1
|
Jiang Y, Liang HY, Yan YJ, Romanishkin ID, Meerovich GA, Reshetov IV, Zhou XP, Chen ZL. The synthesis, photophysical and biological properties of 5,10,15,20-tetra(4-substituted phenyl)tetrabenzoporphyrin derivatives. Eur J Med Chem 2025; 291:117612. [PMID: 40253793 DOI: 10.1016/j.ejmech.2025.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Photodynamic therapy (PDT) had garnered considerable focus owing to its high photoactivation efficacy and low systemic toxicity. The performance of PDT heavily relied on the behavior of photosensitizers. In this study, a series of new 5,10,15,20-tetra(4-substituted phenyl)tetrabenzoporphyrin derivatives were prepared and their antitumor effects in vitro and in vivo were evaluated. These new compounds presented an absorption peak at ∼700 nm within the phototherapeutic window (600-760 nm). Their effective ROS generation capacities were predominantly verified via the type II mechanism during the irradiation process. In vitro experiments displayed that all compounds exhibited notable phototoxicity with low dark toxicity (IC50 > 76 μM) toward Eca-109 cells. Among them, VI showed obvious photoactivation with a cell survival rate reduction to 7 % at a concentration of 10 μM after exposure to 650 nm laser light (12 J/cm2). In vivo studies revealed that VI had significant antitumor effects with inhibition rate up to 94 %. Subcellular experiments demonstrated that VI distributed mainly in mitochondria, lysosomes and partially in endoplasmic reticulum. Thus, compound VI, which possessed long-wavelength and multi-wavelength absorption capabilities, high photocytotoxicity and low dark toxicity to tumor, would emerge as a promising photosensitizer for individual photo-diagnosis and photodynamic therapy.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Hong-Yu Liang
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Yi-Jia Yan
- Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Xing-Ping Zhou
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China; Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Okyay TM, Yilmaz I, Koldas M. Machine learning-based bioactivity prediction of porphyrin derivatives: molecular descriptors, clustering, and model evaluation. Photochem Photobiol Sci 2025:10.1007/s43630-025-00733-8. [PMID: 40372610 DOI: 10.1007/s43630-025-00733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Understanding the relationship between molecular structure and bioactivity is crucial for optimizing porphyrin-based therapeutics. By integrating cheminformatics techniques with machine learning models, our work enables the efficient classification of compounds based on their molecular structures and their growth inhibition capabilities (IC50). A dataset of 317 porphyrin derivatives was compiled, incorporating molecular descriptors and biological activity data. Descriptive statistical analysis was performed to examine compound distribution and key features. Clustering analysis was conducted using hierarchical clustering and fingerprint similarity matrices to classify compounds based on structural similarity. Lipinski's Rule of Five was applied to assess drug-likeness, while Murcko scaffold analysis identified core structural patterns. Tumor response data were analyzed to evaluate therapeutic efficacy. Machine learning models were implemented to predict bioactivity. Descriptive statistics highlighted bioactive compounds, with TMPyP4 and Temaporfin being the most studied. Quantitative estimation of drug-likeness and the number of aliphatic carboxylic acids were identified as the most influential descriptors among others for bioactivity. Hierarchical clustering segmented porphyrins into nine structural groups. The analysis identified 168 pIC50 active compounds, with 31 meeting Lipinski's criteria, and 11 overlapping as both effective and bioavailable. Tumor response analysis revealed three porphyrins achieving 100% response. Logistic Regression emerged as the best-performing model, achieving 83% accuracy, demonstrating robust predictive capabilities. This study successfully characterized porphyrin derivatives, reviewing key molecular features influencing bioactivity and evaluating their therapeutic potential. It highlights the potential of machine learning in predicting the biological activity status of porphyrin derivatives.
Collapse
Affiliation(s)
- Tugba Muhlise Okyay
- Medical Biochemistry, University of Health Sciences, 34956, Istanbul, Türkiye
| | - Ibrahim Yilmaz
- Department of Medical Biochemistry, Health Science University Istanbul Haseki Training and Research Hospital, Istanbul, Türkiye
| | - Macit Koldas
- Medical Biochemistry, University of Health Sciences, 34956, Istanbul, Türkiye.
- Department of Medical Biochemistry, Health Science University Istanbul Haseki Training and Research Hospital, Istanbul, Türkiye.
| |
Collapse
|
3
|
Wu Y, Fan Q, Liu X, Cao Y, Yang J, Yan Y, Tao H, Zhang F, Zhang L, Wang P, Wang X. A Chlorin e6 derivative-mediated photodynamic therapy versus doxycycline for moderate-to-severe rosacea: A prospective, randomized, controlled study. Photodiagnosis Photodyn Ther 2025; 51:104474. [PMID: 39788468 DOI: 10.1016/j.pdpdt.2025.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Photodynamic therapy (PDT) is beneficial for managing rosacea, and chlorin e6 derivative-mediated photodynamic therapy (STBF-PDT) has demonstrated efficacy in reducing acne lesions with mild adverse reactions. OBJECTIVES This study aimed to assess the effectiveness and safety of STBF-PDT for the treatment of moderate-to-severe rosacea. METHODS In this prospective, randomised, evaluator-blind controlled study, patients with moderate-to-severe rosacea were assigned to receive up to six STBF-PDT sessions or 100 mg of doxycycline daily for eight weeks, followed by a 24-week follow-up. RESULTS A total of 76 patients were enrolled (38 assigned to STBF-PDT and 38 to oral doxycycline) with 69 (36 in the STBF-PDT group and 33 in the doxycycline group) completing the study. At the end of treatment, the median reduction in lesion count was 82.3 % in the STBF-PDT group and 81.8 % in the doxycycline group, indicating no significant difference between the groups. The STBF-PDT group exhibited a lower relapse rate and a significantly higher reduction in Demodex mites. Clinician's Erythema Assessment success (CEA), sensations of burning and pruritus, telangiectasia, and Rosacea-related Quality of Life (RosaQoL) scores were comparable between groups. No severe adverse reactions were observed. CONCLUSIONS STBF-PDT is a promising treatment option for mild-to-moderate rosacea with mild adverse reactions.
Collapse
Affiliation(s)
- Yun Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qing Fan
- Department of Dermatology, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Xiaojing Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yajing Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jin Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Hui Tao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Fuhe Zhang
- Department of Dermatology, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
4
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
5
|
Zhang H, Zhao Y, Tao H, Feng C, Wang P, Zhang L, Liu X, Chen Y, Wang X. A chlorin e6 derivative-mediated photodynamic therapy for mild to moderate acne: A prospective, single-blind, randomized, split-face controlled study. Photodiagnosis Photodyn Ther 2024; 49:104304. [PMID: 39226754 DOI: 10.1016/j.pdpdt.2024.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Acne vulgaris is a chronic inflammatory skin disease involving the pilosebaceous unit. OBJECTIVE To assess the efficacy and safety of a chlorin e6 derivative-mediated photodynamic therapy (STBF-PDT) in the treatment of mild to moderate acne patients. METHODS In this prospective patient single-blind randomized split-face controlled study, patients diagnosed with mild to moderate acne were treated with four sessions of STBF-PDT on one-half of the face, while the other half were treated with the same dose of red-light treatment without photosensitizer. Follow-up assessment including the skin lesion clearance rate, facial fluorescence scattering spots on VISIA Porphyrins mode, and skin physiological parameters was conducted before and after treatment as well as 2 and 4 weeks after the final treatment. RESULTS A total of 26 patients were recruited, of which 22 patients completed this study. STBF-PDT is significantly effective in improving lesions in patients with acne. The clearance rate of total lesions was 67.42±8.51 % in the STBF-PDT group and 41.05±11.97 % in the control group 4 weeks after the treatment (P < 0.001). The average clearance rate of inflammatory lesions was 84.41±7.13 % in the STBF-PDT group and 50.10±13.91 % in the control group, with a statistically significance (P < 0.0001). The skin sebum of the STBF-PDT side was significantly lower than that on the control side. There was no obvious adverse reaction especially no pain or reactive acne. CONCLUSION STBF-PDT may be a safe and effective treatment for mild to moderate acne and can significantly inhibit sebum secretion.
Collapse
Affiliation(s)
- Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yan Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hui Tao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Chunmei Feng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaojing Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yamei Chen
- Department of Nursing, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
6
|
Mishra M, Gupta D, Preeti, Deb D. Mitigating CYP3A4-mediated aflatoxin toxicity with algal-derived Sodium Copper Chlorophyllin: Production and In-silico insights. Int J Biol Macromol 2024; 280:135594. [PMID: 39276882 DOI: 10.1016/j.ijbiomac.2024.135594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The present research explores the cytotoxic mechanism of protein Cytochrome P450 (CYP3A4) with aflatoxin (AFB1), a potent carcinogen. Cytochrome P450 is an essential enzyme involved in drug metabolism, however epoxide formation due to the binding event of AFB1 leads to cell cytotoxicity. In this direction, our study elucidates the scavenging effect of algal-derived Sodium Copper Chlorophyllin (SCC) over AFB1 cytotoxicity. Cyanobacteria/ microalgae-derived SCC have garnered attention due to its diverse applications in pharmacological and food industries. This work began with the production of SCC from Spirulina and Chlorella sp. over a stipulated period of growth. Subsequently, the study delved into the interplay between SCC and the carcinogenic impact of AFB1 on the CYP3A4 enzyme. Computational studies demonstrated SCC binding and blocking mechanisms against AFB1. Our research intended to determine whether CYP3A4 can bind to SCC that, in turn, act as an interceptor for AFB1 or influence the metabolism of bound AFB1. Current results support that SCC is an effective AFB1 trap as it shows interactions with AFB1. These findings would open up new avenues in clinical biology/pharmacology to further explore the mechanisms of action of CYP3A4 with AFB1 and SCC, offering promising prospects for abating cell cytotoxicity.
Collapse
Affiliation(s)
- Medhabini Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India; Department of Biotechnology, Rama Devi Women's University, Bhubaneswar 751022, India
| | - Dolly Gupta
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | - Preeti
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India.
| | - Dipanwita Deb
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India.
| |
Collapse
|
7
|
Song W, Yang H, Wang Y, Chen S, Zhong W, Wang Q, Ding W, Xu G, Meng C, Liang Y, Chen Z, Cao S, Wei L, Li F. Glutathione-Sensitive Photosensitizer-Drug Conjugates Target the Mitochondria to Overcome Multi-Drug Resistance in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307765. [PMID: 38898730 PMCID: PMC11321625 DOI: 10.1002/advs.202307765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/11/2024] [Indexed: 06/21/2024]
Abstract
Multi-drug resistance (MDR) is a major cause of cancer therapy failure. Photodynamic therapy (PDT) is a promising modality that can circumvent MDR and synergize with chemotherapies, based on the generation of reactive oxygen species (ROS) by photosensitizers. However, overproduction of glutathione (GSH) by cancer cells scavenges ROS and restricts the efficacy of PDT. Additionally, side effects on normal tissues are unavoidable after PDT treatment. Here, to develop organic systems that deliver effective anticancer PDT and chemotherapy simultaneously with very little side effects, three GSH-sensitive photosensitizer-drug conjugates (CyR-SS-L) are designed and synthesized. CyR-SS-L localized in the mitochondria then is cleaved into CyR-SG and SG-L parts by reacting with and consuming high levels of intracellular GSH. Notably, CyR-SG generates high levels of ROS in tumor cells instead of normal cells and be exploited for PDT and the SG-L part is used for chemotherapy. CyR-SS-L inhibits better MDR cancer tumor inhibitory activity than indocyanine green, a photosensitizer (PS) used for PDT in clinical applications. The results appear to be the first to show that CyR-SS-L may be used as an alternative PDT agent to be more effective against MDR cancers without obvious damaging normal cells by the combination of PDT, GSH depletion, and chemotherapy.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Medicinal ChemistrySchool of PharmacyShandong UniversityJinan250012China
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Hekai Yang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Ying Wang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Shuzhen Chen
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Wenda Zhong
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Qian Wang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Wenshuo Ding
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Guangzhao Xu
- Weifang Synovtech New Material Technology CO., LTD.Weifang262700China
- Harway Pharma Co., Ltd.Dongying254753China
| | - Chen Meng
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Ying Liang
- Department of General PracticeThe First Affiliated Hospital of Shandong First Medical UniversityJinan250013China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Shuhua Cao
- College of ChemistryChemical and Environmental EngineeringWeifang UniversityWeifang261061China
| | - Liuya Wei
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Fahui Li
- School of PharmacyWeifang Medical UniversityWeifang261053China
| |
Collapse
|
8
|
Shinde VR, Khatun S, Thanekar AM, Bhattacharjee B, Rengan AK. Sodium copper chlorophyllin-loaded chitosan nanoparticle-based photodynamic therapy for B16 melanoma cancer cells. Chem Biol Drug Des 2024; 104:e14594. [PMID: 39072923 DOI: 10.1111/cbdd.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024]
Abstract
Melanoma is one of the most aggressive and fatal skin cancers owing to its ability to metastasize and develop resistance to chemotherapy. Photodynamic therapy (PDT) is a minimally noninvasive treatment modality comprising photosensitizers (PSs), light sources, and endogenous molecular oxygen that exert a localized cytotoxic effect on cancer cells. The current study explores the therapeutic potential of sodium copper chlorophyllin-loaded chitosan nanoparticles (CH-SCC NPs) along with handheld laser-based PDT on B16 cancer cells. A modified chlorophyll derivative identified as sodium copper chlorophyllin (SCC) is a dietary supplement that has anticancer properties. Herein, we have synthesized CH-SCC NPs using the ionic gelation method to enhance the PS's bioavailability and efficiency. Chitosan nanoparticles exhibited high biocompatibility in a normal cell line L929, zebrafish, and chick embryos, and were successfully employed to deliver the SCC to cancer cells. CH-SCC NPs showed an enhanced PDT effect that killed approximately 80%-85% of B16 cells. CH-SCC NPs in combination with a handheld portable laser source showed significant therapeutic potential against the B16 skin cancer cell line. The experimental findings further strengthen our device-repurposing strategy, which suggests that SCC nanoformulations along with handheld laser can be a suitable treatment for skin cancer even in remote areas where power source and treatment cost can be a limitation.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Ajinkya Madhukar Thanekar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Basu Bhattacharjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| |
Collapse
|
9
|
Cheng Z, Benson S, Mendive-Tapia L, Nestoros E, Lochenie C, Seah D, Chang KY, Feng Y, Vendrell M. Enzyme-Activatable Near-Infrared Hemicyanines as Modular Scaffolds for in vivo Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202404587. [PMID: 38717316 DOI: 10.1002/anie.202404587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 06/21/2024]
Abstract
Photodynamic therapy is an anti-cancer treatment that requires illumination of photosensitizers to induce local cell death. Current near-infrared organic photosensitizers are built from large and non-modular structures that cannot be tuned to improve safety and minimize off-target toxicity. This work describes a novel chemical platform to generate enzyme-activatable near-infrared photosensitizers. We optimized the Se-bridged hemicyanine scaffold to include caging groups and biocompatible moieties, and generated cathepsin-triggered photosensitizers for effective ablation of human glioblastoma cells. Furthermore, we demonstrated that enzyme-activatable Se-bridged hemicyanines are effective photosensitizers for the safe ablation of microtumors in vivo, creating new avenues in the chemical design of targeted anti-cancer photodynamic therapy agents.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Eleni Nestoros
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Charles Lochenie
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Deborah Seah
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Kai Yee Chang
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Yi Feng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XR, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
10
|
Cen JH, Xie QH, Guo GH, Xu SY, Liu ZY, Liao YH, Zhong XP, Liu HY. Construction of 5-Fluorouracil and Gallium Corrole Conjugates for Enhanced Photodynamic Therapy. J Med Chem 2024; 67:9054-9068. [PMID: 38781403 DOI: 10.1021/acs.jmedchem.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Molecular hybridization is a well-established strategy for developing new drugs. In the pursuit of promising photosensitizers (PSs) with enhanced photodynamic therapy (PDT) efficiency, a series of novel 5-fluorouracil (5FU) gallium corrole conjugates (1-Ga-4-Ga) were designed and synthesized by hybridizing a chemotherapeutic drug and PSs. Their photodynamic antitumor activity was also evaluated. The most active complex (2-Ga) possesses a low IC50 value of 0.185 μM and a phototoxic index of 541 against HepG2 cells. Additionally, the 5FU-gallium corrole conjugate (2-Ga) exhibited a synergistic increase in cytotoxicity under irradiation. Excitedly, treatment of HepG2 tumor-bearing mice with 2-Ga under irradiation could completely ablate tumors without harming normal tissues. 2-Ga-mediated PDT could disrupt mitochondrial function, cause cell cycle arrest in the sub-G1 phase, and activate the cell apoptosis pathway by upregulating the cleaved PARP expression and the Bax/Bcl-2 ratios. This work provides a useful strategy for the design of new corrole-based chemo-photodynamic therapy drugs.
Collapse
Affiliation(s)
- Jing-He Cen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Qi-Hu Xie
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Geng-Hong Guo
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Shi-Yin Xu
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ze-Yu Liu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiao-Ping Zhong
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
11
|
Xu T, Mi L, Namulinda T, Chen D, Yan YJ, Chen ZL. Design, synthesis, and evaluation of 5,15-diaryltetranaphtho [2,3]porphyrins as photosensitizers in real-time photodynamic therapy and photodiagnosis. Eur J Med Chem 2024; 264:115980. [PMID: 38039789 DOI: 10.1016/j.ejmech.2023.115980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
In the pursuit of new potent photosensitizers (PSs) for photodynamic therapy (PDT) with better efficacy, a series of 5,15-diaryltetranaphtho [2,3]porphyrins (Ar2TNPs) with two or four carboxyalkoxy groups were designed, synthesized, and evaluated. These new compounds exhibited strong, broad and red-shifted UV-vis absorptions at 729 nm and other strong absorptions at 446, 475, 650, 659, 714 nm for tumors and other diseases of varying sizes and depths. They possess high molar extinction coefficients (0.95 × 105-1.48 × 105 M-1 cm-1), good singlet oxygen quantum yields and photodynamic antitumor effects towards Eca-109 cells in vitro. It is suggested that the extension of porphyrin with naphthalene into Ar2TNP results into remarkable improvement of photophysical characteristics, while the introduction of carboxyalkoxy groups on meso-phenyl can significantly improve the solubility and photodynamic effects in vitro and in vivo. Notably, compound II3 can localize primarily in lysosomes of Eca-109 cells and induce substantial cell apoptosis after PDT. It can also selectively accumulate in tumor tissues and be traced real-timely through in vivo fluorescence imaging with distinctive inhibition of tumor growth. Therefore, compound II3 deserves to be considered as a promising PDT drug candidate for individualized tumor real-time tracing and treatment.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Le Mi
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Danye Chen
- Department of Chemistry, Imperial College of London, London, SW7 2AZ, UK
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 201620, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
12
|
Fan L, Jiang Z, Xiong Y, Xu Z, Yang X, Gu D, Ainiwaer M, Li L, Liu J, Chen F. Recent Advances in the HPPH-Based Third-Generation Photodynamic Agents in Biomedical Applications. Int J Mol Sci 2023; 24:17404. [PMID: 38139233 PMCID: PMC10743769 DOI: 10.3390/ijms242417404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Photodynamic therapy has emerged as a recognized anti-tumor treatment involving three fundamental elements: photosensitizers, light, and reactive oxygen species. Enhancing the effectiveness of photosensitizers remains the primary avenue for improving the biological therapeutic outcomes of PDT. Through three generations of development, HPPH is a 2-(1-hexyloxyethyl)-2-devinyl derivative of pyropheophorbide-α, representing a second-generation photosensitizer already undergoing clinical trials for various tumors. The evolution toward third-generation photosensitizers based on HPPH involves structural modifications for multimodal applications and the combination of multifunctional compounds, leading to improved imaging localization and superior anti-tumor effects. While research into third-generation HPPH is beneficial for advancing PDT treatment, equal attention should also be directed toward the other two essential elements and personalized diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Lixiao Fan
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zheng Jiang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yu Xiong
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zepeng Xu
- West China Clinical Medical College, Sichuan University, Chengdu 610064, China;
| | - Xin Yang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Deying Gu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Mailudan Ainiwaer
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Leyu Li
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jun Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Fei Chen
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Kang L, Liu S, Huang X, Zhang D, Zhao H, Zhao Y. Cyclopentylmalononitrile dye as an efficient photosensitizer for combined photodynamic and water-dependent reversible photoacidity therapy. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
14
|
Conjugates of Tetrapyrrolic Macrocycles as Potential Anticancer Target-Oriented Photosensitizers. Top Curr Chem (Cham) 2023; 381:10. [PMID: 36826755 DOI: 10.1007/s41061-023-00421-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023]
Abstract
Photodynamic therapy is a minimally invasive treatment of tumors using photosensitizers, light, and reactive oxygen species, which can destroy cellular structures. With the development of photodynamic therapy, significant efforts have been made to create new efficient photosensitizers with improved delivery to cells, stability, and selectivity against cancer tissues. Naturally occurring tetrapyrrolic macrocycles, such as porphyrins and chlorins, are very attractive as photosensitizers, and their structural modification and conjugation with other biologically active molecules are promising approaches for creating new photosensitizers specifically targeting cancer cells. The present review aims to highlight recent developments in the design, preparation, and investigation of complex conjugates of tetrapyrrolic macrocycles, which can potentially be used as sensitizers for target-oriented photodynamic therapy of cancer. In this review, we discuss the structure, photodynamic effect, and anticancer activity of the following conjugates of tetrapyrrolic macrocycles: (1) conjugates obtained by modifying peripheral substituents in porphyrins and chlorins; (2) conjugates of porphyrins and chlorins with lipids, carbohydrates, steroids, and peptides; (3) conjugates of porphyrins and chlorins with anticancer drugs and some other biologically active molecules; (4) metal-containing conjugates. The question of how the conjugate structure affects its specificity, internalization, localization, and photoinduced toxicity within cancer cells is the focus of this review.
Collapse
|
15
|
Tao H, Zhang H, Xu D, Yan G, Wu Y, Zhang G, Zeng Q, Wang X. A chlorin e6 derivative-mediated photodynamic therapy inhibits cutaneous squamous cell carcinoma cell proliferation via Akt/mTOR signaling pathway. Photodiagnosis Photodyn Ther 2023; 42:103332. [PMID: 36796744 DOI: 10.1016/j.pdpdt.2023.103332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Although most cutaneous squamous cell carcinoma (cSCC) cases are generally nonlethal and manageable with surgical excision, there ares till significant hazards for patients who are ineligible for surgical resection. We sought to find a suitable and effective treatment for cSCC. METHODS We modified chlorin e6 by adding a hydrogen chain with a six-carbon ring to the benzene ring and named this new photosensitizer as STBF. We first investigated the fluorescence characteristics, cellular uptake of STBF and subcellular localization. Next, cell viability was detected by CCK-8 assay and the TUNEL staining was performed. Akt/mTOR-related proteins were examined by western blot. RESULTS STBF-photodynamic therapy (PDT) inhibits cSCC cells viability in a light dose dependent manner. The antitumor mechanism of STBF-PDT might be due to the suppression of the Akt/mTOR signaling pathway. Further animal investigation determined that STBF-PDT led to a marked reduction in tumor growth. CONCLUSIONS Our results suggest that STBF-PDT exerts significant therapeutic effects in cSCC. Thus, STBF-PDT is expected to be a promising method for the treatment of cSCC and the photosensitizer STBF may be destined for a wider range of applications in photodynamic therapy.
Collapse
Affiliation(s)
- Hui Tao
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai, 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; The Fifth Clinical Medical College of Anhui Medical University
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Detian Xu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yuhao Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiuli Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai, 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; The Fifth Clinical Medical College of Anhui Medical University.
| |
Collapse
|
16
|
Liu H, Yu C, Lyu M, Lyu S, Hu L, Xiao E, Xu P. Novel albumin-binding photodynamic agent EB-Ppa for targeted fluorescent imaging guided tumour photodynamic therapy. RSC Adv 2023; 13:3534-3540. [PMID: 36756591 PMCID: PMC9890653 DOI: 10.1039/d2ra07380c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The targeted and novel albumin-binding strategy has been attractive in the field of cancer therapy. Herein, we have developed an organic small molecule-based photosensitizer, Evans Blue-Pyropheophorbide-alpha (EB-Ppa), to treat solid tumors with extremely high photodynamic therapeutic efficiency, which is stable in serum-containing aqueous media and can effectively accumulate in the tumor site due to the enhanced permeability and retention (EPR) effect. Particularly, after the photodynamic therapeutic treatment with EB-Ppa, all breast tumors (4T1 cell line) xenografted in nude mice shrink fast due to the singlet oxygen generated by EB-Ppa with laser irradiation. Furthermore, EB-Ppa shows negligible toxicity in major organs. These results demonstrate that EB-Ppa presents the great potential of photodynamic therapy for efficient tumor treatment.
Collapse
Affiliation(s)
- Huan Liu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Cheng Yu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Min Lyu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Shiyi Lyu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - LiNan Hu
- Departments of Radiology, Zhuzhou Central HospitalZhuzhou 412000HunanP. R. China
| | - Enhua Xiao
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical UniversityJining 272000P. R. China,Department of Diagnostic Radiology Yong Loo Lin School of Medicine, National University of Singapore119074Singapore
| |
Collapse
|
17
|
Tracy EC, Bowman MJ, Pandey RK, Baumann H. Tumor cell-specific retention of photosensitizers determines the outcome of photodynamic therapy for head and neck cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112513. [PMID: 35841739 DOI: 10.1016/j.jphotobiol.2022.112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/25/2022]
Abstract
Pheophorbide-based photosensitizers have demonstrated tumor cell-specific retention. The lead compound 3-[1'-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) in a clinical trial for photodynamic therapy of head and neck cancer lesions indicated a complete response in 80% of patients. The question arises whether the partial response in 20% of patients is due to inefficient retention of photosensitizers by tumor cells and, if so, can the photosensitizer preference of individual cancer cases be identified prior to photodynamic therapy. This study determined the specificity of head and neck cancer cells and tumor tissues for the uptake and retention of diffusible pheophorbides differing in peripheral groups on the macrocycle that contribute to cellular binding. The relationship between photosensitizer level and light-mediated photoreaction was characterized to identify markers for predicting the effectiveness of photodynamic therapy in situ. The experimental models were stromal and epithelial cells isolated from head and neck tumor samples and integrated into monotypic tissue cultures, reconstituted three-dimensional co-cultures, and xenografts. Tumor cell-specific photosensitizer retention patterns were identified, and a procedure was developed to allow the diagnostic evaluation of HPPH binding by tumor cells in individual cancer cases. The findings of this study may assist in designing conditions for photosensitizer application and photodynamic therapy of head and neck cancer lesions optimized for each patient's case.
Collapse
Affiliation(s)
- Erin C Tracy
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Mary-Jo Bowman
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Ravindra K Pandey
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Heinz Baumann
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| |
Collapse
|
18
|
Yao H, Yan J, Zhou Z, Shen S, Wu Y, Liu P, Zhang H, Wang X. A chlorin e6 derivative‐mediated photodynamic therapy for patients with cervical and vaginal low‐grade squamous intraepithelial lesions: a retrospective analysis. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hongxia Yao
- Shanghai First Maternity and Infant Hospital Tongji University School of Medicine Shanghai China
| | - Jia Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Zhongxia Zhou
- Institute of Photomedicine, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Yun Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| |
Collapse
|
19
|
The Potential Application of Natural Photosensitizers Used in Antimicrobial Photodynamic Therapy against Oral Infections. Pharmaceuticals (Basel) 2022; 15:ph15060767. [PMID: 35745686 PMCID: PMC9227410 DOI: 10.3390/ph15060767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Oral health problems and the emergence of antimicrobial resistance among pathogenic bacterial strains have become major global challenges and are essential elements that negatively affect general well-being. Antimicrobial photodynamic therapy (APDT) is based on a light source and oxygen that activates a nontoxic photosensitizer, resulting in microbial destruction. Synthetic and natural products can be used to help the APDT against oral microorganisms. The undesirable consequences of conventional photosensitizers, including toxicity, and cost encourage researchers to explore new promising photosensitizers based on natural compounds such as curcumin, chlorella, chlorophyllin, phycocyanin, 5-aminolevulinic acid, and riboflavin. In this review, we summarize in vitro studies describing the potential use of APDT therapy conjugated with some natural products against selected microorganisms that are considered to be responsible for oral infections.
Collapse
|
20
|
Campanholi KDSS, Zanqui AB, Pedroso de Morais FA, Jaski JM, Gonçalves RS, da Silva Junior RC, Cardozo-Filho L, Caetano W. Obtaining phytotherapeutic chlorophyll extracts using pressurized liquid technology. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Zhang J, Cui Z, Zhu Y, Zhu Z, Qi Q, Wang Q. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol Adv 2022; 55:107904. [PMID: 34999139 DOI: 10.1016/j.biotechadv.2021.107904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/25/2021] [Accepted: 12/31/2021] [Indexed: 01/23/2023]
Abstract
Tetrapyrroles are essential metabolic components produced by almost all organisms, and they participate in various fundamental biological processes. Tetrapyrroles are used as pharmaceuticals, food additives, and nutraceuticals, as well as in agricultural applications. However, their production is limited by their low extraction yields from natural resources and by the complex reaction steps involved in their chemical synthesis. Through advances in metabolic engineering and synthetic biology strategies, microbial cell factories were developed as an alternative method for tetrapyrrole production. Herein, we review recent developments in metabolic engineering and synthetic biology strategies that promote the microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway (e.g., 5-aminolevulinic acid, heme, bilins, chlorophyll, and vitamin B12). Furthermore, outstanding challenges to the microbial production of tetrapyrrole compounds, as well as their possible solutions, are discussed.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yuan Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Ziwei Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
22
|
Saberi S, Khoobi M, Alaeddini M, Etemad-Moghadam S, Jamshidloo R, Mohammadpour H, Shahabi S. The effect of photodynamic therapy on head and neck squamous cell carcinoma cell lines using spirulina platensis with different laser energy densities. Photodiagnosis Photodyn Ther 2021; 37:102688. [PMID: 34910993 DOI: 10.1016/j.pdpdt.2021.102688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Considering the anti-cancer properties of spirulina platensis (S. platensis), we aimed to investigate the effectiveness of this algae as a novel natural photosensitizer for photodynamic therapy (PDT) against oral and hypopharyngeal cancer cells. The appropriate laser energy density to apply during PDT was also determined. METHODS AND MATERIALS CAL-27, FaDu and HGF cell lines were exposed to S. platensis with concentrations of 0.3 g/l and 0.6 g/l and were irradiated with 635 nm diode laser using 2, 4, 12, and 24 J/cm2 energy densities with constant power. MTT assay was performed to investigate cell viability and cytotoxicity after 24 h. The results were analyzed using two-way ANOVA and post hoc Tukey tests (P-value<0.05). RESULTS survival rate in CAL-27 (P-Value<0.001) and FaDu (P-Value<0.001) cell lines were significantly different following irradiation with various laser energy densities. Different concentrations of S. platensis had no significant effect on the viability of CAL-27 cells (P-Value=0.158) and FaDu cells (P-Value=0.072) and showed no significant cytotoxicity against HGF cells, with or without laser. CONCLUSION S. platensis could be considered as a novel safe and effective natural photosensitizer for cancer PDT with no cytotoxic effect on normal cells. When combined with laser using appropriate energy densities, it has the ability to induce death in oral and hypopharyngeal cancer cell lines.
Collapse
Affiliation(s)
- Sogol Saberi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahele Jamshidloo
- Department of Management, Hidaj Branch, Islamic Azad University, Hidaj, Iran
| | - Hadiseh Mohammadpour
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Shahabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Mollaeva MR, Nikolskaya E, Beganovskaya V, Sokol M, Chirkina M, Obydennyi S, Belykh D, Startseva O, Mollaev MD, Yabbarov N. Oxidative Damage Induced by Phototoxic Pheophorbide a 17-Diethylene Glycol Ester Encapsulated in PLGA Nanoparticles. Antioxidants (Basel) 2021; 10:1985. [PMID: 34943088 PMCID: PMC8750000 DOI: 10.3390/antiox10121985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023] Open
Abstract
Pheophorbide a 17-diethylene glycol ester (XL-8), is a promising high-active derivative of known photosensitizer chlorin e6 used in photodynamic therapy. However, high lipophilicity and poor tumor accumulation limit XL-8 therapeutic application. We developed a novel XL-8 loaded with poly(D,L-lactide-co-glycolide) nanoparticles using the single emulsion-solvent evaporation method. The nanoparticles possessed high XL-8 loading content (4.6%) and encapsulation efficiency (87.7%) and a small size (182 ± 19 nm), and negative surface charge (-22.2 ± 3.8 mV) contributed to a specific intracellular accumulation. Sustained biphasic XL-8 release from nanoparticles enhanced the photosensitizer photostability upon irradiation that could potentially reduce the quantity of the drug applied. Additionally, the encapsulation of XL-8 in the polymer matrix preserved phototoxic activity of the payload. The nanoparticles displayed enhanced cellular internalization. Flow cytometry and confocal laser-scanning microscopy studies revealed rapid XL-8 loaded nanoparticles distribution throughout the cell and initiation of DNA damage, glutathione depletion, and lipid peroxidation via reactive oxygen species formation. The novel nanoformulated XL-8 simultaneously revealed a significant phototoxicity accompanied with enhanced photostability, in contrast with traditional photosensitizers, and demonstrated a great potential for further in vivo studies.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Veronika Beganovskaya
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
- Department of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Sergey Obydennyi
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia;
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Dmitry Belykh
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Olga Startseva
- Pitirim Sorokin Syktyvkar State University, 167001 Syktyvkar, Russia;
| | - Murad D. Mollaev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| |
Collapse
|
24
|
Advances in photodynamic antimicrobial chemotherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Guo X, Yu H, Shen W, Cai R, Li Y, Li G, Zhao W, Wang S. Synthesis and biological evaluation of NO-donor containing photosensitizers to induce ferroptosis of cancer cells. Bioorg Chem 2021; 116:105355. [PMID: 34592689 DOI: 10.1016/j.bioorg.2021.105355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive treatment method for tumors by exciting photosensitizers (PS) upon light irradiation to generate cytotoxic reactive oxygen species (ROS). However, the low oxygen concentration near the tumor tissue limits the therapeutic effect of PDT. Herein, we synthesized six chlorin e6 derivatives containing NO-donors to enhance their antitumor activity by synergistic effect of ROS and NO. The results revealed that the new NO-donor containing photosensitizers (PS-NO) exhibited more potent photodynamic activity than chlorin e6, and the introduction of NO donor moieties to chlorin e6 increased the level of NO and ROS in cells. The addition of Ferrostatin-1, a ferroptosis inhibitor, markedly reduced the photodynamic activity of PS-NO as well as the level of NO and ROS in cells. Mechanism studies further showed that PS-NO could reduce intracellular GSH level, inhibit GPX4 activity and promote malondialdehyde (MDA) accumulation upon light irradiation, which suggested the ferroptosis mechanism underlying the PDT effect of PS-NO.
Collapse
Affiliation(s)
- Xiuhan Guo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China.
| | - Haoze Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Wanjie Shen
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Rui Cai
- Center of Analysis and Research, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yueqing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Shisheng Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China.
| |
Collapse
|
26
|
Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review is written to endow updated information on polypyrrole based photosensitizers for the treatment of deadly diseases such as cancer and microbial infection. Tetrapyrrolic macromolecules such as porphyrins and phthalocyanines hold unique photophysical properties which make them very useful compounds for various biomedical applications. Besides their properties, they also have some limitations such as low water solubility, bioavailability, biocompatibility and lack of specificity, etc. Researchers are trying to overcome these limitations by incorporating photosensitizers into the different types of nanoparticles and improve the quality of photodynamic therapy. We have contributed to this field by synthesizing and developing polypyrrolic photosensitizer based nanoparticles for potential applications in antimicrobial and anticancer photodynamic activity. Throughout this review, newly synthesized and existing PSs conjugated/encapsulated/doped/incorporated with nanoparticles are emphasized, which are essential for current and future research themes. Also in this review, we briefly summarized the research work carried over the past few years by considering the porphyrin based photosensitizers as alternative therapeutic entities for the treatment of microbial infections, cancers, and many other diseases.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector-81, S.A.S. Nagar-140306, Mohali, Punjab, India
| | - Uttam Chand Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
| |
Collapse
|
27
|
Sajjada F, Liua XY, Yanb YJ, Zhoua XP, Chena ZL. The Photodynamic Anti-Tumor Effects of New PPa-CDs Conjugate with pH Sensitivity and Improved Biocompatibility. Anticancer Agents Med Chem 2021; 22:1286-1295. [PMID: 33992066 DOI: 10.2174/1871520621666210513162457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photodynamic therapy has been increasingly used to cope with the alarming problem of cancer. Porphyrins and its derivatives are widely used as potent photosensitizers (PS) for PDT. However, hydrophobicity of porphyrins poses a challenge for their use in clinics, while most of the carbon dots (CDs) are known for good biocompatibility, solubility, and pH sensitivity. OBJECTIVE To improve the properties/biocompatibility of the pyropheophorbide-α for PDT. METHODS PPa-CD conjugate was synthesized through covalent interaction using amide condensation. The structure of synthesized conjugate was confirmed by TEM, 1HNMR, and FTIR. The absorption and emission spectra were studied. In vitro, cytotoxicity of the conjugate was examined in the Human esophageal cancer cell line (Eca-109). RESULTS The results showed that the fluorescence of the drug was increased from its precursor. CD based conjugate could generate ROS as well as enhanced the biocompatibility by decreasing the cytotoxicity. The conjugated drug also showed pH sensitivity in different solutions. CONCLUSION The dark toxicity, as well as hemocompatibility, were improved.
Collapse
Affiliation(s)
- Faiza Sajjada
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xu-Ying Liua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yanb
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, 200433, China
| | - Xing-Ping Zhoua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Zhi-Long Chena
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| |
Collapse
|
28
|
Benson S, de Moliner F, Fernandez A, Kuru E, Asiimwe NL, Lee JS, Hamilton L, Sieger D, Bravo IR, Elliot AM, Feng Y, Vendrell M. Photoactivatable metabolic warheads enable precise and safe ablation of target cells in vivo. Nat Commun 2021; 12:2369. [PMID: 33888691 PMCID: PMC8062536 DOI: 10.1038/s41467-021-22578-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Photoactivatable molecules enable ablation of malignant cells under the control of light, yet current agents can be ineffective at early stages of disease when target cells are similar to healthy surrounding tissues. In this work, we describe a chemical platform based on amino-substituted benzoselenadiazoles to build photoactivatable probes that mimic native metabolites as indicators of disease onset and progression. Through a series of synthetic derivatives, we have identified the key chemical groups in the benzoselenadiazole scaffold responsible for its photodynamic activity, and subsequently designed photosensitive metabolic warheads to target cells associated with various diseases, including bacterial infections and cancer. We demonstrate that versatile benzoselenadiazole metabolites can selectively kill pathogenic cells - but not healthy cells - with high precision after exposure to non-toxic visible light, reducing any potential side effects in vivo. This chemical platform provides powerful tools to exploit cellular metabolic signatures for safer therapeutic and surgical approaches.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Fabio de Moliner
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Antonio Fernandez
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nicholas L Asiimwe
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST) & Bio-Med Program KIST-School UST, Seoul, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Lloyd Hamilton
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Dirk Sieger
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Isabel R Bravo
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Abigail M Elliot
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Yi Feng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
29
|
Ogasawara S, Takahashi T, Kitagawa Y, Tamiaki H. Synthesis of Highly Fluorescent Cationic Chlorophyll-a Derivatives Possessing a p-Aminopyridinio Group at the 31-Position. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tatsuya Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuichi Kitagawa
- Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
30
|
Nwogu C, Kloc A, Attwood K, Bshara W, Durrani F, Pandey R. Porfimer Sodium Versus PS785 for Photodynamic Therapy (PDT) of Lung Cancer Xenografts in Mice. J Surg Res 2021; 263:245-250. [PMID: 33713956 DOI: 10.1016/j.jss.2020.12.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Lung cancer is the greatest cause of cancer mortality in the United States, necessitating ongoing improvements in current treatment techniques. Photodynamic therapy (PDT) involves the interaction between a photosensitizer, light, and oxygen. The resulting release of reactive oxygen species causes tumor necrosis. It has been used as an endoscopic technique for the palliation of lung cancer. Porfimer sodium (Photofrin) is the only Food and Drug Administration-approved photosensitizer for PDT but has limited depth of penetration and produces prolonged skin phototoxicity. Multiple newer photosensitizers are in development, including PS785. The effectiveness of PS785 was compared with porfimer sodium in the treatment of human lung cancer xenografts in mice. METHODS Human non-small cell lung cancer (NSCLC) xenografts were established in severe combined immunodeficient mice and grouped into small (3-5 mm) and large tumors (6-10 mm). PS785 or porfimer sodium was administered intravenously, and PDT was executed at 24, 48, or 72 h after injection. The primary endpoint was the delay of tumor regrowth after PDT. RESULTS Porfimer sodium and PS785 produced statistically similar delays of tumor regrowth after PDT when small tumors were treated at 24 and 48 h. At 72 h, PS785 performed better in small tumors. However, for large tumors, PS785 produced no delay in tumor regrowth at any time point. CONCLUSIONS PS785 and porfimer sodium were able to effectively treat NSCLC to a depth of ≤5 mm. However, porfimer sodium was more effective in treating NSCLC tumors to a depth of 6-10 mm. Further efforts are required to produce photosensitizers that will facilitate PDT of larger tumors.
Collapse
Affiliation(s)
- Chukwumere Nwogu
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York; University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.
| | - Austin Kloc
- University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Farukh Durrani
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ravindra Pandey
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
31
|
Rizzi V, Gubitosa J, Fini P, Fraix A, Sortino S, Agostiano A, Cosma P. Development of Spirulina sea-weed raw extract/polyamidoamine hydrogel system as novel platform in photodynamic therapy: Photostability and photoactivity of chlorophyll a. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111593. [PMID: 33321637 DOI: 10.1016/j.msec.2020.111593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
The aim of this paper is to present and characterize Polyamidoamine-based hydrogels (PAA) as scaffolds to host photoactive Chlorophyll a (Chl a) from Spirulina (Arthrospira platensis) sea-weed Extract (SE), for potential applications in Photodynamic Therapy (PDT). The pigment extracted from SE was blended inside PAA without further purification, according to Green Chemistry principles. A comprehensive investigation of this hybrid platform, PAA/SE-based, was thus performed in our laboratory and, by means of Visible absorption and emission spectroscopies, the Chl a features, stability and photoactivity were studied. The obtained results evidenced the presence of two main Chl a forms, monomeric and dimeric, interacting with hydrogel polyamidoamines network. To better understand the nature of this interaction, the spectroscopic investigation of this system was performed both before and after the solidification of the hydrogel, that occurred at least in 24 h. Then, focusing the attention on solid scaffold, the 1Chl a⁎ fluorescence lifetime and FTIR-ATR analyses of PAA/SE were carried out, confirming the findings. The swelling and Point Zero Charge (PZC) measurements of solid PAA and PAA/SE were additionally performed to investigate the hydrogel behavior in water. Chl a molecules blended in PAA were (photo) stable and photoactive, and this latter feature was demonstrated showing that the pigment induced, when swelled in water and under irradiation, the formation of singlet oxygen (1O2), measured by direct and indirect methods.
Collapse
Affiliation(s)
- Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4, 70126 Bari, Italy
| | - Jennifer Gubitosa
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Angela Agostiano
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4, 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4, 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
32
|
Li MY, Gao YH, Zhang JH, Mi L, Zhu XX, Wang F, Zhou XP, Yan YJ, Chen ZL. Synthesis and evaluation of novel fluorinated hematoporphyrin ether derivatives for photodynamic therapy. Bioorg Chem 2021; 107:104528. [PMID: 33357982 DOI: 10.1016/j.bioorg.2020.104528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
A photosensitizer with high phototoxicity, suitable amphipathy and low dark toxicity could play a pivotal role in photodynamic therapy (PDT). In this study, a facile and versatile approach was adopted to synthesize a series of novel fluorinated hematoporphyrin ether derivatives (I1-I5 and II1-II4), and the photodynamic activities of these compounds were studied. Compared to hematoporphyrin monomethyl ether (HMME), all PSs showed preferable photodynamic activity against A549 lung tumor cells. The longest visible absorption wavelength of these compounds was approximately 622 nm. Among them, II3 revealed the highest singlet oxygen yield (0.0957 min-1), the strongest phototoxicity (IC50 = 1.24 μM), the lowest dark toxicity in vitro, and exhibited excellent anti-tumor effects in vivo. So compound II3 could act as new drug candidate for photodynamic therapy.
Collapse
Affiliation(s)
- Man-Yi Li
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Ying-Hua Gao
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Jia-Hui Zhang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Le Mi
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xue-Xue Zhu
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Feng Wang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xing-Ping Zhou
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 200433, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
33
|
Qin LQ, Liang CJ, Zhou Z, Qin QP, Wei ZZ, Tan MX, Liang H. Mitochondria-localizing curcumin-cryptolepine Zn(II) complexes and their antitumor activity. Bioorg Med Chem 2021; 30:115948. [PMID: 33360578 DOI: 10.1016/j.bmc.2020.115948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/08/2023]
Abstract
Many metal complexes are potent candidates as mitochondrial-targeting agents. In this study, four novel Zn(II) complexes, [Zn(BPQA)Cl2] (Zn1), [Zn(BPQA)(Curc)]Cl (Zn2), [Zn(PQA)Cl2] (Zn3), and [Zn(PQA)(Curc)]Cl (Zn4), containing N,N-bis(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (BPQA), N-(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (PQA), and curcumin (H-Curc) were synthesized. An MTT assay showed that Zn1-Zn4 had strong anticancer activities against SK-OV-3/DDP and T-24 tumor cells with IC50 values of 0.03-6.19 μM. Importantly, Zn1 and Zn2 displayed low toxicities against normal HL-7702 cells. Mechanism experiments demonstrated that probe Zn2 showed appreciable fluorescence in the red region of the spectrum, and substantial accumulation of Zn2 occurred in the mitochondria after treatment, indicating increases in Ca2+ and reactive oxygen species levels, loss of the mitochondrial membrane potential, and consequent induction of mitochondrial dysfunction at low concentrations. In addition, the probe Zn2 effectively (50.7%) inhibited the growth of T-24 bladder tumor cells in vivo. The probe Zn2 shows potential for use in cancer therapy while retaining the H-Curc as an imaging probe.
Collapse
Affiliation(s)
- Li-Qin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Zhen Zhou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Zu-Zhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
34
|
Oliveira H, Correia P, Pereira AR, Araújo P, Mateus N, de Freitas V, Oliveira J, Fernandes I. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. Int J Mol Sci 2020; 21:E7464. [PMID: 33050431 PMCID: PMC7589295 DOI: 10.3390/ijms21207464] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their physical and chemical characteristics, anthocyanins are amongst the most versatile groups of natural compounds. Such unique signature makes these compounds a focus in several different areas of research. Anthocyanins have well been reported as bioactive compounds in a myriad of health disorders such as cardiovascular diseases, cancer, and obesity, among others, due to their anti-inflammatory, antioxidant, anti-diabetic, anti-bacterial, and anti-proliferative capacities. Such a vast number of action mechanisms may be also due to the number of structurally different anthocyanins plus their related derivatives. In this review, we highlight the recent advances on the potential use of anthocyanins in biological systems with particular focus on their photoprotective properties. Topics such as skin aging and eye degenerative diseases, highly influenced by light, and the action of anthocyanins against such damages will be discussed. Photodynamic Therapy and the potential role of anthocyanins as novel photosensitizers will be also a central theme of this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joana Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (P.C.); (A.R.P.); (P.A.); (N.M.); (V.d.F.)
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (P.C.); (A.R.P.); (P.A.); (N.M.); (V.d.F.)
| |
Collapse
|
35
|
Synthesis of Fluorinated Chlorophylls‐
a
and Their Bio/Physico‐Chemical Properties. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Zhang XJ, Han GY, Guo CY, Ma ZQ, Lin MY, Wang Y, Miao ZY, Zhang WN, Sheng CQ, Yao JZ. Design, synthesis and biological evaluation of novel 3 1-hexyloxy chlorin e 6-based 15 2- or 13 1-amino acid derivatives as potent photosensitizers for photodynamic therapy. Eur J Med Chem 2020; 207:112715. [PMID: 32846322 DOI: 10.1016/j.ejmech.2020.112715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to improve the biological effectiveness and pharmacokinetic properties of chlorin e6, a second-generation photosensitizer (PS), for tumor photodynamic therapy (PDT). Herein, the novel 31-hexyloxy chlorin e6-based 152- or 131-amino acid derivatives 3a, 3b, 3c and 8 were synthesized and their photophysical properties and in vitro bioactivities such as phototoxicity against A549, HeLa and melanoma B16-F10 cells, reactive oxygen species (ROS) production and subcellular localization were evaluated. In addition, preferred target compounds were also investigated for their in vivo pharmacokinetic in SD rats and in vivo antitumor efficacies in C57BL/6 mice bearing melanoma B16-F10 cells. Apparently, simultaneous introduction of amino acid residue and n-hexyloxy chain in chlorin e6 made a significant improvement in photophysical properties, ROS production, in vitro and in vivo PDT efficacy. Encouragingly, all target compounds showed higher in vitro phototoxicity than Talaporfin, and that 3c (152-Lys) exhibited strongest phototoxicity and highest dark toxicity/phototoxicity ratio, followed by 8 (131-Asp), 3a (152-Asp) and 3b (152-Glu). Moreover, in vivo PDT antitumor efficacy of 3a, 3c and 8 was all better than that of Talaporfin, and that both 3c and 8 had stronger PDT antitumor efficiency than 3a. The overall results suggested that these novel 31-hexyloxy chlorin e6-based 152- or 131-amino acid derivatives, especially 3c and 8, might be potential antitumor candidate drugs for clinical treatment of melanoma by PDT.
Collapse
Affiliation(s)
- Xing-Jie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Gui-Yan Han
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Chang-Yong Guo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Zhi-Qiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mei-Yu Lin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yuan Wang
- School of Pharmacy, Ningxia Medical University, Ningxia, 750004, China
| | - Zhen-Yuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wan-Nian Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Chun-Quan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jian-Zhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; School of Pharmacy, Ningxia Medical University, Ningxia, 750004, China.
| |
Collapse
|