zhang
- School of Chemistry and Chemical Engineering
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
- Shaoxing University
- Shaoxing
- China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
- Shaoxing University
- Shaoxing
- China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
- Shaoxing University
- Shaoxing
- China
| |
Collapse
|
46
|
Mishra CB, Shalini S, Gusain S, Prakash A, Kumari J, Kumari S, Yadav AK, Lynn AM, Tiwari M. Development of novel N-(6-methanesulfonyl-benzothiazol-2-yl)-3-(4-substituted-piperazin-1-yl)-propionamides with cholinesterase inhibition, anti-β-amyloid aggregation, neuroprotection and cognition enhancing properties for the therapy of Alzheimer's disease. RSC Adv 2020; 10:17602-17619. [PMID: 35515597 PMCID: PMC9053591 DOI: 10.1039/d0ra00663g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022] Open
Abstract
A novel series of benzothiazole–piperazine hybrids were rationally designed, synthesized, and evaluated as multifunctional ligands against Alzheimer's disease (AD). The synthesized hybrid molecules illustrated modest to strong inhibition of acetylcholinesterase (AChE) and Aβ1-42 aggregation. Compound 12 emerged as the most potent hybrid molecule exhibiting balanced functions with effective, uncompetitive and selective inhibition against AChE (IC50 = 2.31 μM), good copper chelation, Aβ1-42 aggregation inhibition (53.30%) and disaggregation activities. Confocal laser scanning microscopy and TEM analysis also validate the Aβ fibril inhibition ability of this compound. Furthermore, this compound has also shown low toxicity and is capable of impeding loss of cell viability elicited by H2O2 neurotoxicity in SHSY-5Y cells. Notably, compound 12 significantly improved cognition and spatial memory against scopolamine-induced memory deficit in a mouse model. Hence, our results corroborate the multifunctional nature of novel hybrid molecule 12 against AD and it may be a suitable lead for further development as an effective therapeutic agent for therapy in the future. A novel series of benzothiazole–piperazine hybrids were rationally designed, synthesized, and evaluated as multifunctional ligands against Alzheimer's disease (AD).![]()
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH)
- Amity University Haryana
- Gurgaon-122413
- India
| | - Jyoti Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Shikha Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Anita Kumari Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| |
Collapse
|
47
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
48
|
Robert Khumalo M, Maddila SN, Maddila S, Jonnalagadda SB. A multicomponent, facile and catalyst-free microwave-assisted protocol for the synthesis of pyrazolo-[3,4-b]-quinolines under green conditions. RSC Adv 2019; 9:30768-30772. [PMID: 35529349 PMCID: PMC9072209 DOI: 10.1039/c9ra04604f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022] Open
Abstract
A facile, swift and ecofriendly microwave-assisted multi-component/one-pot protocol is designed for the synthesis of novel pyrazolo-[3,4-b]-quinolines at ambient temperature in aqueous ethanol as a reaction medium. The 18 novel pyrazolo-[3,4-b]-quinoline derivatives were synthesized by fusion of chosen aryl aldehyde, dimedone and 5-amino-3-methyl-1-phenylpyrazole in excellent yields (91–98%). All the molecular structures were confirmed by 1H-NMR, 15N-NMR, 13C-NMR, and HRMS data analysis. Operational simplicity, easy handling, one-step simple workup procedure, mild reaction conditions, short reaction time (≤10 min), high selectivity and no by-product formation are the striking features of the protocol. A facile, swift and ecofriendly microwave-assisted multi-component/one-pot protocol is designed for the synthesis of novel pyrazolo-[3,4-b]-quinolines at ambient temperature in aqueous ethanol as a reaction medium.![]()
Collapse
Affiliation(s)
| | | | - Suresh Maddila
- School of Chemistry & Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | | |
Collapse
|