1
|
Mishra G, Jaiswal AK, Kushawaha AK, Kumar A, Bhatt H, Ansari A, Bisen AC, Hansda R, Agrawal S, Acharjee P, Guha R, Bhatta RS, Purkait B, Sashidhara KV. Exploring indole-dihydropyrimidinone derivatives: Design, synthesis, biological assessment, SAR analysis, and evaluation of mode of action in experimental visceral leishmaniasis. Eur J Med Chem 2025; 293:117667. [PMID: 40344736 DOI: 10.1016/j.ejmech.2025.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/11/2025]
Abstract
The emergence of drug resistance and the non-availability of vaccines encouraged us to identify novel chemical scaffolds as new anti-leishmanial agents. In doing so, a series of thirty-four indole-dihydropyrimidinone hybrid compounds were synthesized using the Biginelli multicomponent reaction. These synthesized compounds were tested against L. donovani in vitro and in vivo in experimental golden hamster model of visceral leishmaniasis. Compounds 4f and 4m were found to have promising anti-leishmanial properties against intracellular amastigotes (IC504.54 & 5.05 μM, respectively) with minimal cytotoxicity against J774.1 macrophage. 4f and 4m were tested in vivo, and only 4f effectively cleared the parasite burden (>65 %) in infected golden hamsters. Mode of action studies discloses that 4f induces oxidative stress-mediated mitochondrial dysfunction and impairment of ATP production and triggers apoptosis. SAR and PK studies revealed that compound 4f (indole-dihydropyrimidinone hybrid) may be used as a lead for developing future chemotherapeutic options for VL.
Collapse
Affiliation(s)
- Garvita Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rupa Hansda
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sristi Agrawal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Payel Acharjee
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajdeep Guha
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Bidyut Purkait
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
2
|
Sylvianingsih F, Supratman U, Maharani R. Amino acid- and peptide-conjugated heterocyclic compounds: A comprehensive review of Synthesis Strategies and biological activities. Eur J Med Chem 2025; 290:117534. [PMID: 40158419 DOI: 10.1016/j.ejmech.2025.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Amino acids and peptides have long been recognized as promising candidates for therapeutic development due to their unique structural properties and high specificity. However, their clinical application is often limited by rapid enzymatic degradation, poor bioavailability, and suboptimal pharmacokinetics. Conjugating these biomolecules with heterocyclic compounds has emerged as a transformative strategy to enhance their stability, bioavailability, and overall therapeutic efficacy. This review highlights significant advancements since 2000 in the synthesis and biological applications of amino acid- and peptide-conjugated heterocyclic compounds These conjugates are categorized based on their nitrogen-, sulfur-, and oxygen-containing heterocyclic cores. Key synthetic methodologies, including amide bond formation, carbon-heteroatom coupling, and carbon-carbon bond formation, are discussed in detail. These conjugates exhibit enhanced pharmacological properties, with notable applications in antimicrobial, anticancer, and anti-inflammatory treatments. Despite these advancements, challenges such as synthetic complexity and potential toxicity remain. Future research should prioritize refining synthetic methodologies and leveraging underexplored heterocycles to unlock broader therapeutic applications. Peptide-heterocycle conjugates represent a promising approach to overcoming persistent challenges in modern drug development.
Collapse
Affiliation(s)
- Fany Sylvianingsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia; Central Laboratory, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia; Central Laboratory, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia.
| |
Collapse
|
3
|
Liang M, Xu Y, Yang X, Zhang X, Fan X. Synthesis of 2-CF 3-indoles or 2-CF 3-indolin-3-ones via anaerobic or aerobic reactions of N-phenylpyridin-2-amines with TFISYs. Chem Commun (Camb) 2025. [PMID: 40386837 DOI: 10.1039/d5cc01652e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Presented herein is a condition-controlled selective synthesis of 2-CF3-indoles or 2-CF3-indolin-3-ones based on the anaerobic or aerobic reaction of N-phenylpyridin-2-amines with trifluoromethyl imidoyl sulfoxonium ylides (TFISYs). This work not only discloses a novel reaction mode of TFISYs, but also provides a robust protocol for the effective functionalization of aniline derivatives leading to the concise and selective assembly of indole-related scaffolds bearing a pharmaceutically privileged CF3 unit.
Collapse
Affiliation(s)
- Miaomiao Liang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yuanshuang Xu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xueying Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
4
|
Deshmukh HS, Adole VA, Wagh SB, Khedkar VM, Jagdale BS. Exploring N-heterocyclic linked novel hybrid chalcone derivatives: synthesis, characterization, evaluation of antidepressant activity, toxicity assessment, molecular docking, DFT and ADME study. RSC Adv 2025; 15:16187-16210. [PMID: 40376662 PMCID: PMC12079426 DOI: 10.1039/d5ra01929j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/05/2025] [Indexed: 05/18/2025] Open
Abstract
In the search for novel antidepressant agents, twelve novel nitrogen-containing heterocycle-linked chalcone derivatives have been synthesized and comprehensively characterized using FT-IR, 1H NMR, 13C NMR, and Mass spectral methods. The synthetic strategy involves the preparation and optimization of reaction conditions for obtaining 4-carbazole-, indole-, and pyrrole-linked acetophenones, which were subsequently coupled with pyrazole aldehydes bearing piperidine, morpholine, benzotriazole, and imidazole ring systems. In vivo antidepressant activity of the compounds was evaluated using the Tail Suspension Test (TST) and Forced Swim Test (FST). Chalcone derivatives with a benzo[d][1,2,3]triazol-1-yl substituent exhibited significant reductions in immobility times, indicating enhanced antidepressant activity. Chalcone derivatives with piperidin-1-yl and morpholino groups demonstrated relatively lower activity. Molecular docking studies against the human serotonin transporter (hSERT) (PDB code: 5I6X) revealed that the chalcone derivatives exhibited excellent binding affinity (average docking score: -8.540, binding energy: -60.044 kcal mol-1) through favorable van der Waals, electrostatic, and hydrogen bonding interactions (only for 13b) within the active site. The binding interaction of compound 13b was particularly strong, with a Glide docking score of -9.120 and binding energy of -65.454 kcal mol-1, highlighting the contribution of both π-π stacking and hydrogen bonding interactions. Chalcone derivatives showed low acute oral toxicity (LD50 > 2000 mg kg-1, category 5) in female Swiss albino mice per OECD 423 guidelines, with no mortality or adverse effects at 300 and 2000 mg kg-1, and normal body weight gain over 14 days. These findings underscore the potential of benzo[d][1,2,3]triazol-1-yl-based chalcone derivatives as promising antidepressant agents with a favorable safety profile. Density Functional Theory (DFT) analysis was performed on the most active compound, 13c, to gain insights into its structural and electronic properties. Additionally, ADME (Absorption, Distribution, Metabolism, and Excretion) profiling of the synthesized compounds indicated favorable drug-like characteristics and balanced pharmacokinetic profiles, supporting their potential as promising candidates for further pharmaceutical development.
Collapse
Affiliation(s)
- Hemant S Deshmukh
- Research Centre in Chemistry, Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College (Affiliated to Savitribai Phule Pune University, Pune) Panchavati Nashik Maharashtra 422003 India
| | - Vishnu A Adole
- Research Centre in Chemistry, Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College (Affiliated to Savitribai Phule Pune University, Pune) Panchavati Nashik Maharashtra 422003 India
| | - Sanjay B Wagh
- TS Chemistry Solutions, Technology Development of API and API Intermediates, Dyes and Dyes Intermediates & Specialty Chemicals Taloja Raigad Maharashtra 422005 India
| | - Vijay M Khedkar
- School of Pharmacy, Vishwakarma University Pune Maharashtra 410208 India
| | - Bapu S Jagdale
- Research Centre in Chemistry, Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College (Affiliated to Savitribai Phule Pune University, Pune) Panchavati Nashik Maharashtra 422003 India
| |
Collapse
|
5
|
Kushwaha D, Kushwaha AK, Kumar R, Chauhan D. Recent advances in the synthesis of Glycoconjugated heterocycles: A promising strategy for accessing bioactive compounds. Bioorg Chem 2025; 162:108559. [PMID: 40413973 DOI: 10.1016/j.bioorg.2025.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/27/2025]
Abstract
Glycoconjugation of biologically relevant heterocycles and natural products to create glycohybrids, combining the unique features of both structures, has emerged as a promising approach for the creation of carbohydrate-based therapeutics. This review presents a comprehensive overview of the glyco-heterocycles synthesized primarily over the past decade, offering in-depth insights into the synthetic methods employed. Additionally, the review delves into the biological activities exhibited by these molecules, with particular emphasis on the structural elements that influence their therapeutic potential. It covers the molecular hybridization of biologically privileged heterocycles-including thiadiazole, oxadiazole, pyrazole, imidazole, thiazolidine, pyridine, pyrimidine, indole, benzimidazole, benzothiazole, coumarin, quinoline, etc. with carbohydrates and explores their biological activity. By integrating insights into both synthetic strategies and bioactivity, this work aims to enhance the understanding of glyco-heterocycles as a versatile class of compounds for medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Divya Kushwaha
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi UP-221005, India.
| | - Ambuj Kumar Kushwaha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi UP-221005, India
| | - Ravendra Kumar
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi UP-221005, India
| | - Deepanshi Chauhan
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi UP-221005, India
| |
Collapse
|
6
|
Farooq U, Khan F, Mali SN, Ghaffar U, Hussain J, Khan A, Chaudhari SY, Al-Shwaiman HA, Elgorban AM, Jawarkar RD, Islam WU, Al-Harrasi A, Shafiq Z. In vitro and in silico analysis of synthesized N-benzyl indole-derived hydrazones as potential anti-triple negative breast cancer agents. RSC Adv 2025; 15:13284-13299. [PMID: 40290749 PMCID: PMC12022751 DOI: 10.1039/d5ra02194d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer, and it is characterized by a high recurrence rate and the rapid development of drug resistance across various subtypes. Currently, there is no targeted therapy, which is specifically approved for the treatment of TNBC. In this study, we synthesized a series of N-benzyl indole-3-carboxaldehyde-based hydrazones and subjected them to in vitro anticancer studies on MCF-10A and MDA-MB-231 breast cancer (BC) cell lines. Our in vitro results suggested that all the compounds exhibited significant anti-TNBC activity, especially on MDA-MB-231 cells. Compound 5b showed excellent activity on MDA-MB-231 (IC50 = 17.2 ± 0.4 nM). Furthermore, molecular docking analysis revealed that this compound had a higher binding affinity towards the target EGFR (epidermal growth factor receptor) with a docking score of -10.523 kcal mol-1. The molecular dynamics simulation of complex 5b:3W2S showed stable binding over a period of 100 ns. A detailed multi-linear regression (MLR) QSAR denoted the importance of key molecular descriptors, such as com_accminus_2A, fringNlipo6A, and sp3Cplus_AbSA. These analyses indicate that the synthesized compounds deserve further studies for developing novel and more potent candidates against triple-negative breast cancer.
Collapse
Affiliation(s)
- Urva Farooq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Faizullah Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan KPK Pakistan
- Natural and Medical Sciences Research Centre, University of Nizwa P. O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Suraj N Mali
- Department of Pharmaceutical Chemistry, School of Pharmacy, Dr D.Y. Patil Deemed to be University Navi Mumbai India
- Department of Pharmaceutical Chemistry, Birla Institute of Technology Mesra India
| | - Uzma Ghaffar
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa Oman
| | - Ajmal Khan
- Department of Chemical and Biological Engineering, College of Engineering, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
- Natural and Medical Sciences Research Centre, University of Nizwa P. O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy Nigdi Pune India
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Rahul D Jawarkar
- Department of Pharmaceutical Chemistry, Dr Rajendra Gode Institute of Pharmacy, University-Mardi Road Ghatkheda Amravati Maharashtra 444602 India
| | - Waseem Ul Islam
- Department of Pharmacy, Abdul Wali Khan University Mardan KPK Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa P. O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
7
|
Han L, Zhou H, Hou J, Shi X, Li Q. The formation reaction of a carbon-carbon bond promoted by Eosin-Y under visible light. Org Biomol Chem 2025; 23:3741-3799. [PMID: 40159809 DOI: 10.1039/d5ob00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In recent years, photochemical organic conversion promoted by visible light has attracted the interest of many organic chemists. Compared with traditional methods, visible light for the photoredox catalysis of renewable energy has been proved to be a mild and powerful tool that can promote the activation of organic molecules through the single electron transfer (SET) process. Therefore, the formation reaction of a C-C bond can be achieved by activating these molecules with visible light, which can effectively modify the structure of these compounds and obtain compounds with multiple structures and functions. At present, this research has become an important research field in organic synthesis. Eosin-Y, a cheap and widely-used organic dye, has been employed as an economically and environmentally friendly substitute for many transition-metal-based photocatalysts. In recent years, it has gained much more attention due to its ease of handling and eco-friendliness, and it has great potential for applications in visible-light-mediated organic synthesis. This article reviews the research results on the formation of carbon-carbon bonds promoted by the organic photocatalyst Eosin-Y under visible light in recent years, and discusses representative examples and their different mechanistic pathways (such as SET, HAT, and energy transfer).
Collapse
Affiliation(s)
- Lirong Han
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Hui Zhou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jinsong Hou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaohao Shi
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Qinghan Li
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
8
|
Gogoi A, Chouhan R, Das SK. C3 versus C5 Regioselectivity in the Intramolecular Dehydrative Friedel-Crafts Alkylation of Indole C4-Tethered Carbinols. Org Lett 2025; 27:2461-2466. [PMID: 40033871 DOI: 10.1021/acs.orglett.5c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Described herein is a mild catalytic dehydrative Friedel-Crafts alkylation of 1,1-diarylalkanols─a challenging reaction with exceedingly rare previous success, presumably because of the unfavorable steric hindrance around the reactive centers and the competitive E1 reaction. Executing in an intramolecular fashion and benefiting from the high nucleophilicity of indole, we have successfully utilized this reaction in synthesizing 3,4-fused indoles. Interestingly, the Friedel-Crafts alkylation strategy could also be applied to access 4,5-fused indoles via modification of the tether connecting the alcohol and indole moieties.
Collapse
Affiliation(s)
- Abhijit Gogoi
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, Assam, India
| | - Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, Assam, India
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, Assam, India
| |
Collapse
|
9
|
Jian Y, Dong S, Zhang Q, Pan J, Hu R, Ding Z, Wu H, Ke S, Chen Z. In vitro inhibitory activity of indole alkaloid derivatives against porcine epidemic diarrhea virus. Arch Virol 2025; 170:67. [PMID: 40053140 DOI: 10.1007/s00705-025-06251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/08/2024] [Indexed: 03/29/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that can cause acute diarrhea, vomiting, dehydration, and high mortality of newborn piglets, leading to huge economic losses to the world pig industry. Given the limited efficacy of current PEDV vaccines, there is an urgent need for the development of antiviral drugs. In this study, the antiviral effects of 17 synthesized indole alkaloid derivatives against PEDV were investigated. It was observed that indole alkaloid derivative no. 14 exhibited significant inhibition of PEDV replication in a dose-dependent manner. Furthermore, time-of-addition assays and quantitative real-time PCR (QPCR) showed that delayed administration of this compound resulted in a weaker inhibitory effect on PEDV compared to early treatment. Mechanistic analysis revealed that this compound exerts its inhibitory effects during the entry stage of the PEDV life cycle. This study demonstrates the anti-PEDV effects of indole alkaloid derivative no. 14, suggesting its potential as a candidate drug for treating PEDV infections.
Collapse
Affiliation(s)
- Yaoying Jian
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Siqi Dong
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qianyi Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiali Pan
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shaoyong Ke
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
10
|
Xu S, Jiang X, Xu M, Ai C, Zhao G, Jiang T, Liu Y, Tian Z, Zhang M, Dong J. Design, synthesis and biological evaluation of novel 1H-indole-3-carbonitrile derivatives as potent TRK Inhibitors. Eur J Med Chem 2025; 285:117231. [PMID: 39778327 DOI: 10.1016/j.ejmech.2024.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Tropomyosin receptor kinase (TRK) has emerged as a promising therapeutic target in cancers driven by NTRK gene fusions. Herein, we report a highly potent TRK inhibitor, C11, developed using bioisosteric replacement and computer-aided drug design (CADD) strategies. Compound C11 demonstrated significant antiproliferative effects against TRK-dependent cell lines (Km-12), and exhibited a dose-dependent inhibition of both colony formation and cell migration. Mechanistic study revealed that C11 induced cancer cell death by arresting the cell cycle, triggering apoptosis, and reducing phosphorylated TRK levels. In vitro stability assays showed that compound C11 possessed excellent plasma stability (t1/2 > 480 min) and moderate liver microsomal stability (t1/2 = 38.9 min). Pharmacokinetic evaluation further indicated an oral bioavailability of 15.2 % for compound C11. These results highlight compound C11 as a promising lead compound for the further development of TRK inhibitors.
Collapse
Affiliation(s)
- Shaoshan Xu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaosheng Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mengdi Xu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chengjian Ai
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guanyi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tao Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhen Tian
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meihui Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinhua Dong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
11
|
Huo H, Dan W, Li M, Chen Y, Yang C, Wu L, Shi B, Li J. Design, synthesis, and biological evaluation of steroidal indole derivatives as membrane-targeting antibacterial candidates. Eur J Med Chem 2025; 283:117156. [PMID: 39671876 DOI: 10.1016/j.ejmech.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Rational modification of natural products plays a key role in drug discovery. Herein, a series of steroidal indole derivatives containing various substituents and steroidal skeletons were designed and synthesized with classical Fischer indole synthesis as a key step in an efficient synthetic route for the first time. The in vitro antibacterial activity of all the synthesized derivatives was evaluated against four Gram-positive strains including three Methicillin-Resistant Staphylococcus aureus. Compound 11e displayed the most potent antibacterial activity (MIC = 1-2 μg/mL) with low cytotoxicity and hemolytic activity. Derivative 11e displayed more rapid bactericidal kinetic than vancomycin in the time-kill study and was less likely to induce bacterial resistance. Moreover, the preliminary antibacterial mechanism explorations indicated that compound 11e could effectively inhibit biofilm formation, promote the accumulation of reactive oxygen species, decrease bacterial metabolism, and destroy bacterial cell membranes to exert its antibacterial effects. The study of in vivo antibacterial activity suggested that compound 11e could significantly reduce the bacteria counts in a mouse subcutaneous infection model. These findings provided a bright hope for steroidal indole derivatives as promising antibacterial candidates to settle drug resistance.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Min Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Yanbin Chen
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Chaofu Yang
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China.
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China.
| |
Collapse
|
12
|
Zhang L, Zhang S, Zhang Y, Liu B, Li X, Han B. Navigating The Deuteration Landscape: Innovations, Challenges, and Clinical Potential of Deuterioindoles. Chembiochem 2025; 26:e202400837. [PMID: 39658812 DOI: 10.1002/cbic.202400837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Indoles, pivotal to the realm of drug discovery, underpin numerous FDA-approved therapeutics. Despite their clinical benefits, pharmacokinetic and toxicity concerns have occasionally hampered their broader application. A notable advancement in this domain is the substitution of hydrogen atoms with deuterium, known as deuterium modification, which significantly enhances the pharmacological properties of these compounds. This review elucidates the progression of deuterium chemistry, culminating in approval of Deutetrabenazine in 2017. This milestone has catalyzed additional research into deuterated indoles, such as Dosimertinib, which have demonstrated enhancements in stability, toxicity profiles, and therapeutic efficacy. Moreover, the review addresses challenges and patent issues in the synthesis of deuterated indoles and highlights their potential applications in precision medicine. In the future, deuterated indoles may positively impact therapy and contribute to advances in precision medicine through molecular engineering.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shujingwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
13
|
Dhameliya TM, Vekariya DD, Bhatt PR, Kachroo T, Virani KD, Patel KR, Bhatt S, Dholakia SP. Synthetic account on indoles and their analogues as potential anti-plasmodial agents. Mol Divers 2025; 29:871-897. [PMID: 38709459 DOI: 10.1007/s11030-024-10842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Malaria caused by P. falciparum, has been recognized as one of the major infectious diseases causing the death of several patients as per the reports from the World Health Organization. In search of effective therapeutic agents against malaria, several research groups have started working on the design and development of novel heterocycles as anti-malarial agents. Heterocycles have been recognized as the pharmacophoric features for the different types of medicinally important activities. Among all these heterocycles, nitrogen containing aza-heterocycles should not be underestimated owing to their wide therapeutic window. Amongst the aza-heterocycles, indoles and fused indoles such as marinoquinolines, isocryptolepines and their regioisomers, manzamines, neocryptolenines, and indolones have been recognized as anti-malarial agents active against P. falciparum. The present work unleashes the synthetic attempts of anti-malarial indoles and fused indoles through cyclocondensation, Fischer-indole synthesis, etc. along with the brief discussions on structure-activity relationships, in vitro or in vivo studies for the broader interest of these medicinal chemists, working on their design and development as potential anti-malarial agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
- Present Address: Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Drashtiben D Vekariya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Pooja R Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Tarun Kachroo
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Kumkum D Virani
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Khushi R Patel
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Sandip P Dholakia
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| |
Collapse
|
14
|
Tsuru S, Sharma B, Hättig C, Marx D. Nuclear Quantum Effects Have a Significant Impact on UV/Vis Absorption Spectra of Chromophores in Water. Angew Chem Int Ed Engl 2025; 64:e202416058. [PMID: 39474981 DOI: 10.1002/anie.202416058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/12/2024]
Abstract
Despite the broadly acknowledged importance of solvation effects on measured UV/Vis spectra in the context of solvatochromism or chemical reactions in solution, it is still an open challenge to calculate UV/Vis spectra with predictive accuracy. This is particularly true when it comes to the impact of nuclear quantum effects on these experimental observables. In the present work, we calculate the UV/Vis absorption spectrum of indole in aqueous solution with a combination of a correlated wavefunction method for computing electronic excitation energies and enhanced path integral simulations for rigorous sampling of nuclear configurations including the quantum effects in solution. After validating our approach based on gas-phase benchmarking, we demonstrate that the lineshape of the spectrum measured in aqueous solution is quantitatively recovered, without the application of any shifting, scaling, or broadening, only after including nuclear quantum effects in addition to thermal fluctuations and solvation at ambient conditions. Our findings demonstrate that nuclear quantum effects are "visible" in UV/Vis spectra of chromophores measured in solution even at room temperature and, therefore, that they must be considered computationally to achieve predictive accuracy.
Collapse
Affiliation(s)
- Shota Tsuru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
- RIKEN Center for Computational Science, Minatojima-minami 7-1-26, 650-0047, Kobe, Japan
| | - Bikramjit Sharma
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
15
|
Singh A, Bhutani C, Khanna P, Talwar S, Singh SK, Khanna L. Recent report on indoles as a privileged anti-viral scaffold in drug discovery. Eur J Med Chem 2025; 281:117017. [PMID: 39509946 DOI: 10.1016/j.ejmech.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In recent years, viral infections such as COVID-19, Zika virus, Nipah virus, Ebola, Influenza, Monkeypox, and Dengue have substantially impacted global health. These outbreaks have led to heightened global health initiatives and collaborative efforts to address and mitigate these significant threats effectively. Thus, developing antiviral treatments and research in this field has become highly important. Heterocycles, particularly indole motifs, have been a valuable resource in drug discovery, as they can be used as treatments or inspire the synthesis of new potent candidates. Indole-containing drugs, such as enfuvirtide (T-20), arbidol, and delavirdine, have demonstrated significant efficacy in treating viral diseases. This review aims to comprehensively assess the latest research and developments in novel indoles as potential scaffolds for antiviral activity. We have compiled detailed information about indoles as potential antivirals by conducting a thorough literature survey from the past ten years. The review includes discussions on synthetic protocols, inhibitory concentrations, SAR study, and computational study. This review shall identify new antiviral indoles that may help to combat new viral threats in the future.
Collapse
Affiliation(s)
- Asmita Singh
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India
| | - Charu Bhutani
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India; Synthesis & In-Silico Drug Design Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Pankaj Khanna
- Synthesis & In-Silico Drug Design Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Sangeeta Talwar
- Department of Chemistry, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Sandeep Kumar Singh
- Jindal Global Business School, O.P. Jindal Global University, Sonipat 131001, India
| | - Leena Khanna
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
16
|
Mukhtar NA, Suleiman M, Al-Maqtari HM, Theva Das K, Bhat AR, Jamalis J. New Insights into the Modifications and Bioactivities of Indole-3- Carboxaldehyde and its Derivatives as a Potential Scaffold for Drug Design: A Mini-Review. Mini Rev Med Chem 2025; 25:480-503. [PMID: 39781713 DOI: 10.2174/0113895575351704241120060746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 01/12/2025]
Abstract
Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas. I3A derivatives have demonstrated a wide range of biological activities, including anti-inflammatory, anti-leishmanial, anti-cancer, anti-bacterial, antifungal, and anti-HIV properties. The structural modifications introduced to the I3A scaffold, such as substitutions on the indole ring (alkylation/arylation/halogenation), variations in the aldehyde group via condensation (Aldol/Claisen/Knoevenagel), and molecular hybridization with other reputable bioactive compounds like coumarins, chalcones, triazoles, and thiophenes, contribute to these activities. Beyond its therapeutic potential, I3A has also found applications as a ligand for Schiff base synthesis, a polymer, and a chromophore. This review provides a comprehensive overview of the latest research on I3A and its derivatives, focusing on the key reactions, modification pathways, reaction conditions, yields, and associated therapeutic activities. By understanding these advancements, researchers can gain valuable insights into the potential applications and future directions for I3A-based drug discovery.
Collapse
Affiliation(s)
- Nuhu Abdullahi Mukhtar
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
- Department of Chemistry, Sa'adatu Rimi University of Education, Kumbotso, Kano State, Nigeria
| | - Mustapha Suleiman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
- Department of Chemistry, Sokoto State University, Sokoto State, Nigeria
| | | | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Ajmal R Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
| |
Collapse
|
17
|
Xie Y, Yu Q, Yao S, Peng R, Li J. Transcriptomic Insights into the Molecular Mechanisms of Indole Analogues from the Periplaneta americana Extract and Their Therapeutic Effects on Ulcerative Colitis. Animals (Basel) 2024; 15:63. [PMID: 39795006 PMCID: PMC11718871 DOI: 10.3390/ani15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease of the intestinal mucosa, and its incidence is steadily increasing worldwide. As a traditional Chinese medicinal insect, Periplaneta americana has been broadly utilized in clinical practice to treat wound healing. The tryptophan (Trp), tryptamine (Try), and 1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (Thcc) identified from P. americana concentrated ethanol-extract liquid (PACEL) exhibit significant cell proliferation-promoting and anti-inflammatory effects in the treatment of UC, but the mechanism involved remains obscure. Here, a dextran sulfate sodium (DSS)-induced UC mouse model was used to investigate the efficacy of high/low doses of PACEL, Trp, Try, and Thcc. Transcriptome sequencing was employed to detect the gene expression in the mouse intestine. The results showed that high doses of PACEL, Trp, Try, and Thcc could significantly improve weight loss and diarrhea, notably in the PACEL and Trp groups. Transcriptome analysis indicated that statistically changed genes in four treatment groups were specifically enriched in the immune system. Of these, the integrated analysis identified six hub genes (IL1β, CCL4, CXCL5, CXCR2, LCN2, and MMP9) regulated by NF-κB, which were significantly downregulated. This study investigates the molecular mechanisms underlying the UC treatment properties of indole analogues from PACEL, potentially through the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuchen Xie
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qi Yu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China;
| | - Rui Peng
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Shan Y, Li Y, He C, Hu Z, Xiao X, Mao H, Lv X, Zhou L. Cascade Reaction of Enyne-Amides with Sulfur-Ylides for the Synthesis of Indole-Tethered 5-Oxaspiro[2.4]hept-6-ene Derivatives. Org Lett 2024; 26:10785-10790. [PMID: 39648986 DOI: 10.1021/acs.orglett.4c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
An unexpected cascade reaction of enyne-amides with sulfur-ylides has been developed. This cascade reaction involves cycloisomerization, dearomatic cyclopropanation, ring-opening rearomatization, and subsequent cyclopropanation, differing from the common [2 + n] cyclization of enyne-amides. A variety of (spirocyclopropane)dihydrofuran derivatives have been efficiently and conveniently synthesized in a single vessel, exhibiting excellent diastereoselectivity and good functional group tolerance.
Collapse
Affiliation(s)
- Yueyue Shan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yongli Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Chenghan He
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Avenue, Longgang District, Shenzhen, 518172, China
| | - Zeyu Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Mao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Xin Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
19
|
Marinescu M. Bisindole Compounds-Synthesis and Medicinal Properties. Antibiotics (Basel) 2024; 13:1212. [PMID: 39766602 PMCID: PMC11727274 DOI: 10.3390/antibiotics13121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
The indole nucleus stands out as a pharmacophore, among other aromatic heterocyclic compounds with remarkable therapeutic properties, such as benzimidazole, pyridine, quinoline, benzothiazole, and others. Moreover, a series of recent studies refer to strategies for the synthesis of bisindole derivatives, with various medicinal properties, such as antimicrobial, antiviral, anticancer, anti-Alzheimer, anti-inflammatory, antioxidant, antidiabetic, etc. Also, a series of natural bisindole compounds are mentioned in the literature for their various biological properties and as a starting point in the synthesis of other related bisindoles. Drawing from these data, we have proposed in this review to provide an overview of the synthesis techniques and medicinal qualities of the bisindolic compounds that have been mentioned in recent literature from 2010 to 2024 as well as their numerous uses in the chemistry of materials, nanomaterials, dyes, polymers, and corrosion inhibitors.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
20
|
Singh J, Gautam S, Singh MB, Singh P, Kumar U. Synthesis, DFT, Molecular Docking, and Antimicrobial Studies of New Indole-Thiosemicarbazone Ligand and Their Complexes with Fe(III), Co(II), Ni(II), Cu(II). Chem Biodivers 2024; 21:e202401301. [PMID: 39238270 DOI: 10.1002/cbdv.202401301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Indole-3-carbaldehyde based novel ligand (E)-2-((1-benzyl-1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide (MBIHC) and its metal complexes [(MBIHC)2FeCl2]Cl(C1), [(MBIHC-)2Co] (C2), [(MBIHC-)2Ni] (C3), and [(MBIHC-)2Cu] (C4) have been synthesized. All synthesized compounds have been characterized by various spectroanalytical techniques. The structure of MBIHC was confirmed by single-crystal X-ray data. The geometry of metal complexes was determined by spectroscopic and computational studies. In the case of iron complex, ligand MBIHC coordinated to the metal ion in bidentate mode (via nitrogen, sulphur donor atoms) while in the case of cobalt, nickel, and copper complexes ligand act as a tridentate ligand (via nitrogen, sulphur, carbene donor atoms). In vitro, antifungal and antibacterial studies of ligand and metal complexes were assayed against C. albicans, C. glabrata, E. coli, and K. pneumoniae pathogens. In antifungal activity, complex C1 exhibited a greater inhibition zone than the other compounds for the both examined fungi C. albicans (24±0.32 mm) and C. glabrata (20±0.16 mm). However, the antifungal activities of complex C2 has shown better activity against both E. coli (25±0.24 mm) and K. pneumoniae (16±0.80 mm) pathogens than the other examined compound. Complex C2 has found even better than the benchmark drug Ampiciline in case of E. coli. Further, the DFT calculations and molecular docking studies also validate the experimental bioactivity results of examined compounds.
Collapse
Affiliation(s)
- Jugmendra Singh
- Catalysis and bio-inorganic research laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Seema Gautam
- Catalysis and bio-inorganic research laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Madhur B Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, 110021, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, 110021, India
| | - Umesh Kumar
- Catalysis and bio-inorganic research laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| |
Collapse
|
21
|
Shah M, Parmar R, Patel K, Nagani A. Indole-based COX-2 inhibitors: A decade of advances in inflammation, cancer, and Alzheimer's therapy. Bioorg Chem 2024; 153:107931. [PMID: 39486113 DOI: 10.1016/j.bioorg.2024.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Cyclooxygenase-2 (COX-2), a key enzyme in the cyclooxygenase family, is pivotal in producing pro-inflammatory prostaglandins, driving chronic inflammation and related disorders. Targeting COX-2 with selective inhibitors can mitigate these conditions while avoiding the gastrointestinal and hepatotoxic/nephrotoxic side effects of traditional NSAIDs. However, the selectivity towards COX-2 inhibition has been associated with cardiovascular risks, necessitating the discovery of novel molecular scaffolds avoiding CVS side effects. This review focuses on advancements in Indole-based COX-2 inhibitors from 2013 to 2024, emphasizing their potential in treating inflammation, cancer, and Alzheimer's disease. The Indole scaffold, known for its versatility, allows for comprehensive structure-activity relationship (SAR) analysis, facilitating the development of molecules with enhanced selectivity and potency. Molecules having different substituents attached to the Indole scaffold supported by molecular modeling data, is explored in detail. This review provides an concise overview of the pharmacophore profiles of Indole-based chemotherapeutics, contributing to the development of advanced strategies for selective COX-2 inhibition and addressing the challenges and opportunities in the field.
Collapse
Affiliation(s)
- Moksh Shah
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Rakshita Parmar
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Kripa Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Afzal Nagani
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India; Research and Development Cell, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
22
|
Wang ZL, Cheng JK, Wang F. Iron-catalyzed C-7 Selective NH 2 Amination of Indoles. Angew Chem Int Ed Engl 2024; 63:e202412103. [PMID: 38979667 DOI: 10.1002/anie.202412103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
7-Aminoindoles are important synthetic intermediates to a broad range of bioactive molecules. Transition metal-catalyzed directed C-H amination is among the most straightforward route for their synthesis, whereas methods that could directly incorporate an NH2 group in a highly selective manner remains elusive. Moreover, there is still high demand for the development of earth-abundant metal catalysis for such attractive reactivity. We present here the first C-7 selective NH2 amination of indoles through a directed homolytic aromatic substitution (HAS) with iron-aminyl radical. The reaction exhibits broad substrate scope, tolerates variety of functional groups, and is readily scalable with catalyst loading down to 0.1 mol % and turnover number (TON) up to 4500.
Collapse
Affiliation(s)
- Zhan-Lin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Jin-Kai Cheng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
23
|
Shinde SD, Chhetri A, Ghosh S, Debnath A, Joshi P, Kumar D. Substrate-Induced Cooperative Ionic Catalysis: Difunctionalization of Indole Derivatives Employing Dimethyl Carbonate. J Org Chem 2024; 89:15995-16003. [PMID: 39432396 DOI: 10.1021/acs.joc.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The global urge to adopt sustainable chemistry has resulted in the development of more environmentally benign strategies (EBS) that use CO2 and CO2-derived chemicals in a step-economic manner. In this context, we investigated a dual C-H methylation and (C═O)-methoxylation of indole derivatives using dimethyl carbonate (DMC) in the presence of catalytic amounts of Cs2CO3. Mechanistic insights include DMF-assisted, DMC-induced cooperative ionic catalysis, which allows DMC to act as both a nucleophilic and an electrophilic precursor, resulting in (C═O)-methoxylation and C-H methylation of N-benzylindolyl ketones.
Collapse
Affiliation(s)
- Sangita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Ashik Chhetri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Sayak Ghosh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Anusri Debnath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Pooja Joshi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
24
|
Wróbel MZ, Chodkowski A, Siwek A, Satała G, Bojarski AJ, Dawidowski M. Design and Synthesis of Potential Multi-Target Antidepressants: Exploration of 1-(4-(7-Azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1 H-indol-3-yl)pyrrolidine-2,5-dione Derivatives with Affinity for the Serotonin Transporter. Int J Mol Sci 2024; 25:11276. [PMID: 39457057 PMCID: PMC11508649 DOI: 10.3390/ijms252011276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
We describe the design, synthesis and structure-activity relationship of a novel series of 1-(4-(7-azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with combined effects on the serotonin (5-HT1A) and dopamine (D2) receptors and the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) transporters as multi-target directed ligands for the treatment of depression. All of the tested compounds demonstrated good affinity for the serotonin transporter (SERT). Among them, compounds 11 and 4 emerged as the lead candidates because of their promising pharmacological profile based on in vitro studies. Compound 11 displayed a high affinity for the 5-HT1A (Ki = 128.0 nM) and D2 (Ki = 51.0 nM) receptors, and the SERT (Ki = 9.2 nM) and DAT (Ki = 288.0 nM) transporters, whereas compound 4 exhibited the most desirable binding profile to SERT/NET/DAT among the series: Ki = 47.0 nM/167.0 nM/43% inhibition at 1 µM. These results suggest that compounds 4 and 11 represent templates for the future development of multi-target antidepressant drugs.
Collapse
Affiliation(s)
- Martyna Z. Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| | - Andrzej Chodkowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland; (G.S.); (A.J.B.)
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland; (G.S.); (A.J.B.)
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| |
Collapse
|
25
|
Yadav P, Fatimah N, Sahoo SC, Kumari S, Berry S, Reenu, Kumar Pinnaka A, Bhalla A. Design, Synthesis and Biological Evaluation of C3‐Indolyl/(3‐chloro‐indolyl)‐ C4‐aryl/heteroaryl‐azetidin‐2‐ones. ChemMedChem 2024; 19. [DOI: 10.1002/cmdc.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 01/04/2025]
Abstract
AbstractHerein, trans‐ and cis‐azetidin‐2‐ones 3–6 were strategically synthesized, capitalizing on the bioactivity of azetidin‐2‐ones and indole pharmacophore, followed by a comprehensive characterization using a diverse array of spectroscopic techniques. The sixteen azetidin‐2‐ones were examined for antimicrobial activities against both Gram‐negative (P. aeruginosa, E. coli, A. baumannii) and Gram‐positive bacteria (S. aureus, E. faecium, B. cereus), as well as against C. albicans and C. tropicalis fungal strains. The highly potent compounds (5 a, 6 b, 6 d) demonstrated maximum inhibition against all multidrug‐resistant strains, with minimum inhibitory concentrations ranging from 0.97–3.9 μg/mL, surpassing the potency of standard ampicillin (MIC: 3.12–50 μg/mL). Moreover, 6 b and 6 d exhibited significant inhibitory effects on C. albicans (MIC: 0.97 μg/mL), comparable to fluconazole. The presence of C3‐(3‐chloro‐indolyl) scaffold, combined with diverse electronic effects at N1/C4‐centers, particularly the inclusion of thiophen‐2‐yl motif, greatly influenced the activity of target compounds. Assessment of 4 d, 4 i–k and 6 d on THLE‐2 cell lines revealed their preferential safety. Molecular docking studies revealed seven compounds with active dual targeting of DNA GyrB and PBP2a proteins, demonstrating a potent broad‐spectrum antibacterial effect. In silico ADME analysis affirms positive drug‐likeness and favorable pharmacokinetic characteristics of indole‐derived hybrids, indicating a promising potential for addressing challenges in evolving multidrug resistance.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Nasreen Fatimah
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - S. C. Sahoo
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank CSIR-Microbial Type Culture Collection and Gene Bank Chandigarh 160036 India
| | - Shiwani Berry
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
- Department of Chemistry and Chemical Sciences Central University of Himachal Pradesh Shahpur Kangra 176206 India
| | - Reenu
- Department of Chemistry Govt. Home Science College Chandigarh 160011 India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank CSIR-Microbial Type Culture Collection and Gene Bank Chandigarh 160036 India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
26
|
Dočekal V, Niderer Y, Kurčina A, Císařová I, Veselý J. Regio- and Enantioselective N-Heterocyclic Carbene-Catalyzed Annulation of Aminoindoles Initiated by Friedel-Crafts Alkylation. Org Lett 2024; 26:6993-6998. [PMID: 39115978 PMCID: PMC11348421 DOI: 10.1021/acs.orglett.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Chiral indoles annulated on the benzene ring are unique and significant in natural and medicinal compounds. However, accessing these enantioenriched molecules has often been overlooked. The present study introduces an organocatalytic protocol to access these compounds efficiently, demonstrated by substrate scope, functional group tolerance, and using only 1 mol % of a chiral conjugated acid catalyst. Additionally, the study explores regioselectivity, gram-scale reactions, and follow-up transformations, underscoring the method's potential.
Collapse
Affiliation(s)
- Vojtěch Dočekal
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Yaroslava Niderer
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
- Faculty
of Sciences, Aix-Marseille University, 52 Av. Escadrille Normandie Niemen, 13013 Marseille, France
| | - Adam Kurčina
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jan Veselý
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
27
|
Katiyar S, Ahmad S, Kumar A, Ansari A, Bisen AC, Ahmad I, Gulzar F, Bhatta RS, Tamrakar AK, Sashidhara KV. Design, Synthesis, and Biological Evaluation of 1,4-Dihydropyridine-Indole as a Potential Antidiabetic Agent via GLUT4 Translocation Stimulation. J Med Chem 2024; 67:11957-11974. [PMID: 39013034 DOI: 10.1021/acs.jmedchem.4c00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In the quest for the discovery of antidiabetic compounds, a series of 27 1,4-dihydropyridine-indole derivatives were synthesized using a diversity approach. These compounds were systematically evaluated for their antidiabetic activity, starting with an in vitro assessment for GLUT4 translocation stimulation in L6-GLUT4myc myotubes, followed by in vivo antihyperglycemic activity evaluation in a streptozotocin (STZ)-induced diabetic rat model. Among the synthesized compounds, 12, 14, 15, 16, 19, 27, and 35 demonstrated significant potential to stimulate GLUT4 translocation in skeletal muscle cells. Compound 19 exhibited the highest potency and was selected for in vivo evaluation. A notable reduction of 21.6% (p < 0.01) in blood glucose levels was observed after 5 h of treatment with compound 19 in STZ-induced diabetic rats. Furthermore, pharmacokinetic studies affirmed that compound 19 was favorable to oral exposure with suitable pharmacological parameters. Overall, compound 19 emerged as a promising lead compound for further structural modification and optimization.
Collapse
Affiliation(s)
- Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ishbal Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
28
|
Corvino A, Caliendo G, Fiorino F, Frecentese F, Valsecchi V, Lombardi G, Anzilotti S, Andreozzi G, Scognamiglio A, Sparaco R, Perissutti E, Severino B, Gargiulo M, Santagada V, Pignataro G. Newly Synthesized Indolylacetic Derivatives Reduce Tumor Necrosis Factor-Mediated Neuroinflammation and Prolong Survival in Amyotrophic Lateral Sclerosis Mice. ACS Pharmacol Transl Sci 2024; 7:1996-2005. [PMID: 39022351 PMCID: PMC11249635 DOI: 10.1021/acsptsci.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
The debilitating neurodegenerative disease known as amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons (MNs) in the brain, spinal cord, and motor cortex. The ALS neuroinflammatory component is being characterized and includes the overexpression of mediators, such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α). Currently, there are no effective treatments for ALS. Indeed, riluzole, an N-methyl-D-aspartate (NMDA) glutamate receptor blocker, and edaravone, a reactive oxygen species (ROS) scavenger, are currently the sole two medications approved for ALS treatment. However, their efficacy in extending life expectancy typically amounts to only a few months. In order to improve the medicaments for the treatment of neurodegenerative diseases, preferably ALS, novel substituted 2-methyl-3-indolylacetic derivatives (compounds II-IV) were developed by combining the essential parts of two small molecules, namely, the opioids containing a 4-piperidinyl ring with indomethacin, previously shown to be efficacious in different experimental models of neuroinflammation. The synthesized compounds were evaluated for their potential capability of slowing down neurodegeneration associated with ALS progression in preclinical models of the disease in vitro and in vivo. Notably, we produced data to demonstrate that the treatment with the newly synthesized compound III: (1) prevented the upregulation of TNF-α observed in BV-2 microglial cells exposed to the toxin lipopolysaccharides (LPS), (2) preserved SHSY-5Y cell survival exposed to β-N-methylamino-l-alanine (L-BMAA) neurotoxin, and (3) mitigated motor symptoms and improved survival rate of SOD1G93A ALS mice. In conclusion, the findings of the present work support the potential of the synthesized indolylacetic derivatives II-IV in ALS treatment. Indeed, in the attempt to realize an association between two active molecules, we assumed that the combination of the indispensable moieties of two small molecules (the opioids containing a 4-piperidinyl ring with the FANS indomethacin) might lead to new medicaments potentially useful for the treatment of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Angela Corvino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Giuseppe Caliendo
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Ferdinando Fiorino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Francesco Frecentese
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Valeria Valsecchi
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| | - Giovanna Lombardi
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| | - Serenella Anzilotti
- Department
of Science and Technology, University of
Sannio, 82100Benevento, Italy
| | - Giorgia Andreozzi
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Antonia Scognamiglio
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Rosa Sparaco
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Elisa Perissutti
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Beatrice Severino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Michele Gargiulo
- Miuli
Pharma S.r.l., via Circumvallazione, Nola 310 80035, Italy
| | - Vincenzo Santagada
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Giuseppe Pignataro
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| |
Collapse
|
29
|
Hassan SM, Farid A, Panda SS, Bekheit MS, Dinkins H, Fayad W, Girgis AS. Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights. Pharmaceuticals (Basel) 2024; 17:922. [PMID: 39065774 PMCID: PMC11280311 DOI: 10.3390/ph17070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer remains a formidable global health challenge, with current treatment modalities such as chemotherapy, radiotherapy, surgery, and targeted therapy often hindered by low efficacy and adverse side effects. The indole scaffold, a prominent heterocyclic structure, has emerged as a promising candidate in the fight against cancer. This review consolidates recent advancements in developing natural and synthetic indolyl analogs, highlighting their antiproliferative activities against various cancer types over the past five years. These analogs are categorized based on their efficacy against common cancer types, supported by biochemical assays demonstrating their antiproliferative properties. In this review, emphasis is placed on elucidating the mechanisms of action of these compounds. Given the limitations of conventional cancer therapies, developing targeted therapeutics with enhanced selectivity and reduced side effects remains a critical focus in oncological research.
Collapse
Affiliation(s)
- Sara M. Hassan
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Holden Dinkins
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt;
| |
Collapse
|
30
|
Goyal P, Dubey AK, Chowdhury R, Wadawale A. Primary amine-catalyzed enantioselective 1,4-Michael addition reaction of pyrazolin-5-ones to α,β-unsaturated ketones. Beilstein J Org Chem 2024; 20:1518-1526. [PMID: 39015621 PMCID: PMC11250233 DOI: 10.3762/bjoc.20.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
The enantioselective 1,4-addition reaction of pyrazolin-5-ones to α,β-unsaturated ketones catalyzed by a cinchona alkaloid-derived primary amine-Brønsted acid composite is reported. Both enantiomers of the anticipated pyrazole derivatives were obtained in good to excellent yields (up to 97%) and high enantioselectivities (up to 98.5% ee) under mild reaction conditions. In addition, this protocol was further expanded to synthesize highly enantioenriched hybrid molecules bearing biologically relevant heterocycles.
Collapse
Affiliation(s)
- Pooja Goyal
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Akhil K Dubey
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Raghunath Chowdhury
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
31
|
Grosso C, Alves C, Sase TJ, Alves NG, Cardoso AL, Lemos A, Pinho e Melo TMVD. Selective Synthesis of 3-(1 H-Tetrazol-5-yl)-indoles from 2 H-Azirines and Arynes. ACS OMEGA 2024; 9:29282-29289. [PMID: 39005823 PMCID: PMC11238228 DOI: 10.1021/acsomega.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 07/16/2024]
Abstract
A new selective synthetic approach to indole derivatives bearing a tetrazole moiety has been developed. Arynes, generated in situ from o-(trimethylsilyl)aryl triflates and KF, reacted smoothly with 2-(2-benzyl-2H-tetrazol-5-yl)-2H-azirines to give 3-(2-benzyl-2H-tetrazol-5-yl)-indole derivatives with high selectivity. Deprotection of the tetrazole moiety gave 3-(1H-tetrazol-5-yl)-indole derivatives.
Collapse
Affiliation(s)
- Carla Grosso
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Cláudia Alves
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Terver J. Sase
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Nuno G. Alves
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Ana L. Cardoso
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Américo Lemos
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
- FCT,
University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal
| | - Teresa M. V. D. Pinho e Melo
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
32
|
Ikram S, Sayyah E, Durdağı S. Identifying Potential SOS1 Inhibitors via Virtual Screening of Multiple Small Molecule Libraries against KRAS-SOS1 Interaction. Chembiochem 2024; 25:e202400008. [PMID: 38622060 DOI: 10.1002/cbic.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
The RAS-MAPK signaling pathway, crucial for cell proliferation and differentiation, involves key proteins KRAS and SOS1. Mutations in the KRAS and SOS1 genes are implicated in various cancer types, including pancreatic, lung, and juvenile myelomonocytic leukemia. There is considerable interest in identifying inhibitors targeting KRAS and SOS1 to explore potential therapeutic strategies for cancer treatment. In this study, advanced in silico techniques were employed to screen small molecule libraries at this interface, leading to the identification of promising lead compounds as potential SOS1 inhibitors. Comparative analysis of the average binding free energies of these predicted potent compounds with known SOS1 small molecule inhibitors revealed that the identified compounds display similar or even superior predicted binding affinities compared to the known inhibitors. These findings offer valuable insights into the potential of these compounds as candidates for further development as effective anti-cancer agents.
Collapse
Affiliation(s)
- Saima Ikram
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34734, Istanbul, Turkey
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HİTMER), Bahçeşehir University, 34734, İstanbul, Türkiye
| | - Ehsan Sayyah
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34734, Istanbul, Turkey
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HİTMER), Bahçeşehir University, 34734, İstanbul, Türkiye
| | - Serdar Durdağı
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34734, Istanbul, Turkey
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HİTMER), Bahçeşehir University, 34734, İstanbul, Türkiye
- Molecular Therapy Lab (MTL), Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, 34353, Istanbul, Türkiye
| |
Collapse
|
33
|
Wu C, Lv J, Fan H, Su W, Cai X, Yu J. Mechanochemical C-H Arylation and Alkylation of Indoles Using 3 d Transition Metal and Zero-Valent Magnesium. Chemistry 2024; 30:e202304231. [PMID: 38294073 DOI: 10.1002/chem.202304231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/01/2024]
Abstract
Although the 3 d transition-metal catalyzed C-H functionalization have been extensively employed to promote the formation of valuable carbon-carbon bonds, the persistent problems, including the use of sensitive Grignard reagents and the rigorous operations (solvent-drying, inert gas protection, metal pre-activation and RMgX addition rate control), still leave great room for further development of sustainable methodologies. Herein, we report a mechanochemical technology toward in-situ preparation of highly sensitive organomagnesium reagents, and thus building two general 3 d transition-metal catalytic platforms that enables regioselective arylation and alkylation of indoles with a wide variety of halides (including those containing post transformable functionalities and heteroaromatic rings). This mechanochemical strategy also brings unique reactivity and high step-economy in producing functionalized N-free indole products.
Collapse
Affiliation(s)
- Chongyang Wu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Hangzhou Red Cross Hospital, Hangzhou, 310014, P. R. China
| | - Jin Lv
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Weike Su
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinjun Cai
- Hangzhou Red Cross Hospital, Hangzhou, 310014, P. R. China
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
34
|
Barresi E, Baglini E, Poggetti V, Castagnoli J, Giorgini D, Salerno S, Taliani S, Da Settimo F. Indole-Based Compounds in the Development of Anti-Neurodegenerative Agents. Molecules 2024; 29:2127. [PMID: 38731618 PMCID: PMC11085553 DOI: 10.3390/molecules29092127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Emma Baglini
- Institute of Clinical Physiology, National Research Council of Italy, CNR Research Area, 56124 Pisa, Italy;
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy;
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| |
Collapse
|
35
|
Kumari G, Dhillon S, Rani P, Chahal M, Aneja DK, Kinger M. Development in the Synthesis of Bioactive Thiazole-Based Heterocyclic Hybrids Utilizing Phenacyl Bromide. ACS OMEGA 2024; 9:18709-18746. [PMID: 38708256 PMCID: PMC11064039 DOI: 10.1021/acsomega.3c10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 05/07/2024]
Abstract
Heterocyclic hybrid frameworks represent a burgeoning domain within the realms of drug discovery and medicinal chemistry, attracting considerable attention in recent years. Thiazole pharmacophore fragments, inherent in natural products such as peptide alkaloids, metabolites, and cyclopeptides, have demonstrated a broad spectrum of pharmacological potentials. Given their profound biological significance, a plethora of thiazole-based hybrids have been synthesized through the conjugation of thiazole moieties with bioactive pyrazole and pyrazoline fragments. This review systematically presents a compendium of robust methodologies for the synthesis of thiazole-linked hybrids, employing the (3 + 2) heterocyclization reaction, specifically the Hantzsch-thiazole synthesis, utilizing phenacyl bromide as the substrate. The strategic approach of molecular hybridization has markedly enhanced drug efficacy, mitigated resistance to multiple drugs, and minimized toxicity concerns. The resultant thiazole-linked hybrids exhibit a myriad of medicinal properties viz. anticancer, antibacterial, anticonvulsant, antifungal, antiviral, and antioxidant activities. This compilation of methodologies and insights serves as a valuable resource for medicinal chemists and researchers engaged in the design of novel thiazole-linked hybrids endowed with therapeutic attribute.
Collapse
Affiliation(s)
- Ginna Kumari
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Sudeep Dhillon
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Priyanka Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Mamta Chahal
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| |
Collapse
|
36
|
Hu YG, Battini N, Fang B, Zhou CH. Discovery of indolylacryloyl-derived oxacins as novel potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 270:116392. [PMID: 38608408 DOI: 10.1016/j.ejmech.2024.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 μg/mL) and hydroxyethyl IDO 10e (0.25-1 μg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.
Collapse
Affiliation(s)
- Yue-Gao Hu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
37
|
Laabi S, LeMmon C, Vogel C, Chacon M, Jimenez VM. Deciphering psilocybin: Cytotoxicity, anti-inflammatory effects, and mechanistic insights. Int Immunopharmacol 2024; 130:111753. [PMID: 38401463 DOI: 10.1016/j.intimp.2024.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
A decade of clinical research has indicated psilocybin's effectiveness in treating various neuropsychiatric disorders, such as depression and substance abuse. The correlation between increased pro-inflammatory cytokines and the severity of neuropsychiatric symptoms, along with the known anti-inflammatory potential of some psychedelics, suggests an immunomodulatory role for psilocybin. This study aims to understand the mechanism of action of psilocybin by investigating the cytotoxic and immunomodulatory effects of psilocybin and psilocin on both resting and LPS-activated RAW 264.7 murine macrophages. The study evaluated the cytotoxicity of psilocybin and psilocin using an LDH assay across various doses and assessed their impact on cytokine production in RAW 264.7 cells, measuring cytokine expression via ELISA. Different doses, including those above and below the LC50, were used in both pre-treatment and post-treatment approaches. The LDH assay revealed that psilocybin is almost twice as cytotoxic as psilocin, with an LC50 of 12 ng/ml and 28 ng/ml, respectively. In resting macrophages, both psilocybin and psilocin triggered significant release of TNF- α after 4 h, with the lowest doses inducing higher levels of the cytokine than the highest doses. IL-10 expression in resting cells was only triggered by the highest dose of psilocin in the 4-hour incubation group. In LPS-stimulated cells, psilocin reduced TNF- α levels more than psilocybin in pre-treatment and post-treatment, with no significant effects on IL-10 in pre-treatment. Psilocin, but not psilocybin, induced a significant increase of IL-10 in post-treatment, leading to the conclusion that psilocin, but not psilocybin, exerts anti-inflammatory effects on classically activated macrophages.
Collapse
Affiliation(s)
- Salma Laabi
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Claire LeMmon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Callie Vogel
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Mariana Chacon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Victor M Jimenez
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States; Department of Pharmacy, Roseman University of Health Sciences, 10920 S River Front Pkwy, South Jordan, UT 84095, United States.
| |
Collapse
|
38
|
Tsybulin SV, Kaplanskiy MV, Antonov AS. Transition-Metal-Free Synthesis of 2-Substituted Benzo[cd]Indoles via the Reaction of 1-Halo-8-lithionaphthalenes with Nitriles. Chemistry 2024; 30:e202303768. [PMID: 38197193 DOI: 10.1002/chem.202303768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
A simple and effective organolithium approach to the synthesis of 2-substituted benzo[cd]indoles from peri-dihalonaphthalenes and nitriles has been developed. The reaction proceeds via a surprisingly easy intramolecular aromatic nucleophilic substitution facilitated by the "clothespin effect". The discovered transformation provides good isolated yields, allows usage of an extensive range of nitriles, and demonstrates a good substituents tolerance. UV-absorption and NMR spectra of the obtained benzo[cd]indoles and their protonated forms demonstrated exclusive protonation to the indole nitrogen atom even in the presence of two NMe2 groups in positions 5 and 6 (i. e. "proton sponge" moiety).
Collapse
Affiliation(s)
- Semyon V Tsybulin
- St. Petersburg State University, 198504, St. Petersburg, Russian Federation
| | - Mark V Kaplanskiy
- St. Petersburg State University, 198504, St. Petersburg, Russian Federation
| | - Alexander S Antonov
- Institute of Organic Chemistry, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
39
|
Pan N, Wang H, An J, Liu C, Chen H, Fei Q, Li P, Wu W. Discovery of Novel Compounds for Combating Rising Severity of Plant Diseases Caused by Fungi and Viruses. ACS OMEGA 2024; 9:1424-1435. [PMID: 38222640 PMCID: PMC10785787 DOI: 10.1021/acsomega.3c07820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
In recent years, the severity of plant diseases caused by plant pathogenic fungi and viruses has been on the rise. However, there is a limited availability of pesticide chemicals in the market for effectively controlling both fungal and viral infections. To solve this problem, a series of novel pyrimidine derivatives containing a 1,3,4-oxadiazole thioether fragment were synthesized. Among them, compound 6s exhibited remarkable in vivo protection activity against tobacco mosaic virus, demonstrating the superior 50% effective concentration (EC50) value of 0.42 μM, outperforming ningnanmycin (0.60 μM). Meanwhile, compound 6s exhibited remarkable antifungal activity against Botrytis cinerea Pers. in postharvest blueberry in vitro, with an EC50 value of 0.011 μM, surpassing the inhibition rate of Pyrimethanil (0.262 μM). Additionally, compound 6s also demonstrated remarkable curative and protection activities against blueberry fruit gray mold in vivo, with control efficiencies of 54.2 and 60.4% at 200 μg/mL concentration, respectively, which were comparable to those of Pyrimethanil (49.3 and 63.9%, respectively). Scanning electron microscopy showed that the compound 6s-treated hyphae of B. cinerea Pers. in postharvest blueberry became abnormally collapsed and shriveled. Furthermore, the molecular docking simulation demonstrated that compound 6s formed hydrogen bonds with SER-17, ARG-43, and SER-39 of succinate dehydrogenase (SDH), providing a possible explanation for the mechanism of action between the target compounds and SDH. This study represents the first report on the antiviral and antifungal activities of novel pyrimidine derivatives containing a 1,3,4-oxadiazole thioether fragment.
Collapse
Affiliation(s)
- Nianjuan Pan
- School
of Food Science and Engineering, Guiyang
University, Guiyang 550005, China
| | - Hui Wang
- School
of Food Science and Engineering, Guiyang
University, Guiyang 550005, China
| | - Jiansong An
- School
of Food Science and Engineering, Guiyang
University, Guiyang 550005, China
| | - Chunyi Liu
- School
of Food Science and Engineering, Guiyang
University, Guiyang 550005, China
| | - Haijiang Chen
- School
of Food Science and Engineering, Guiyang
University, Guiyang 550005, China
| | - Qiang Fei
- School
of Food Science and Engineering, Guiyang
University, Guiyang 550005, China
| | - Pei Li
- Qiandongnan
Engineering and Technology Research Center for Comprehensive Utilization
of National Medicine, Kaili University, Kaili 556011, China
| | - Wenneng Wu
- School
of Food Science and Engineering, Guiyang
University, Guiyang 550005, China
| |
Collapse
|
40
|
Dos Santos JC, Alves JEF, de Azevedo RDS, de Lima ML, de Oliveira Silva MR, da Silva JG, da Silva JM, de Carvalho Correia AC, do Carmo Alves de Lima M, de Oliveira JF, de Moura RO, de Almeida SMV. Study of nitrogen heterocycles as DNA/HSA binder, topoisomerase inhibitors and toxicological safety. Int J Biol Macromol 2024; 254:127651. [PMID: 37949265 DOI: 10.1016/j.ijbiomac.2023.127651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 μM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.
Collapse
Affiliation(s)
- Jéssica Celerino Dos Santos
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | | | - Maksuelly Libanio de Lima
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | - Josefa Gerlane da Silva
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | - Jamire Muriel da Silva
- Department of Pharmacy, Laboratory of Synthesis and Vectorization of Molecules, State University of Paraíba (UEPB), Campus Campina Grande, 58429-500, PB, Brazil
| | | | - Maria do Carmo Alves de Lima
- Chemistry and Therapeutic Innovation Laboratory (LQIT), Department of Antibiotics, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Ricardo Olímpio de Moura
- Department of Pharmacy, Laboratory of Synthesis and Vectorization of Molecules, State University of Paraíba (UEPB), Campus Campina Grande, 58429-500, PB, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Chemistry and Therapeutic Innovation Laboratory (LQIT), Department of Antibiotics, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
41
|
Philoppes JN, Abdelgawad MA, Abourehab MAS, Sebak M, A. Darwish M, Lamie PF. Novel N-methylsulfonyl-indole derivatives: biological activity and COX-2/5-LOX inhibitory effect with improved gastro protective profile and reduced cardio vascular risks. J Enzyme Inhib Med Chem 2023; 38:246-266. [DOI: 10.1080/14756366.2022.2145283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- John N. Philoppes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | | | - Mohamed Sebak
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa A. Darwish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Phoebe F. Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
42
|
Guo J, Xie Z, Ruan W, Tang Q, Qiao D, Zhu W. Thiazole-based analogues as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and their SAR elucidation. Eur J Med Chem 2023; 259:115689. [PMID: 37542993 DOI: 10.1016/j.ejmech.2023.115689] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
In recent years, the overuse of antibiotics has resulted in the emergence of antibiotic resistance, which is a serious global health problem. Methicillin-resistant Staphylococcus aureus (MRSA) is a common and virulent bacterium in clinical practice. Numerous researchers have focused on developing new candidate drugs that are effective, less toxic, and can overcome MRSA resistance. Thiazole derivatives have been found to exhibit antibacterial activity against drug-sensitive and drug-resistant pathogens. By hybridizing thiazole with other antibacterial pharmacophores, it is possible to obtain more effective antibacterial candidate drugs. Thiazole derivatives have shown potential in developing new drugs that can overcome drug resistance, reduce toxicity, and improve pharmacokinetic characteristics. This article reviews the recent progress of thiazole compounds as potential antibacterial compounds and examines the structure-activity relationship (SAR) in various directions. It covers articles published from 2018 to 2023, providing a comprehensive platform to plan and develop new thiazole-based small MRSA growth inhibitors with minimal side effects.
Collapse
Affiliation(s)
- Jiaojiao Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Zhouling Xie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
43
|
Bresciani G, Cervinka J, Kostrhunova H, Biancalana L, Bortoluzzi M, Pampaloni G, Novohradsky V, Brabec V, Marchetti F, Kasparkova J. N-Indolyl diiron vinyliminium complexes exhibit antiproliferative effects in cancer cells associated with disruption of mitochondrial homeostasis, ROS scavenging, and antioxidant activity. Chem Biol Interact 2023; 385:110742. [PMID: 37802407 DOI: 10.1016/j.cbi.2023.110742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The indole scaffold has been established as a key organic moiety for developing new drugs; on the other hand, a range of diiron bis-cyclopentadienyl complexes have recently emerged for their promising anticancer potential. Here, we report the synthesis of novel diiron complexes with an indole-functionalized vinyliminium ligand (2-5) and an indole-lacking analogue for comparative purposes (6), which were characterized by analytical and spectroscopic techniques. Complexes 2-6 are substantially stable in DMSO‑d6 and DMEM-d solutions at 37 °C (8% average degradation after 48 h) and display a balanced hydrophilic/lipophilic behaviour (LogPow values in the range -0.32 to 0.47), associated with appreciable water solubility. The complexes display selective antiproliferative potency towards several cancer cells in monolayer cultures, mainly in the low micromolar range, with reduced toxicity towards noncancerous epithelial cells. Thus, the cytotoxicity of the complexes is comparable to or better than clinically used metallopharmaceutical cisplatin. Comparing the antiproliferative activity obtained for complexes containing different ligands, we confirmed the importance of the indolyl group in the mechanism of antiproliferative activity of these complexes. Cell-based mechanistic studies suggest that the investigated diiron vinyliminium complexes (DVCs) show cytostatic rather than cytotoxic effects and subsequently induce a population of cells to undergo apoptosis. Furthermore, the molecular mechanism of action involves interactions with mitochondrial DNA and proteins, the reactive oxygen species (ROS)-scavenging properties and antioxidant activity of these complexes in cancer cells. This study highlights the importance of DVCs to their cancer cell activity and reinforces their prospective therapeutic potential as anticancer agents.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic; Masaryk University, Faculty of Science, Department of Biochemistry, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Marco Bortoluzzi
- Ca' Foscari University of Venice, Department of Molecular Sciences and Nanosystems, Via Torino 155, I-30175, Mestre, Venezia, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic; Department of Biophysics, Palacky University, Slechtitelu 27, CZ-78371, Olomouc, Czech Republic
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy.
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic.
| |
Collapse
|
44
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
45
|
Bondarev VL, Festa AA, Storozhenko OA, Golantsov NE, Pappula V, Tskhovrebov AG, Varlamov AV, Voskressensky LG. Azo Coupling of Indoles Revisited: Synthesis of Biindolyl Photoswitches via the Azo-Coupling/C-H Functionalization Domino Approach. J Org Chem 2023; 88:12949-12957. [PMID: 37624664 DOI: 10.1021/acs.joc.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
When azo coupling of aryldiazonium salts with indoles was carried out in aprotic nonpolar solvent on air, a pseudo-three-component reaction has been discovered. Azo coupling is followed by a nucleophilic addition of a second indole unit to the indolium intermediate; aromatization and oxidation are achieved under air.
Collapse
Affiliation(s)
- Vladimir L Bondarev
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Nikita E Golantsov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Venkatanarayana Pappula
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexander G Tskhovrebov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| |
Collapse
|
46
|
Ledermann N, Moubsit AE, Müller TJJ. Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation-cyclization-iodination-alkylation sequence. Beilstein J Org Chem 2023; 19:1379-1385. [PMID: 37736394 PMCID: PMC10509542 DOI: 10.3762/bjoc.19.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
A library of 19 differently substituted 3-iodoindoles is generated by a consecutive four-component reaction starting from ortho-haloanilines, terminal alkynes, N-iodosuccinimide, and alkyl halides in yields of 11-69%. Initiated by a copper-free alkynylation, followed by a base-catalyzed cyclizive indole formation, electrophilic iodination, and finally electrophilic trapping of the intermediary indole anion with alkyl halides provides a concise one-pot synthesis of 3-iodoindoles. The latter are valuable substrates for Suzuki arylations, which are exemplified with the syntheses of four derivatives, some of them are blue emitters in solution and in the solid state, in good yield.
Collapse
Affiliation(s)
- Nadia Ledermann
- Heinrich-Heine Universität Düsseldorf, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Alae-Eddine Moubsit
- Heinrich-Heine Universität Düsseldorf, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Thomas J J Müller
- Heinrich-Heine Universität Düsseldorf, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Abdullah Al Awadh A. Biomedical applications of selective metal complexes of indole, benzimidazole, benzothiazole and benzoxazole: A review (From 2015 to 2022). Saudi Pharm J 2023; 31:101698. [PMID: 37533494 PMCID: PMC10393588 DOI: 10.1016/j.jsps.2023.101698] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Indole, benzoxazole benzothiazole and benzimidazole are excellent classes of organic heterocyclic compounds. These compounds show significant application in pharmacy, industries, dyes, medicine, polymers and food packages. These compounds also form metal complexes with copper, zinc, cadmium, nickel, cobalt, platinum, gold, palladium chromium, silver, iron, and other metals that have shown to be significant applications. Recently, researchers have attracted enormous attention toward heterocyclic compounds such as indole, benzimidazole, benzothiazole, benzoxazole, and their complexes due to their excellent medicinal applications such as anti-ulcerogenic, anti-cancer, antihypertensive, antifungal, anti-inflammatory, antitubercular, antiparasitic, anti-obesity, antimalarial, antiglycation, antiviral potency, antineuropathic, analgesic antioxidant, antihistaminic, and antibacterial potentials. In this article, we summarize the medicinal applications of these compounds as well as their metal complexes. We hope this article will help researchers in designing and synthesizing novel and potent compounds with significant applications in various fields.
Collapse
|
48
|
da Silva G, Luz AFS, Duarte D, Fontinha D, Silva VLM, Almeida Paz FA, Madureira AM, Simões S, Prudêncio M, Nogueira F, Silva AMS, Moreira R. Facile Access to Structurally Diverse Antimalarial Indoles Using a One-Pot A 3 Coupling and Domino Cyclization Approach. ChemMedChem 2023; 18:e202300264. [PMID: 37392377 DOI: 10.1002/cmdc.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
A multistep and diversity-oriented synthetic route aiming at the A3 coupling/domino cyclization of o-ethynyl anilines, aldehydes and s-amines is described. The preparation of the corresponding precursors included a series of transformations, such as haloperoxidation and Sonogashira cross-coupling reactions, amine protection, desilylation and amine reduction. Some products of the multicomponent reaction underwent further detosylation and Suzuki coupling. The resulting library of structurally diverse compounds was evaluated against blood and liver stage malaria parasites, which revealed a promising lead with sub-micromolar activity against intra-erythrocytic forms of Plasmodium falciparum. The results from this hit-to-lead optimization are hereby reported for the first time.
Collapse
Affiliation(s)
- Gustavo da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - André F S Luz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Denise Duarte
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Filipe A Almeida Paz
- Department of Chemistry & CICECO -, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Madureira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Fátima Nogueira
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| |
Collapse
|
49
|
Agarwal M, Afzal O, Salahuddin, Altamimi AS, Alamri MA, Alossaimi MA, Sharma V, Ahsan MJ. Design, Synthesis, ADME, and Anticancer Studies of Newer N-Aryl-5-(3,4,5-Trifluorophenyl)-1,3,4-Oxadiazol-2-Amines: An Insight into Experimental and Theoretical Investigations. ACS OMEGA 2023; 8:26837-26849. [PMID: 37593245 PMCID: PMC10431697 DOI: 10.1021/acsomega.3c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
In continuance of our investigation into the anticancer activity of oxadiazoles, we report here the preparation of 10 new 1,3,4-oxadiazole analogues using the scaffold hopping technique. We have prepared the oxadiazoles having a common pharmacophoric structure (oxadiazole linked aryl nucleus) as seen in the reported anticancer agents IMC-038525 (tubulin inhibitor), IMC-094332 (tubulin inhibitor), and FATB (isosteric replacement of the S of thiadiazole with the O of oxadiazole). All of the oxadiazole analogues were predicted for their absorption, distribution, metabolism, and excretion (ADME) profiles and toxicity studies. All of the compounds were found to follow Lipinski's rule of 5 with a safe toxicity profile (Class IV compound) against immunotoxicity, mutagenicity, and toxicity. All of the compounds were synthesized and characterized using spectral data, followed by their anticancer activity tested in a single-dose assay at 10 μM as reported by the National Cancer Institute (NCI US) Protocol against nearly 59 cancer cell lines obtained from nine panels, including non-small-cell lung, ovarian, breast, central nervous system (CNS), colon, leukemia, prostate, and cancer melanoma. N-(2,4-Dimethylphenyl)-5-(3,4,5-trifluorophenyl)-1,3,4-oxadiazol-2-amine (6h) displayed significant anticancer activity against SNB-19, OVCAR-8, and NCI-H40 with percent growth inhibitions (PGIs) of 86.61, 85.26, and 75.99 and moderate anticancer activity against HOP-92, SNB-75, ACHN, NCI/ADR-RES, 786-O, A549/ATCC, HCT-116, MDA-MB-231, and SF-295 with PGIs of 67.55, 65.46, 59.09, 59.02, 57.88, 56.88, 56.53, 56.4, and 51.88, respectively. The compound 6h also registered better anticancer activity than Imatinib against CNS, ovarian, renal, breast, prostate, and melanoma cancers with average PGIs of 56.18, 40.41, 36.36, 27.61, 22.61, and 10.33, respectively. Molecular docking against tubulin, one of the appealing cancer targets, demonstrated an efficient binding within the binding site of combretastatin A4. The ligand 6h (docking score = -8.144 kcal/mol) interacted π-cationically with the residue Lys352 (with the oxadiazole ring). Furthermore, molecular dynamic (MD) simulation studies in complex with the tubulin-combretastatin A4 protein and ligand 6h were performed to examine the dynamic stability and conformational behavior.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department
of Pharmaceutical Chemistry, Arya College
of Pharmacy, Jaipur, Rajasthan 302 001, India
- Department
of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan 303
121, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salahuddin
- Department
of Pharmaceutical Chemistry, Noida Institute
of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, India
| | | | - Mubarak A. Alamri
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Vandana Sharma
- Department
of Pharmaceutical Chemistry, Arya College
of Pharmacy, Jaipur, Rajasthan 302 001, India
| | - Mohamed Jawed Ahsan
- Department
of Pharmaceutical Chemistry, Maharishi Arvind
College of Pharmacy, Jaipur, Rajasthan 302 039, India
| |
Collapse
|
50
|
Fnaiche A, Bueno B, McMullin CL, Gagnon A. On the Barton Copper-Catalyzed C3-Arylation of Indoles using Triarylbismuth bis(trifluoroacetate) Reagents. Chempluschem 2023; 88:e202200465. [PMID: 36843381 DOI: 10.1002/cplu.202200465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
We disclose herein our detailed investigation into the Barton copper-promoted C3-arylation of indoles using triarylbismuth bis(trifluoroacetates). The arylation of unsubstituted 1H-indole using Barton's conditions gave a low yield of the C3-arylated indole, along with small amounts of the product of double C2/C3-arylation and traces of the product of C2 arylation. On the contrary, the arylation of indoles blocked at the C2 position is highly efficient, affording the desired products of C3-arylation in good to excellent yields. The reaction operates under simple conditions, shows good substrate scope, excellent functional group compatibility, and allows the transfer of electron-neutral or deficient aryl groups. Computational studies propose a mechanism involving a trifluoroacetate-assisted C-H activation step.
Collapse
Affiliation(s)
- Ahmed Fnaiche
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, H3C 3P8, Montréal, Québec, Canada
| | - Bianca Bueno
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, H3C 3P8, Montréal, Québec, Canada
| | - Claire L McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, H3C 3P8, Montréal, Québec, Canada
| |
Collapse
|