1
|
Kurşun Aktar BS, Sıcak Y, Bakırdöven A, Yılmaz GT, Yılmaz Ö, Karaküçük-İyidoğan A, Taşdemir D, Sağlam E, Oruç-Emre EE. Discovery of Novel Pyrrolidine-Based Chalcones as Dual Inhibitors of α-Amylase and α-Glucosidase: Synthesis, Molecular Docking, ADMET Profiles, and Pharmacological Screening. ACS OMEGA 2025; 10:9368-9380. [PMID: 40092796 PMCID: PMC11904715 DOI: 10.1021/acsomega.4c10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
A series of chalcones containing a pyrrolidine moiety were synthesized to examine their in vitro α-amylase and α-glucosidase inhibitory activities, for the treatment of Diabetes mellitus, which is one of the most dangerous and rapidly increasing disorders of today. Compound 3 exhibited an excellent dual inhibitory effect with an IC50 value of 14.61 ± 0.12 μM against α-amylase, and with an IC50: 25.38 ± 2.09 μM against α-glucosidase. The in vitro cytotoxic effects of all compounds against nonsmall lung cancer (A549) and bronchial epithelial normal (BEAS-2B) cell lines were also evaluated. Compound 5 (IC50: 82.20 μM) and compound 8 (IC50: 59.96 μM) showed better cytotoxic activity than cisplatin against A549 (IC50: 84.39 μM) cells. Furthermore, these compounds had no harmful effect on healthy BEAS-2B cells at the determined IC50 values. Moreover, the molecular docking and molecular dynamics simulation analysis revealed that all synthesized compounds exhibited stronger binding affinities toward α-glucosidase and α-amylase compared to the positive control acarbose.
Collapse
Affiliation(s)
- Bedriye Seda Kurşun Aktar
- Department
of Hair Care and Beauty Services, Yeşilyurt Vocational School, Malatya Turgut Özal University, Malatya 44090, Türkiye
| | - Yusuf Sıcak
- Department
of Medicinal and Aromatic Plants, Köyceğiz Vocational
School, Mugla Sitki Kocman University, Köyceğiz, Muğla 48000, Türkiye
| | - Abdulkadir Bakırdöven
- Department
of Hair Care and Beauty Services, Yeşilyurt Vocational School, Malatya Turgut Özal University, Malatya 44090, Türkiye
| | - Gizem Tatar Yılmaz
- Department
of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Türkiye
- Department
of Bioinformatics, Institute of Health Sciences, Karadeniz Technical University, Trabzon 61080, Türkiye
- Yılmaz
Bilişim R&D Consulting Software Engineering and Services
Trade Limited Company, Trabzon 61081, Türkiye
| | - Özlem Yılmaz
- Department
of Chemistry, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat 60250, Türkiye
| | | | - Demet Taşdemir
- Department
of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep 27410, Türkiye
- Respiratory
Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep 27410, Türkiye
| | - Ebru Sağlam
- Respiratory
Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep 27410, Türkiye
| | - Emine Elçin Oruç-Emre
- Department
of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep 27410, Türkiye
| |
Collapse
|
2
|
Kongphet M, Hang HTX, Ngo TT, Le TKD, Chavasiri W. Structural modification of tanshinone IIA and their α-glucosidase inhibitory activity. Bioorg Med Chem Lett 2024; 105:129736. [PMID: 38599295 DOI: 10.1016/j.bmcl.2024.129736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
α-Glucosidase is one of the therapeutic approaches for treating type 2 diabetes mellitus. Almost 95 % of diabetes patients worldwide have been diagnosed with type 2 diabetes, resulting in 1.5 million fatalities each year. Newly synthesized oxazole-based tanshinone IIA derivatives (1a-n) were designed and evaluated for their inhibitory activity against α-glucosidase enzyme. Eight compounds (1a-d, 1f-g, 1j, and 1m) demonstrated excellent inhibition with IC50 values ranging from 0.73 ± 0.11 to 9.46 ± 0.57 μM as compared to tanshinone IIA (IC50 = 11.39 ± 0.77 μM) and standard acarbose (IC50 = 100.00 ± 0.95 μM). Among this series, 1j bearing two hydroxyls group over the phenyl ring was identified as the most potent α-glucosidase inhibitor with IC50 value of 0.73 ± 0.11 μM. Molecular docking simulations were done for the most active compound to identify important binding modes responsible for inhibition activity of α-glucosidase. In addition, the kinetic study was also performed to understand the mode of inhibition.
Collapse
Affiliation(s)
- Mutita Kongphet
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Hoa Tai Xuan Hang
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Thanh The Ngo
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Thi-Kim-Dung Le
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Singh A, Singh K, Kaur K, Sharma A, Mohana P, Prajapati J, Kaur U, Goswami D, Arora S, Chadha R, Bedi PMS. Discovery of triazole tethered thymol/carvacrol-coumarin hybrids as new class of α-glucosidase inhibitors with potent in vivo antihyperglycemic activities. Eur J Med Chem 2024; 263:115948. [PMID: 37984299 DOI: 10.1016/j.ejmech.2023.115948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/04/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Keeping in view the inhibitory potential of monoterpenes thymol and carvacrol as well as coumarin nucleus against α-glucosidase, novel series of thymol/carvacrol-coumarin hybrids was designed, synthesized and evaluated for α-glucosidase inhibitory potential. Among the series of hybrid molecules, AS14 with IC50 value of 4.32 ± 0.11 μM was selective α-glucosidase inhibitor over α-amylase (IC50 = 37.36 ± 0.84 μM). AS14 was non-toxic toward mouse normal fibroblast cells (L929: IC50 > 100 μM). Molecular docking and dynamic simulation studies confirmed desired interactions of AS14 with α-glucosidase responsible for the inhibition of its catalysis capabilities. Acute oral toxicity study confirmed AS14 as safer molecule for in vivo pharmacological investigations with LD50 value of 300 mg/kg. AS14 also showed acute hypoglycaemic effects [reduction in blood glucose levels at 1 h of administration in maltose loading test (at 10 and 20 mg/kg by 62.65 % and 70.12 %) and sucrose loading test (at 10 and 20 mg/kg by 59.65 % and 60.23 %), respectively] as well as long term (28 days) fasting blood glucose reduction (At day 28: 10 mg/kg = 54.69 % and 20 mg/kg = 62.23 % reduction in fasting blood glucose levels) capabilities in streptozotocin induced diabetic rats. Overall study represents, AS14 as potential α-glucosidase inhibitor with adequate efficacy and safety profile and act as an effective hit lead for the further development of potent and safer α-glucosidase inhibitors for the management of postprandial hyperglycemia in diabetic patients.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jignesh Prajapati
- Department of Microbiology & Biotechnology, University School of Sciences, Gujrat University, Ahmedabad, Gujrat, 380009, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujrat University, Ahmedabad, Gujrat, 380009, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh, 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India; Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
4
|
Ganesh BH, Raj AG, Aruchamy B, Nanjan P, Drago C, Ramani P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2024; 19:e202300447. [PMID: 37926686 DOI: 10.1002/cmdc.202300447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
An overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles. The key topics are the biological characteristics, pharmacological behavior, and functional alterations displayed by pyrrole derivatives. It also details how pyrroles are used to treat infectious diseases. It describes infectious disorders resistant to standard treatments and discusses the function of compounds containing pyrroles in combating infectious diseases. Furthermore, the review covers the uses of pyrrole derivatives in treating non-infectious diseases and resistance mechanisms in non-infectious illnesses like cancer, diabetes, and Alzheimer's and Parkinson's diseases. The important discoveries and probable avenues for pyrrole research are finally summarized, along with their significance for medicinal chemists and drug development. A reference from the last two decades is included in this review.
Collapse
Affiliation(s)
- Bharathi Hassan Ganesh
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Anirudh G Raj
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Pandurangan Nanjan
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Carmelo Drago
- Institute of Biomolecular Chemistry CNR, via Paolo Gaifami 18, 95126, Catania, Italy
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
5
|
Kumar H, Dhameja M, Kurella S, Uma A, Gupta P. Synthesis of 1,2,3-triazole-1,3,4-thiadiazole hybrids as novel α-glucosidase inhibitors by in situ azidation/click assembly. Arch Pharm (Weinheim) 2023:e2300145. [PMID: 37236165 DOI: 10.1002/ardp.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
α-Glucosidase inhibition is widely used in the oral management of diabetes mellitus (DM), a disease characterized by high blood sugar levels (hyperglycemia) and abnormal carbohydrate metabolism. In this respect, a series of 1,2,3-triazole-1,3,4-thiadiazole hybrids 7a-j were synthesized, inspired by a copper-catalyzed one-pot azidation/click assembly approach. All the synthesized hybrids were screened for inhibition of the α-glucosidase enzyme, displaying IC50 values ranging from 63.35 ± 0.72 to 613.57 ± 1.98 μM, as compared to acarbose (reference) with IC50 of 844.81 ± 0.53 μM. The hybrids 7h and 7e with 3-nitro and 4-methoxy substituents at the phenyl ring of the thiadiazole moiety were the best active hybrids of this series with IC50 values of 63.35 ± 0.72 μM, and 67.61 ± 0.64 μM, respectively. Enzyme kinetics analysis of these compounds revealed a mixed mode of inhibition. Moreover, molecular docking studies were also performed to gain insights into the structure-activity-relationships of the potent compounds and their corresponding analogs.
Collapse
Affiliation(s)
- Hariom Kumar
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Manoj Dhameja
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sirisha Kurella
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Adepally Uma
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Preeti Gupta
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Dhameja M, Kumar H, Kurella S, Singh R, Uma A, Gupta P. Inhibition of α-glucosidase enzyme by 'click'-inspired pharmacophore framework 1,3,4-thiadiazole-1,2,3-triazole hybrids. Future Med Chem 2023; 15:345-363. [PMID: 36942781 DOI: 10.4155/fmc-2022-0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Aim: α-Glucosidase inhibitors are important oral antidiabetic drugs that are used alone or in combination therapy. Materials & methods: In this regard, 1,3,4-thiadiazoles-1,2,3-triazoles were designed, synthesized and evaluated for α-glucosidase enzyme inhibition. Results: The applied synthesis protocol involved a 'click' reaction between a novel alkyne derived from a 1,3,4-thiadiazole derivative and phenylacetamide azides. The hybrid (9n) bearing 2-methyl and 4-nitro substituents was the best inhibitor with an IC50 value of 31.91 μM (acarbose IC50 = 844.81 μM). The blind molecular docking study of the best derivative (9n) showed that it interacted with the allosteric site's amino acid residues of α-glucosidase. Conclusion: 'Click'-inspired potential α-glucosidase inhibitors (1,3,4-thiadiazole-1,2,3-triazole hybrids) were identified and structure-activity relationship and kinetic and molecular docking studies accomplished.
Collapse
Affiliation(s)
- Manoj Dhameja
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Hariom Kumar
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Sirisha Kurella
- Institute of Science & Technology, Jawaharlal Nehru Technical University, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Ravindra Singh
- Department of Chemistry, Maharani Shri Jaya Government Post-Graduate College, Bharatpur, Rajasthan, 321001, India
| | - Adepally Uma
- Institute of Science & Technology, Jawaharlal Nehru Technical University, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Preeti Gupta
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
7
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
8
|
Kumar H, Dhameja M, Kurella S, Uma A, Gupta P. Synthesis, in-vitro α-glucosidase inhibition and molecular docking studies of 1,3,4-thiadiazole-5,6-diphenyl-1,2,4-triazine hybrids: Potential leads in the search of new antidiabetic drugs. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Mehmood R, Mughal EU, Elkaeed EB, Obaid RJ, Nazir Y, Al-Ghulikah HA, Naeem N, Al-Rooqi MM, Ahmed SA, Shah SWA, Sadiq A. Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as α-Glucosidase Inhibitors: In Vitro, In Vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies. ACS OMEGA 2022; 7:30215-30232. [PMID: 36061741 PMCID: PMC9435035 DOI: 10.1021/acsomega.2c03328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
In the present study, a series of 2,3-dihydro-1,5-benzothiazepine derivatives 1B-14B has been synthesized sand characterized by various spectroscopic techniques. The enzyme inhibitory activities of the target analogues were assessed using in vitro and in vivo mechanism-based assays. The tested compounds 1B-14B exhibited in vitro inhibitory potential against α-glucosidase with IC50 = 2.62 ± 0.16 to 10.11 ± 0.32 μM as compared to the standard drug acarbose (IC50 = 37.38 ± 1.37 μM). Kinetic studies of the most active derivatives 2B and 3B illustrated competitive inhibitions. Based on the α-glucosidase inhibitory effect, the compounds 2B, 3B, 6B, 7B, 12B, 13B, and 14B were chosen in vivo for further evaluation of antidiabetic activity in streptozotocin-induced diabetic Wistar rats. All these evaluated compounds demonstrated significant antidiabetic activity and were found to be nontoxic in nature. Moreover, the molecular docking study was performed to elucidate the binding interactions of most active analogues with the various sites of the α-glucosidase enzyme (PDB ID 3AJ7). Additionally, quantitative structure-activity relationship (QSAR) studies were performed based on the α-glucosidase inhibitory assay. The value of correlation coefficient (r) 0.9553 shows that there was a good correlation between the 1B-14B structures and selected properties. There is a correlation between the experimental and theoretical results. Thus, these novel compounds could serve as potential candidates to become leads for the development of new drugs provoking an anti-hyperglycemic effect.
Collapse
Affiliation(s)
- Rabia Mehmood
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | | | - Eslam B. Elkaeed
- Department
of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Hanan A. Al-Ghulikah
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Munirah M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | - Syed Wadood Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa 18800, Pakistan
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| |
Collapse
|
11
|
Dhameja M, Kumar H, Kurella S, Uma A, Gupta P. Flavone-1,2,3-triazole derivatives as potential α-glucosidase inhibitors: Synthesis, enzyme inhibition, kinetic analysis and molecular docking study. Bioorg Chem 2022; 127:106028. [PMID: 35868105 DOI: 10.1016/j.bioorg.2022.106028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
α-Glucosidase inhibitors are considered prime therapeutics in the management of type-2 diabetes and are preferred due to their localized action ushered by limited side effects. In this regard, nineteen new flavone-1,2,3-triazole derivatives have been designed and synthesized via utilizing an efficient click reaction protocol, and screened for the inhibition of the α-glucosidase enzyme. The reaction conditions were mild, good yielding and required easy work up. All the synthesized flavone-triazole derivatives were found more active against the yeast α-glucosidase with IC50 values ranging from 24.37 ± 0.55-168.44 ± 0.77 μ M as compared to standard inhibitor acarbose (IC50 = 844.81 ± 0.53 μM). The derivatives with 2,5‑dichloro 9k (IC50 = 24.37 ± 0.55 μM) and 4‑chloro 9d (IC50 = 24.77 ± 0.30 μM) substituent bearing an amide linkage were the most active. In the kinetic study of most active derivatives 9k and 9d, they were found to be mixed and uncompetitive inhibitors, respectively. In molecular docking studies, blind docking of the most active compounds was accomplished to find the interactions between the compounds and α-glucosidase that further confirms the mixed or uncompetitive nature of the inhibitors.
Collapse
Affiliation(s)
- Manoj Dhameja
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Hariom Kumar
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Sirisha Kurella
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Adepally Uma
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Preeti Gupta
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
12
|
Moghadam ES, Mireskandari K, Abdel-Jalil R, Amini M. An approach to pharmacological targets of pyrrole family from a medicinal chemistry viewpoint. Mini Rev Med Chem 2022; 22:2486-2561. [PMID: 35339175 DOI: 10.2174/1389557522666220325150531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biologic targets for pyrrole containing compounds easily. This review explains around seventy different biologic targets for pyrrole based derivatives, so, it is helpful for medicinal chemists in design and development novel bioactive compounds for different diseases. This review presents an extensive meaningful structure activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Katayoon Mireskandari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Bhat AA, Tandon N, Tandon R. Pyrrolidine Derivatives as Anti‐diabetic Agents: Current Status and Future Prospects. ChemistrySelect 2022. [DOI: 10.1002/slct.202103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Nitin Tandon
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Runjhun Tandon
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| |
Collapse
|
14
|
Farwa U, Raza MA. Heterocyclic compounds as a magic bullet for diabetes mellitus: a review. RSC Adv 2022; 12:22951-22973. [PMID: 36105949 PMCID: PMC9379558 DOI: 10.1039/d2ra02697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world. From the last two decades, the use of synthetic agents has risen due to their major involvement in curing of chronic diseases including DM. The core skeleton of drugs has been studied such as thiazolidinone, azole, chalcone, pyrrole and pyrimidine along with their derivatives. Diabetics assays have been performed in consideration of different enzymes such as α-glycosidase, α-amylase, and α-galactosidase against acarbose standard drug. The studied moieties were depicted in both models: in vivo as well as in vitro. Molecular docking of the studied compounds as antidiabetic molecules was performed with the help of Auto Dock and molecular operating environment (MOE) software. Amino acid residues Asp349, Arg312, Arg439, Asn241, Val303, Glu304, Phe158, His103, Lys422 and Thr207 that are present on the active sites of diabetic related enzymes showed interactions with ligand molecules. In this review data were organized for the synthesis of heterocyclic compounds through various routes along with their antidiabetic potential, and further studies such as pharmacokinetic and toxicology studies should be executed before going for clinical trials. Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world.![]()
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | |
Collapse
|
15
|
Floris S, Fais A, Medda R, Pintus F, Piras A, Kumar A, Kuś PM, Westermark GT, Era B. Washingtonia filifera seed extracts inhibit the islet amyloid polypeptide fibrils formations and α-amylase and α-glucosidase activity. J Enzyme Inhib Med Chem 2021; 36:517-524. [PMID: 33494628 PMCID: PMC7850368 DOI: 10.1080/14756366.2021.1874945] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 01/13/2023] Open
Abstract
Washingtonia filifera seeds have revealed to possess antioxidant properties, butyrylcholinesterase and xanthine oxidase inhibition activities. The literature has indicated a relationship between Alzheimer's disease (AD) and type-2 diabetes (T2D). Keeping this in mind, we have now evaluated the inhibitory properties of W. filifera seed extracts on α-amylase, α-glucosidase enzyme activity and the Islet Amyloid Polypeptide (IAPP) fibrils formation. Three extracts from seeds of W. filifera were evaluated for their enzyme inhibitory effect and IC50 values were calculated for all the extracts. The inhibition mode was investigated by Lineweaver-Burk plot analysis and the inhibition of IAPP aggregate formation was monitored. W. filifera methanol seed extract appears as the most potent inhibitor of α-amylase, α-glucosidase, and for the IAPP fibril formation. Current findings indicate new potential of this extract that could be used for the identification or development of novel potential agents for T2D and AD.
Collapse
Affiliation(s)
- Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Piotr Marek Kuś
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Wrocław, Poland
| | | | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Azimi F, Azizian H, Najafi M, Khodarahmi G, Saghaei L, Hassanzadeh M, Ghasemi JB, Faramarzi MA, Larijani B, Hassanzadeh F, Mahdavi M. Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole-benzofuran hybrids as new α-glucosidase inhibitor. Sci Rep 2021; 11:20776. [PMID: 34675367 PMCID: PMC8531348 DOI: 10.1038/s41598-021-99899-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
In this work, new derivatives of biphenyl pyrazole-benzofuran hybrids were designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2-164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 μM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features, used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Motahareh Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Azimi F, Azizian H, Najafi M, Hassanzadeh F, Sadeghi-Aliabadi H, Ghasemi JB, Ali Faramarzi M, Mojtabavi S, Larijani B, Saghaei L, Mahdavi M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg Chem 2021; 114:105127. [PMID: 34246971 DOI: 10.1016/j.bioorg.2021.105127] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023]
Abstract
In this study, a new series of quinazolinone-pyrazole hybrids were designed, synthesized and screened for their α-glucosidase inhibitory activity. The results of the in vitro screening indicated that all the molecular hybrids exhibited more inhibitory activity (IC50 values ranging from 60.5 ± 0.3 µM-186.6 ± 20 μM) in comparison to standard acarbose (IC50 = 750.0 ± 10.0 µM). Limited structure-activity relationship suggested that the variation in the inhibitory activities of the compounds affected by different substitutions on phenyl rings of diphenyl pyrazole moiety. The enzyme kinetic studies of the most potent compound 9i revealed that it inhibited α-glucosidase in a competitive mode with a Ki of 56 μM. Molecular docking study was performed to predict the putative binding interaction. As expected, all pharmacophoric moieties used in the initial structure design playing a pivotal role in the interaction with the binding site of the enzyme. In addition, by performing molecular dynamic investigation and MM-GBSA calculation, we investigated the difference in structural perturbation and dynamic behavior that is observed over α-glycosidase in complex with the most active compound and acarbose relative to unbound α-glycosidase enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Zhu Y, Zhao J, Luo L, Gao Y, Bao H, Li P, Zhang H. Research progress of indole compounds with potential antidiabetic activity. Eur J Med Chem 2021; 223:113665. [PMID: 34192642 DOI: 10.1016/j.ejmech.2021.113665] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 01/07/2023]
Abstract
New types of antidiabetic agents are continually needed with diabetes becoming the epidemic in the world. Indole alkaloids play an important role in natural products owing to their variable structures and versatile biological activities like anticonvulsant, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, which are a promising source of novel antidiabetic drugs discovery. The synthesized indole derivatives possess similar properties to natural indole alkaloids. In the last two decades, more and more indole derivatives have been designed and synthesized for searching their bioactivities. This present review describes comprehensive structures of indole compounds with the potential antidiabetic activity including natural indole alkaloids and the synthetic indole derivatives based on the structure classification, summarizes their approaches isolated from natural sources or by synthetic methods, and discusses the antidiabetic effects and the mechanisms of action. Furthermore, this review also provides briefly synthetic procedures of some important indole derivatives.
Collapse
Affiliation(s)
- Yuqian Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinran Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Longbiao Luo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - He Bao
- Department of Pharmacy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
19
|
Zhang D, Liu X, Yang Z, Shi J, Zhao L, Battino M, Xiao J, Deng X, Wu Y, Wang C, Shi B, Zou X. Interactions between Phenols and Alkylamides of Sichuan Pepper ( Zanthoxylum Genus) in α-Glucosidase Inhibition: A Structural Mechanism Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5583-5598. [PMID: 33977724 DOI: 10.1021/acs.jafc.1c00741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phenols and alkylamides in 26 varieties of Zanthoxylum pericarps (ZP) were comparatively identified, and the contribution of these key components to the inhibition of in vitro α-glucosidase (α-Glu) was confirmed using principal component analysis (PCA) and ingredient recombination models. Additionally, spectrophotometric assays, nuclear magnetic resonance (NMR), and molecular docking (MD) were employed to characterize the interactions among key components in ZP when exposed to α-Glu. Four phenols and hydroxy-α-sanshool (α-SOH), which were recognized as main ingredients, presented an antagonistic effect in the inhibition of α-Glu. 1H NMR demonstrated chemical shifts of certain hydrogens in the B phenolic ring and tetraenyl group, indicating a possible p-π conjugation between phenols and α-SOH. In addition, using MD analysis, the phenol-binding sites were observed to be negatively affected when α-SOH initially interacted with α-Glu. The combined results of the NMR and MD clarified the structural mechanism behind phenol/α-SOH antagonistic behavior in α-Glu inhibition.
Collapse
Affiliation(s)
- Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Hengshun Group Co., Ltd., Zhenjiang 212000, China
| | - Xuhao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhikun Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Zhao
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing 102200, China
| | - Maurizio Battino
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xinyue Deng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanling Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bolin Shi
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing 102200, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Liu JH, Zhang RR, Peng XR, Ding ZT, Qiu MH. Lepipyrrolins A-B, two new dimeric pyrrole 2-carbaldehyde alkaloids from the tubers of Lepidium meyenii. Bioorg Chem 2021; 112:104834. [PMID: 33813309 DOI: 10.1016/j.bioorg.2021.104834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Nine new pyrrole alkaloids, including two undescribed dimeric pyrrole 2‑carbaldehyde alkaloids, lepipyrrolins A-B (1-2), seven pyrrole-alkaloid derivatives, macapyrrolins D-J (3-9), along with three known ones (10-12) were isolated from the rhizomes of Lepidium meyenii. Their structures and absolute configurations were demonstrated by extensive spectroscopic data (1D, 2D NMR, HRESIMS), and calculated electronic circular dichroism (ECD) experiment. Compounds 1, 3-12 were tested for their nitric oxide inhibitory effects. Furthermore, compound 1 was evaluated for its cytotoxic activity against five human tumor cell lines (HL-60, SMMC-7221, A549, MCF-7, and SW480) in vitro, and displayed selective cytotoxicity against SMMC-7721 with IC50 value of 16.78 ± 0.49 μM.
Collapse
Affiliation(s)
- Jun-Hong Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ran-Ran Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Zhong-Tao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| |
Collapse
|
21
|
Delogu GL, Era B, Floris S, Medda R, Sogos V, Pintus F, Gatto G, Kumar A, Westermark GT, Fais A. A new biological prospective for the 2-phenylbenzofurans as inhibitors of α-glucosidase and of the islet amyloid polypeptide formation. Int J Biol Macromol 2020; 169:428-435. [PMID: 33347933 DOI: 10.1016/j.ijbiomac.2020.12.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
In this study, we have investigated a series of hydroxylated 2-phenylbenzofurans compounds for their inhibitory activity against α-amylase and α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes seem to have an important role as antidiabetic drugs. Diabetes mellitus is a wide-spread metabolic disease characterized by elevated levels of blood glucose. The most common is type 2 diabetes, which can lead to severe complications. Since the aggregates of islet amyloid polypeptide (IAPP) are common in diabetic patients, the effect of compounds to inhibit amyloid fibril formation was also determined. All the compounds assayed showed to be more active against α-glucosidase. Compound 16 showed the lowest IC50 value of the series, and it is found to be 167 times more active than acarbose, the reference compound. The enzymatic activity assays showed that compound 16 acts as a mixed-type inhibitor of α-glucosidase. Furthermore, compound 16 displayed effective inhibition of IAPP aggregation and it manifested no significant cytotoxicity. To predict the binding of compound 16 to IAPP and α-glucosidase protein complexes, molecular docking studies were performed. Altogether, our results support that the 2-phenylbenzofuran derivatives could represent a promising candidate for developing molecules able to modulate multiple targets involved in diabetes mellitus disorder.
Collapse
Affiliation(s)
- Giovanna Lucia Delogu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, Cagliari 09123, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, Cagliari 09123, Italy
| | | | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy.
| |
Collapse
|