1
|
Hu Q, Li P, Cao W, Li J, Wang Z, Wang T, Xie X. Assembly of DNA Networks on the Cell Membrane Enables Confined Detection of MMP-9 Secretion and Evaluation of Drug Efficacy. Anal Chem 2025; 97:11745-11753. [PMID: 40415371 DOI: 10.1021/acs.analchem.5c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Proteases secreted by tumor cells have been employed as potential biomarkers for the early assessment of tumor metastasis risk. However, in situ monitoring of their secretion at the single-cell level remains a challenge due to their low abundance and diffusion into complex environments. Despite significant advancements in utilizing DNA as a versatile scaffold for constructing dynamic sensing systems due to its programmability and design flexibility, the spatial control of molecular sensing and imaging functions within living cells is particularly challenging. Herein, we developed a DNA network (termed cAME) by introducing acrylamide copolymers combined with aptamer technology to enable a confined detection of single-cell matrix metalloproteinase-9 (MMP-9) secretion for the assessment of tumor cell invasiveness and drug efficacy evaluation. The cAME was established from a combination of a detecting DNA copolymer (MDDC) containing an MMP-9 responsive aptamer sensor, an encapsulating DNA copolymer (EDC), and a cell membrane anchoring module (chol-A). By monitoring changes in fluorescence signals, real-time detection of MMP-9 activity in individual cells could be achieved. Using various cancer cell lines as models, the feasibility of the proposed confined detection strategy in assessing the heterogeneity of MMP-9 secretion among different subtypes of breast cancer cells was validated. Furthermore, by employing two drugs as models, the application value of the proposed confined detection strategy in rapid and sensitive evaluation of drug efficacy was demonstrated. This strategy contributed to the assessment of tumor metastasis risk while also providing new insights for evaluating the efficacy of antitumor drugs.
Collapse
Affiliation(s)
- Qi Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Peishan Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Wenkai Cao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Jiaqi Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Zhaojia Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Tianze Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| |
Collapse
|
2
|
Xue Z, Li N, Du K, Shu J, Huang Z, Gao Z, Xie X, Li Q, Lu Y. Inhibiting synovial inflammation and promoting cartilage repair in rheumatoid arthritis using a matrix metalloproteinase-binding hydrogel. Mater Today Bio 2025; 32:101792. [PMID: 40343163 PMCID: PMC12059346 DOI: 10.1016/j.mtbio.2025.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Originating from synovial tissue, matrix metalloproteinase-9 (MMP-9) is a key inflammatory factor that promotes the formation and invasion of synovial pannus, leading to cartilage matrix destruction in rheumatoid arthritis (RA). However, clinical trials of systemic use of MMP-9 inhibitors are not successful due to severe side effects. Thus, locally inhibiting MMP-9 may be an alternative in the treatment of RA. Herein, we developed MMP-9 binding peptide-functionalized copper sulfide nanoparticles (CuS-T NPs) and delivered them with light crosslinking chondroitin sulfate methacrylate (ChSMA) hydrogel. We found that the CuS NP-doped hydrogels could inhibit synovial inflammation. Specifically, the CuS-T/ChSMA hydrogel could rapidly bind to MMP-9, thereby inhibiting not only the invasion of RA fibroblast-like synoviocytes but also the polarization of inflammatory M1-type macrophages. The underlying mechanism involved the inhibition of the MAPK pathway. Moreover, ChSMA hydrogel provided a cartilage matrix-mimic microenvironment and synergistically promoted the generation of collagen-2 and aggrecan with CuS NPs. In an adjuvant-induced arthritis mouse model, the intra-articular injection of ChSMA/CuS-T hydrogel significantly alleviated synovial inflammation and accelerated cartilage repair without causing any side effects, killing two birds with one stone in RA therapy.
Collapse
Affiliation(s)
- Zhanpeng Xue
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Nan Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Kaijun Du
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Jianxiong Shu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhenwen Huang
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhifei Gao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiaobo Xie
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qi Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
3
|
Lang Y, Han X, Liu X, Ning J, Hao X, Zhang H, Zhang J, Zhai K, Zhang J, Fu W, Ding S. Cmtm4 Deficiency Inhibits Helicobacter pylori-Induced Gastric Carcinogenesis. Pathol Int 2025. [PMID: 40432275 DOI: 10.1111/pin.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 02/24/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Helicobacter pylori is the main pathogenic factor in gastric cancer (GC), and the interleukin (IL)-17-mediated inflammatory response plays a crucial role in both H. pylori infection and gastric carcinogenesis. CMTM4, a subunit of the IL-17 receptor (IL-17R), has been implicated in immune responses, but its role in GC development remains unclear. In this study, we investigate the role of CMTM4 during H. pylori-induced gastric carcinogenesis using Cmtm4 knockout (KO) mice. Our findings indicated that Cmtm4 deficiency inhibited GC development and pseudopyloric metaplasia, while reducing DNA damage in the gastric mucosa. Mechanistically, Cmtm4 deletion downregulated the IL-17 signaling pathway in GC. Specifically, it suppressed the expression of IL-17 receptor RC (IL-17RC) and its downstream signaling molecules, resulting in the inhibition of nuclear factor-κ B (NF-κB) activation and a decrease in NADPH oxidase-1 (NOX1) levels. These results suggest that Cmtm4 deletion suppresses H. pylori-induced gastric carcinogenesis and precancerous lesion formation, potentially through the regulation of IL-17RC/NF-κB/NOX1 signaling, which may represent a new target for the early prevention of GC.
Collapse
Affiliation(s)
- Yanfei Lang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Xiurui Han
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
- Central Laboratory of Shengli Oilfield Central Hospital, Dongying Key Laboratory of Cell Biology, Dongying, China
| | - Xin Liu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Xinyu Hao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Hejun Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
- Department of Gastroenterology Pathology Laboratory, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
- Department of Gastroenterology Pathology Laboratory, Peking University Third Hospital, Beijing, China
| | - Kangle Zhai
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| |
Collapse
|
4
|
Taherkhani S, Sheibani M, Mohammadkhanizadeh A, Virag JAI, de Castro Braz L, Azizi Y. Metalloproteinases (MMPs) in hypertensive disorders: role, function, pharmacology, and potential strategies to mitigate pathophysiological changes. Front Pharmacol 2025; 16:1559288. [PMID: 40492135 PMCID: PMC12146787 DOI: 10.3389/fphar.2025.1559288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/29/2025] [Indexed: 06/11/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of enzymes that play an important role in the pathophysiology of hypertensive disorders, particularly through their involvement in extracellular matrix (ECM) remodeling and vascular dysfunction. Their activity is closely linked to hypertension-mediated organ damage, which affects the vascular and cardio-renal systems. MMPs are responsible for degrading various components of the ECM, which is crucial for maintaining vascular structure and function. In hypertensive patients, several MMPs, including MMP-1, MMP-3, and MMP-9, are often found at elevated levels. This is associated with vascular remodeling and dysfunction due to chronic high blood pressure. The activation of MMPs in hypertension can be triggered by several factors, such as oxidative stress, inflammatory cytokines, and vasoactive agents like angiotensin II. In addition to increasing MMP activity, these variables cause an imbalance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), which are the MMPs' natural inhibitors. This imbalance contributes to excessive degradation of the ECM and promotes pathological changes in vascular smooth muscle cells (VSMCs), leading to their transition from a contractile to a synthetic phenotype. This shift facilitates cell growth and migration, exacerbating vascular remodeling. Given their critical roles in hypertension-related organ damage, MMPs are being explored as potential pharmacological targets. Inhibitors of MMPs may help mitigate the adverse effects of hypertension by restoring balance in ECM remodeling processes. Understanding their mechanisms opens avenues for targeted therapies that could significantly improve outcomes for individuals suffering from hypertension-related complications.
Collapse
Affiliation(s)
- Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadkhanizadeh
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jitka A. I. Virag
- Department of Physiology, East Carolina University, Greenville, NC, United States
| | | | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mubarak MM, Baba IA, Wani ZA, Kantroo HA, Ahmad Z. Matrix metalloproteinase-9 (MMP-9): A macromolecular mediator in CNS infections: A review. Int J Biol Macromol 2025; 311:143902. [PMID: 40328391 DOI: 10.1016/j.ijbiomac.2025.143902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a macromolecular zinc-dependent endopeptidase that plays a critical role in the pathogenesis of Central Nervous System (CNS) infections by modulating extracellular matrix remodelling and blood-brain barrier (BBB) dynamics. This review elucidates the structural and functional properties of MMP-9, highlighting its distinct domain architecture that enables substrate specificity and regulatory mechanisms. MMP-9-mediated BBB disruption is a hallmark of bacterial, viral, fungal, and parasitic CNS infections, facilitating immune cell infiltration and pathogen entry while exacerbating neuroinflammation and tissue damage. Elevated MMP-9 levels in cerebrospinal fluid (CSF) correlate with disease severity, suggesting its potential as a diagnostic biomarker. Advances in therapeutic strategies targeting MMP-9, including small molecule inhibitors, monoclonal antibodies, and peptide-based therapies, demonstrate promising results in mitigating BBB disruption and neuroinflammation. This comprehensive review underscores the dual role of MMP-9 as both a biomarker and therapeutic target, advocating for its inclusion in adjunctive treatment regimens to improve outcomes in CNS infections. Future research should focus on refining MMP-9 inhibitors for clinical use, ensuring specificity, and minimizing off-target effects to harness its full therapeutic potential.
Collapse
Affiliation(s)
- Mohamad Mosa Mubarak
- Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar Srinagar, J&K 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ishfaq Ahmad Baba
- Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar Srinagar, J&K 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Zubair Ahmad Wani
- Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar Srinagar, J&K 190005, India
| | - Hadiya Amin Kantroo
- Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar Srinagar, J&K 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Zahoor Ahmad
- Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar Srinagar, J&K 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Blanco I, Deasy S, Amontree M, Gabriel M, Caccavano A, Vicini S, Glasgow E, Conant K. MMP-2/9 inhibition modulates sharp wave abundance, inhibitory proteoglycan sulfation, and fear memory in juvenile zebrafish: relevance to affective disorders. Mol Psychiatry 2025:10.1038/s41380-025-03007-y. [PMID: 40316676 DOI: 10.1038/s41380-025-03007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 05/04/2025]
Abstract
Sharp wave ripple (SWR) events, present in diverse species, spontaneously occur in the hippocampus during quiescent restfulness and slow-wave sleep. SWRs comprise a negative deflection, the sharp wave (SW) event with an often-superimposed ripple (R) and are the neural correlates of memory consolidation and recall. The Anterodorsolateral lobe (ADL) (zebrafish hippocampal homolog) exhibits SW and SWR events, and since SWs initiate SWRs, their abundance typically shows the same directionality. In previous work, we observed matrix metalloproteinase-9 (MMP-9)-dependent effects on depression-relevant behaviors, perineuronal net (PNN) levels, and SWR abundance in the adult rodent hippocampus. Here, we investigate MMP-2/9-dependent effects on biochemical, behavioral, and neurophysiological endpoints in juvenile zebrafish and zebrafish at the transition from the late juvenile period to early adulthood. With MMP-2/9 inhibition, juvenile zebrafish showed reduced SW amplitude and abundance together with increased fear memory retention and decreased sociability. Juvenile zebrafish also showed an increased percentage of longer-duration SW events. Except for a reduction in SW amplitude, these changes were not observed at the transition from late juvenile to early adulthood. These changes were accompanied by increased levels of chondroitin sulfate (CS) proteoglycan 4-O-sulfation, which modulates PNNs and excitatory-to-inhibitory (E/I) balance. Discontinuation of MMP-2/9 inhibition in juvenile zebrafish normalized deficits in ADL SW abundance and sociability. Together, these findings show that MMP-2/9 significantly influences E/I balance and learning and memory during the highly plastic juvenile period. Findings also have relevance to an emerging appreciation of PNN changes that may contribute to altered neuronal oscillations and mood or cognition.
Collapse
Affiliation(s)
- Ismary Blanco
- Interdisciplinary Program in Neuroscience, Washington, DC, USA.
| | | | | | - Miranda Gabriel
- Georgetown University College of Arts and Sciences, Washington, DC, USA
| | - Adam Caccavano
- Interdisciplinary Program in Neuroscience, Washington, DC, USA
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Washington, DC, USA
- Department of Pharmacology and Physiology, Washington, DC, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Washington, DC, USA.
- Department of Neuroscience, Washington, DC, USA.
| |
Collapse
|
7
|
Fu J, Song C, Jiang S, Yang S, Wu Q, Liu X, Hong Z, A R, Li B, Qu G, Ma T, Shao H. Drug Delivery Platform Targeting MMP9 in Combination with Photothermal Therapy to Improve Tumor Chemosensitivity. Adv Healthc Mater 2025; 14:e2500174. [PMID: 40264273 DOI: 10.1002/adhm.202500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Tumor chemotherapy insensitivity poses a significant challenge in cancer treatment, with angiogenesis being a key contributing factor. Angiogenesis supplies oxygen and nutrients to tumor cells, thereby impairing treatment outcomes. Based on these findings, an MMP9-responsive carbon quantum dot-based nanoplatform (MMP9i@MTX@CQDs) encapsulating methotrexate (MTX) and an MMP9 inhibitor (MMP9i) is developed to overcome chemotherapy insensitivity. Targeting the high expression of MMP9 in tumors, the platform releases its payload in a responsive manner. Under near-infrared (NIR) irradiation, the system effectively downregulated angiogenesis-related molecules, including VEGF and CD31, and inhibited the Wnt/β-catenin signaling pathway, thereby reversing chemotherapy insensitivity. This nanoplatform integrates MMP9-responsive CQDs with MTX, enabling photothermal therapy (PTT) and MMP9 inhibition, offering a robust and safe strategy to sensitize tumors to chemotherapy.
Collapse
Affiliation(s)
- Jixian Fu
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Chunyu Song
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shan Jiang
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shuping Yang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qianjiang Wu
- Institute of Cancer Prevention and Treatment, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Xiaolong Liu
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhiwen Hong
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Rouhan A
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Bolong Li
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Guofan Qu
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Tengchuang Ma
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Haibo Shao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
8
|
Timoshenko O, Kugaevskaya E, Gureeva T, Morozevich G, Lupatov A, Mekhtiev A, Rudovich A, Zhabinskii V, Khripach V, Lisitsa A. Isoxazolyl steroid blocks the Shh signaling pathway and the expression of MMP-2 and MMP-9 in cervical carcinoma cell lines. Steroids 2025; 217:109599. [PMID: 40101884 DOI: 10.1016/j.steroids.2025.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Cervical cancer is the fourth leading cause of cancer death among women worldwide. Matrix metalloproteinases MMP-2 and MMP-9 play a leading role in the processes of invasion and metastasis in cervical cancer. Research on the development of MMP inhibitors not yielded the expected results due to their serious side effects. Study of signaling pathways involved in regulation of MMPs expression is of great importance for search of new classes of therapeutic drugs. Aberrant activation of the Sonic Hedgehog (Shh) signaling pathway is associated with increased MMPs in many types of human cancer. This study investigated the inhibitory action of 17β-((3-butylisoxazol-5-yl)methyl)-androst-5-en-3β-ol on the Shh signaling pathway key genes (Ptch, Smo, Gli) expression and MMP-2, MMP-9 genes expression in human cervical carcinoma cell lines (SiHa and CaSki) and keratinocytes (HaCaT). Cyclopamine was used for comparative analysis. Gene expression analysis was performed using real-time PCR; the effects on survival and cell cycle were studied using the MTT test and flow cytometry method. 17β-((3-butylisoxazol-5-yl)methyl)-androst-5-en-3β-ol had higher cytotoxicity and more effectively blocked the Shh signaling pathway genes and MMP-2 and MMP-9 genes compared to cyclopamine in all cell lines. The results obtained demonstrate potential of 17β-((3-butylisoxazol-5-yl)methyl)-androst-5-en-3β-ol as the anticancer drug that simultaneously block the Shh signaling pathway and MMP expression. We are confident that the search for substances capable of simultaneously affecting several key components involved in tumor progression is of great importance for the creation of next-generation therapeutic agents.
Collapse
Affiliation(s)
- Olga Timoshenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia.
| | - Elena Kugaevskaya
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Tatiana Gureeva
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Galina Morozevich
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Alexey Lupatov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Arif Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Anton Rudovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus
| | - Vladimir Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus
| | - Andrey Lisitsa
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| |
Collapse
|
9
|
Yurttaş L, Evren AE, AlChaib H, Temel HE, Akalin Çiftçi G. Synthesis, molecular docking, and molecular dynamic simulation studies of new 1,3,4-thiadiazole derivatives as potential apoptosis inducers in A549 lung cancer cell line. J Biomol Struct Dyn 2025; 43:3814-3829. [PMID: 38166545 DOI: 10.1080/07391102.2023.2300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/22/2023] [Indexed: 01/04/2024]
Abstract
1,3,4-Thiadiazoles are structures that are bioisosteres of 1,3,4-oxadiazole and pyrimidine ring, which are found in the structure of many drugs and anticancer active newly studied derivatives. In the past, high effect profiles have been observed in many molecules created, based on the anticancer effects of the 2-amino-1,3,4-thiadiazole (NSC 4728) molecule and acetazolamide molecules. Focusing on these molecules and evaluating them in terms of mechanistic effects, twelve new N-[5-((3,5-dichlorophenoxy) methyl]-1,3,4-thiadiazole derivatives (3a-3i) were synthesized and their biological activities were investigated in lung cancer cells. The anticancer effects of the compounds were evaluated on the A549 and L929 cell lines. Compound 3f, namely 2-[(5-chlorobenzotiyazol-2-yl)thio]-N-[5-[(3,5-dichlorophenoxy)methyl]-1,3,4-thiadiazol-2-yl]acetamide, showed better activity than cisplatin, exhibiting high inhibitory potency (IC50: <0.98 μg/mL) and selectivity against A549 cell line even at the lowest concentration tested. Compounds 3c, 3f, and 3h with the lowest IC50 values of the compounds exhibited an excellent percentage of apoptosis between 72.48 and 91.95% compared to cisplatin. The caspase-3 activation and mitochondrial membrane potential change of the aforementioned three compounds were also studied. Moreover, matrix metalloproteinase-9 (MMP-9) inhibition potential of all final compounds was also investigated and IC50 values for compounds 3b and 3g were identified as 154.23 and 107.28 µM. Molecular docking and molecular dynamic simulation studies for MMP-9 enzyme inhibition were realized on these compounds and the nitrogen atoms of amide and thiadiazole moieties' ascertained that they play a key role in chelating with Zn metal, at the same time, (thio)ether moieties allow conformational change resulting in the ligand can make more stable contacts.
Collapse
Affiliation(s)
- Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Şeyh Edebali University, Bilecik, Turkey
| | - Huda AlChaib
- Department of Medical Biochemistry, Faculty of Health Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülşen Akalin Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
10
|
Ning Y, Li B, Chen W, Feng L, Huang X, Liu B. DNA Framework-Based Lysosome-Targeting Chimeras: Intracellular ATP-Facilitated Extracellular Protein Degradation. ACS NANO 2025; 19:15853-15862. [PMID: 40237339 DOI: 10.1021/acsnano.5c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Targeted protein degradation (TPD) offered a riveting therapeutic paradigm to eradicate pathogenesis-relevant proteins, especially those belonging to the once-considered undruggable proteome. Considering that adenosine triphosphate (ATP) is the primary energy source for cell activities and lysosomes are important ATP storage sites, herein, the first example of dual-function tetrahedral DNA framework-based lysosome-targeting chimeras (TDF-LYTACs) is proposed for elucidating the correlation between extracellular protein degradation via the lysosome pathway and the fluctuations in intracellular ATP levels. In our study, platelet-derived growth factor (PDGF), a driver of cancer invasion and metastasis, was chosen as the protein of interest. To achieve multifunctionality, we employed a tetrahedral DNA framework formed by an aptamer of PDGF, human apurinic/apyrimidinic endonuclease 1 (APE1)-triggered ATP probes, and a ligand of the cell-surface lysosome-shuttling receptor (IGFIIR). TDF-LYTACs efficiently and quickly shuttled PDGF proteins to lysosomes, degraded them through the lysosomal pathway, and further visualized the intracellular ATP level synchronously. Furthermore, we found a significant correlation between the degradation efficiency of PDGF and intracellular ATP levels over time; that is, a higher ATP level corresponded to higher degradation efficiency and vice versa. We anticipate that our versatile TDF-LYTACs will offer a perspective for degrading multifunctional extracellular proteins.
Collapse
Affiliation(s)
- Yujun Ning
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Bin Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Weishuai Chen
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Langxia Feng
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
11
|
Chen T, Lv D, Rong B, Shi Z, Li X, Jia Z, Gao Z, Zhong C. Phytochemical characterization and therapeutic mechanism of Xialiqi capsule on benign prostatic hyperplasia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04108-9. [PMID: 40223034 DOI: 10.1007/s00210-025-04108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Benign prostatic hyperplasia (BPH) is a common urological condition prevalent in elderly men. Xialiqi capsule (XLQC), a traditional Chinese patent medicine, is widely used to manage BPH. However, the precise mechanisms underlying XLQC's effectiveness in treating BPH are not well-understood. We aimed to investigate the phytochemical composition and therapeutic mechanisms of XLQC in the treatment of BPH. We conducted a comprehensive investigation that integrated high-performance liquid chromatography-mass spectrometry (LC-MS/MS), network pharmacological analysis, and animal experimental validation to explore potential pharmacodynamic compounds and mechanisms of action for XLQC in BPH treatment. In this study, a total of 12 components targeting eight molecular targets were identified; the major components included Danshensu, salidroside, 6-Acetylcodeine, azelaic acid, and berberine. The targets were CASP3, MMP9, PTGS2, IL6, ESR1, ERBB2, HIF1 A, and epidermal growth factor receptor (EGFR). Enrichment analysis revealed that the molecular targets are mainly through calcium signaling pathway, endocrine resistance, steroid hormone biosynthesis, HIF- 1 signaling pathway, and estrogen signaling pathway regulates cell proliferation and apoptosis as well as oxidative stress response. In vivo animal experiments demonstrated that XLQC effectively inhibited oxidative stress (OS) and cell proliferation by reducing malondialdehyde (MDA), increasing superoxide dismutase (SOD), and inhibiting the expression of Ki- 67 in prostate tissue, thereby improving prostate tissue morphology and reducing prostate index. XLQC can inhibit oxidative stress and cell proliferation, improve the morphology of prostate tissue, reduce the prostate index, and have therapeutic effects on BPH through multi-component, multi-target, and multi-pathway effects.
Collapse
Affiliation(s)
- Tengfei Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Dongfang Lv
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baohai Rong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Zhuozhuo Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Xiaolin Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Jia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaowang Gao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Chongfu Zhong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China.
| |
Collapse
|
12
|
Yan J, Xu X, Zhu Y, Wang Y, Duan X. Escin Ia ameliorates DSS-induced chronic colitis in mice by inhibiting inflammation and oxidative stress via the LOXL2/MMP-9 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119623. [PMID: 40090427 DOI: 10.1016/j.jep.2025.119623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/16/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aesculus wilsonii Rehd.'s dried mature seeds are the source of escin, a significant triterpenoid saponin. Aesculus wilsonii Rehd was first mentioned in the Compendium of Materia Medica, according to the Chinese Pharmacopoeia. It possesses the effectiveness of anti-inflammatory as well as treating gastrointestinal disorders. Escin Ia is the primary active component of escin, exhibiting significant antioxidant and anti-inflammatory properties. An increasing number of studies have demonstrated that escin exhibits a broad spectrum of pharmacological activities beneficial for the protection against gastrointestinal diseases. AIM OF THE STUDY Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that can be managed through pharmacological treatment; however, it features a high recurrence rate as well as propensity for complications. Therefore, reducing the rate of recurrence and improving the recurrence symptoms should be the primary focus of clinical prevention and treatment. Therefore, this research aims to study the effects of escin Ia on inflammation as well as oxidative stress in mice with chronic UC and to explain the molecular mechanisms underlying its potential to improve recurrent symptoms in UC mice. MATERIALS AND METHODS A mouse model of colitis produced via dextran sodium sulfate (DSS) was developed for in vivo studies. A model of inflammation was created in vitro using caco-2 cells that were generated by lipopolysaccharide (LPS). Through the observation of colitis symptoms and histological morphology in mice, the protective effect of escin Ia against colitis was ascertained. The enzyme-linked immunosorbent assay (ELISA) and biochemical kits were then harnessed to measure the levels of oxidative stress markers as well as inflammatory factors. Additionally, to identify the possible target and molecular mechanism of escin Ia, qRT-PCR and western blotting, immunofluorescence, molecular docking, and molecular dynamics modeling were employed. RESULTS We demonstrated that escin Ia remarkably improved the colitis symptoms as well as histological features of DSS-treated mice, lowered the levels of proinflammatory cytokines as well as oxidative stress biomarkers, and subsequently restored the permeability of the intestinal mucosa. Additionally, high expression of LOXL2 significantly reduced the protective effects of escin Ia in both inflamed mice and Caco-2 cells. Furthermore, escin Ia exhibited a strong binding affinity and notable stability with LOXL2. CONCLUSION Escin Ia inhibits inflammation and oxidative stress through the LOXL2/MMP-9 pathway, thereby restoring intestinal mucosal barrier function. Improved recurrent symptoms in mice with enteritis.
Collapse
Affiliation(s)
- Jing Yan
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin, 541199, China
| | - Xiaotian Xu
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Yizhun Zhu
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Yuhui Wang
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin, 541199, China.
| | - Xiaoqun Duan
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin, 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China.
| |
Collapse
|
13
|
Huang C, Lin J, Chen L, Sun W, Xia J, Wu M. Upregulation of C1QC as a Mediator of Blood-Brain Barrier Damage in Type 2 Diabetes Mellitus. Mol Neurobiol 2025; 62:5234-5251. [PMID: 39531193 DOI: 10.1007/s12035-024-04615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The blood-brain barrier (BBB) is a neurovascular structure that safeguards the brain by inhibiting the passage of harmful substances. In individuals with type 2 diabetes mellitus (T2DM), the heightened blood glucose may cause damage to endothelial cells and neurons, increase collagen protein content, and elevate BBB permeability. Although the impact of blood glucose regulation on the structure and function of BBB has been documented, the exact mechanism remains incompletely elucidated. The primary aim of this investigation was to uncover the pivotal dysregulation of specific genes observed within the cerebral microvascular endothelial cells of diabetic patients, with a particular focus on understanding its biological implications in the disruption of the BBB. By integrating bioinformatics analysis, we identified C1QC as a potential upregulated marker. The expression level of C1QC was subsequently verified in both in vivo and in vitro models. Our experiments have discovered that, under diabetic conditions, suppressing C1QC leads to the mitigation of BBB damage. The presence of a high level of C1QC, through its binding to discoidin domain receptor 2 (DDR2), may trigger the activation of its downstream MMP9, a calcium-dependent enzyme that is capable of degrading protein components in the extracellular matrix, consequently leading to the structural and functional disruption of BBB. In summary, the findings of this study indicate that the aberrantly upregulated expression of C1QC may exert deleterious effects on the BBB under diabetes. To alleviate neurological impairments in individuals with T2DM, C1QC may emerge as a promising therapeutic target worthy of further investigation.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxing Lin
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lan Chen
- Taylor's University, Subang Jaya, Malaysia
| | - Wenzhe Sun
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Min Wu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
14
|
Cavalcanti L, Francati S, Ferraguti G, Fanfarillo F, Peluso D, Barbato C, Greco A, Minni A, Petrella C. Lipocalin-2, Matrix Metalloproteinase-9, and MMP-9/NGAL Complex in Upper Aerodigestive Tract Carcinomas: A Pilot Study. Cells 2025; 14:506. [PMID: 40214460 PMCID: PMC11988122 DOI: 10.3390/cells14070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Upper aerodigestive tract (UADT) carcinomas have a high and rapidly increasing incidence, particularly in industrialized countries. The identification of diagnostic and prognostic biomarkers remains a key objective in oncological research. However, conflicting data have been reported regarding Lipocalin-2 (LCN-2 or NGAL), Matrix Metalloproteinase-9 (MMP-9), and the MMP-9/NGAL complex in UADT carcinomas. For this reason, the primary aim of this study was to investigate the involvement and modulation of the LCN-2 system in UADT cancer by selecting patients at first diagnosis and excluding any pharmacological or interventional treatments that could act as confounding factors. In this clinical retrospective pilot study, we investigated LCN-2 and MMP-9 tissue gene expression, as well as circulating levels of LCN-2, MMP-9, and the MMP-9/NGAL complex. Our findings revealed a downregulation of LCN-2 and an upregulation of MMP-9 gene expression in tumor tissues compared to healthy counterparts. A similar trend was observed in circulating levels, with decreased LCN-2 and increased MMP-9 in cancer patients compared to healthy controls. Additionally, serum levels of the MMP-9/NGAL complex were significantly elevated in UADT cancer patients relative to controls. Our study suggests a potentially distinct role for the free form of LCN-2 and its conjugated form (MMP-9/NGAL complex) in UADT tumors. These findings not only provide new insights into the molecular mechanisms underlying tumor progression but also highlight the potential clinical relevance of these biomarkers. The differential expression patterns observed suggest that the LCN-2 and MMP-9/NGAL complex could serve as valuable tools for improving early diagnosis, monitoring disease progression, and potentially guiding therapeutic strategies. Further research is needed to validate their utility in clinical settings and to explore their prognostic and predictive value in personalized treatment approaches.
Collapse
Affiliation(s)
- Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Daniele Peluso
- PhD School of Applied Medical-Surgical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy;
- Department of Biology, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), 00161 Roma, Italy;
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
- Division of Otolaryngology-Head and Neck Surgery, San Camillo de Lellis Hospital, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), 00161 Roma, Italy;
| |
Collapse
|
15
|
He Y, Lu J, Luo Y, Pang R, Hu X, Ding L, Xiao H, Wang Y, Wang W. Exploring the therapeutic mechanism of curcumin in spinal cord injury treatment based on network pharmacology, molecular dynamics simulation, and experimental validation. Front Chem 2025; 13:1568551. [PMID: 40224222 PMCID: PMC11985754 DOI: 10.3389/fchem.2025.1568551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Curcumin, a natural active compound derived from plants, is widely used as a pigment across the globe. Research has demonstrated that curcumin possesses neuroprotective properties in spinal cord injuries (SCIs); however, its specific mechanisms of action remain unclear. This study aimed to elucidate the potential mechanisms underlying curcumin's therapeutic effects in SCI. Methods We screened the targets of curcumin in the treatment of spinal cord injury using network pharmacology across a variety of public databases. The interaction between the compound and the target was analyzed through bioinformatics analysis, molecular docking, and molecular dynamics simulation. Finally, the prediction results were verified by simulating spinal cord injury through oxygen-glucose deprivation (OGD) injury in PC12 cells. Results Initial screening indicated 13 core targets involved in mitigating SCI. Curcumin may regulate the HIF pathway, immune cells, inflammation, oxidative stress, and other processes. Matrix metalloproteinase-9 (MMP9), tumor necrosis factor (TNF), interleukin-1β (IL-1β), signal transducer and activator of transcription 3 (STAT3), and caspase 3 (CASP3) were identified as key targets of curcumin in SCI regulation. Molecular docking results demonstrated that curcumin exhibited favorable affinity with the core targets, with MMP9 showing the highest binding affinity (-8.76 kcal/mol). Further studies confirmed that curcumin stably binds with MMP9, and the binding site was located at residues 220-225. Cell counting kit-8 (CCK8) assay results showed that curcumin exerted a good therapeutic effect. Western blot results showed that curcumin inhibited the expression of MMP9 protein but had no significant effect on the expression of TNF-α. Conclusion Curcumin exerts its effects on SCI through multiple targets and pathways. Its specific mechanisms involve the inhibition of inflammation, prevention of apoptosis and ferroptosis, and promotion of neuronal repair. MMP9 may be a key target mediating curcumin's protective effects against SCI. These findings provide scientific evidence for further research and development of drugs.
Collapse
Affiliation(s)
- Yongzhi He
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, Xichong County People’s Hospital, Nanchong, Sichuan, China
| | - Jiachun Lu
- Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, Sichuan, China
| | - Yushan Luo
- Department of Rehabilitation Medicine, Xichong County People’s Hospital, Nanchong, Sichuan, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiaoming Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Lijuan Ding
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hua Xiao
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yunyun Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, , China
| | - Wenchun Wang
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Yang S, Xu X, Wang M, Ma Q, Feng C, Wang J, Zhang Y, Song Y. Gel-to-Coacervate Transition in Peptide/HA Complexes for MMP-9-Activated Penetration into Tumor Spheroids. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18108-18115. [PMID: 40088140 DOI: 10.1021/acsami.4c23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Short phase-separating peptides serve as liquid-based vehicles due to their remarkable fluidity and cell permeability, holding great promise in diffusion-limited applications such as intracellular drug delivery or penetration into deep-seated tumors. However, tuning the phase stability and the phase-transition sensitivity of these coacervates in response to specific pathological signals remains a significant challenge. To tackle this challenge, this study presents a phase-separating peptide/hyaluronic acid (HA) complex coacervate system, which undergoes a solid-to-coacervate transition upon exposure to matrix metalloproteinase 9 (MMP-9). By harnessing this disease-relevant enzyme, overexpressed in the ovarian tumor microenvironment, we further demonstrate the improved infiltration of the coacervates into Hey cells and tumor spheroids. These observations highlight the feasibility of modulating phase behaviors and advanced functions of coacervates through sequence-specific monomer design, offering a practical strategy for the on-target delivery of coacervates and medicine into tumors.
Collapse
Affiliation(s)
- Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuli Xu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meixin Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Wang
- Shanghai Key Laboratory of Embryo Original Diseases and Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yage Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Li H, Su B, Jiang Y, Zhang B, Du R, Song C, Hou B, Xu K, Wu L, Gu Y. Circular RNA circDCUN1D4 suppresses hepatocellular carcinoma development via targeting the miR-590-5p/ TIMP3 axis. Mol Cancer 2025; 24:95. [PMID: 40128740 PMCID: PMC11934760 DOI: 10.1186/s12943-025-02300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health concern, necessitating innovative therapeutic strategies. In this study, we investigated the functional role of circular RNA circDCUN1D4 in HCC progression and its potential therapeutic implications. It was found that HCC patients exhibiting higher levels of circDCUN1D4 demonstrated a more favorable survival rate. Furthermore, we revealed that circDCUN1D4 suppressed HCC cell proliferation, migration, and invasion. Mechanistically, circDCUN1D4 was identified as a sponge for miR-590-5p, leading to the downregulation of its downstream target, Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Importantly, circDCUN1D4 administration through In vivo jet-PEI exhibited a robust inhibitory effect on tumor progression without causing notable toxicity in mice. Overall, our findings highlight circDCUN1D4 as a promising therapeutic candidate for HCC, unraveling its intricate regulatory role through the miR-590-5p/TIMP3 axis. This study contributes valuable insights into the potential clinical applications of circRNA-based therapies for HCC.
Collapse
Affiliation(s)
- Hongyu Li
- College of Chemistry and Lie Science, Beijing University of Technology, Beijing, 100124, China.
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China.
| | - Bing Su
- College of Chemistry and Lie Science, Beijing University of Technology, Beijing, 100124, China
| | - Yan Jiang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Boyang Zhang
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China
| | - Rulong Du
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China
| | - Can Song
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China
| | - Bin Hou
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China
| | - Kun Xu
- College of Chemistry and Lie Science, Beijing University of Technology, Beijing, 100124, China.
| | - Lida Wu
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China.
| | - Yuchun Gu
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China.
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Cai H, Zhou L, Hu Y, Zhou T. Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction. Biomedicines 2025; 13:780. [PMID: 40299352 PMCID: PMC12024895 DOI: 10.3390/biomedicines13040780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Background: This study integrated four Gene Expression Omnibus (GEO) datasets to identify disease-specific feature genes in head and neck squamous cell carcinoma (HNSCC) through differential expression analysis with batch effect correction. Methods: The GeneCards database was used to find genes related to exosomes, and samples were categorized into groups with high and low expression levels based on these feature genes. Functional and pathway enrichment analyses (GO, KEGG, and GSEA) were used to investigate the possible biological mechanisms underlying feature genes. A predictive model was produced by using machine learning algorithms (LASSO regression, SVM, and random forest) to find disease-specific feature genes. Receiver operating characteristic (ROC) curve analysis was used to assess the model's effectiveness. The diagnostic model showed excellent predictive accuracy through external data GSE83519 validation. Results: This analysis highlighted 22 genes with significant differential expression. A predictive model based on five important genes (AGRN, TSPAN6, MMP9, HBA1, and PFN2) was produced by using machine learning algorithms. MMP9 and TSPAN6 showed relatively high predictive performance. Using the ssGSEA algorithm, three key genes (MMP9, AGRN, and PFN2) were identified as strongly linked to immune regulation, immune response suppression, and critical signaling pathways involved in HNSCC progression. Matching HNSCC feature gene expression profiles with DSigDB compound signatures uncovered potential therapeutic targets. Molecular docking simulations identified ligands with high binding affinity and stability, notably C5 and Hoechst 33258, which were prioritized for further validation and potential drug development. Conclusions: This study employs a novel diagnostic model for HNSCC constructed using machine learning technology, which can provide support for the early diagnosis of HNSCC and thus contribute to improving patient treatment plans and clinical management strategies.
Collapse
Affiliation(s)
- Hua Cai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| | - Yao Hu
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Wuhan 430021, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| |
Collapse
|
19
|
Lai W, Geliang H, Bin X, Wang W. Effects of hydrogel stiffness and viscoelasticity on organoid culture: a comprehensive review. Mol Med 2025; 31:83. [PMID: 40033190 PMCID: PMC11877758 DOI: 10.1186/s10020-025-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
As an emerging technology, organoids are promising new tools for basic and translational research in disease. Currently, the culture of organoids relies mainly on a type of unknown composition scaffold, namely Matrigel, which may pose problems in studying the effect of mechanical properties on organoids. Hydrogels, a new material with adjustable mechanical properties, can adapt to current studies. In this review, we summarized the synthesis of recent advance in developing definite hydrogel scaffolds for organoid culture and identified the critical parameters for regulating mechanical properties. In addition, classified by different mechanical properties like stiffness and viscoelasticity, we concluded the effect of mechanical properties on the development of organoids and tumor organoids. We hope this review enhances the understanding of the development of organoids by hydrogels and provides more practical approaches to investigating them.
Collapse
Affiliation(s)
- Wei Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Geliang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Bin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
20
|
Frost Z, Bakhit S, Amaefuna CN, Powers RV, Ramana KV. Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. Int J Mol Sci 2025; 26:1967. [PMID: 40076592 PMCID: PMC11900642 DOI: 10.3390/ijms26051967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Water-soluble B vitamins, mainly obtained through dietary intake of fruits, vegetables, grains, and dairy products, act as co-factors in various biochemical processes, including DNA synthesis, repair, methylation, and energy metabolism. These vitamins include B1 (Thiamine), B2 (Riboflavin), B3 (Niacin), B5 (Pantothenic Acid), B6 (Pyridoxine), B7 (Biotin), B9 (Folate), and B12 (Cobalamin). Recent studies have shown that besides their fundamental physiological roles, B vitamins influence oncogenic metabolic pathways, including glycolysis (Warburg effect), mitochondrial function, and nucleotide biosynthesis. Although deficiencies in these vitamins are associated with several complications, emerging evidence suggests that excessive intake of specific B vitamins may also contribute to cancer progression and interfere with therapy due to impaired metabolic and genetic functions. This review discusses the tumor-suppressive and tumor-progressive roles of B vitamins in cancer. It also explores the recent evidence on a comprehensive understanding of the relationship between B vitamin metabolism and cancer progression and underscores the need for further research to determine the optimal balance of B vitamin intake for cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
21
|
Blanco I, Deasy S, Amontree M, Gabriel M, Caccavano A, Vicini S, Glasgow E, Conant K. MMP-2/9 inhibition modulates sharp wave abundance, inhibitory proteoglycan sulfation, and fear memory in juvenile zebrafish: relevance to affective disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640105. [PMID: 40060485 PMCID: PMC11888368 DOI: 10.1101/2025.02.25.640105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Sharp wave ripple (SWR) events, present in diverse species, spontaneously occur in the hippocampus during quiescent restfulness and slow-wave sleep. SWRs comprise a negative deflection, the sharp wave (SW) event with an often-superimposed ripple (R) and are the neural correlates of memory consolidation and recall. The Anterodorsolateral lobe (ADL) (zebrafish hippocampal homologue) exhibits SW and SWR events, and since SWs initiate SWRs, their abundance typically shows the same directionality. In previous work, we observed matrix metalloproteinase-9 (MMP-9)-dependent effects on depression-relevant behaviors, perineuronal net (PNN) levels, and SWR abundance in the adult rodent hippocampus. Here, we investigate MMP-2/9-dependent effects on biochemical, behavioral, and neurophysiological endpoints in juvenile zebrafish and zebrafish at the transition from the late juvenile period to early adulthood. With MMP-2/9 inhibition, juvenile zebrafish showed reduced SW amplitude and abundance together with increased fear memory retention and reduced sociability. Juvenile zebrafish also showed an increased percentage of longer-duration SW events. Except for a reduction in SW amplitude, these changes were not observed at the transition from late juvenile to early adulthood. These changes were accompanied by increased levels of chondroitin sulfate (CS) proteoglycan 4- O -sulfation, which modulates PNNs and excitatory-to-inhibitory (E/I) balance. Discontinuation of MMP-2/9 inhibition in juvenile zebrafish normalized deficits in ADL SW abundance and sociability. Together, these findings show that MMP-2/9 significantly influences E/I balance and learning and memory during the highly plastic juvenile period in zebrafish. Findings also have relevance to an emerging appreciation of PNN changes that may contribute to altered neuronal oscillations and mood or cognition.
Collapse
|
22
|
Lv Y, Wang L, Zhang Y, Wei D, Hu Y. circDENND4C serves as a sponge for miR-200b to drive non-small cell lung cancer advancement by regulating MMP-9 expression. Front Oncol 2025; 15:1441384. [PMID: 40034591 PMCID: PMC11872906 DOI: 10.3389/fonc.2025.1441384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Lung cancer has a higher incidence and mortality rate than other cancers, especially non-small cell lung cancer (NSCLC), accounting for 85% of the cases. The role of the circDENND4C/miR-200b/matrix metalloproteinase-9 (MMP-9) regulatory axis in NSCLC remains largely unknown. Methods NSCLC cell lines were used to examine the expression of circDENND4C, miR-200b, and MMP-9 via qRT-PCR or Western blot. The target relationship of circDENND4C, miR-200b, and MMP-9 was examined by RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence (IF), dual-luciferase reporter system, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Then, a cell count kit-8 (CCK-8) experiment, flow cytometry, and migration/invasion assays were performed to assess the biological function of circDENND4C, miR-200b, and MMP-9 by transfecting with their overexpression or knockout plasmids in A549 cells. Finally, the proteins related to cell adhesion and tight junction were further tested by Western blot and IF. Results circDENND4C and MMP-9 were found to be highly expressed in NSCLC cell lines, while miR-200b was lowly expressed in NSCLC cell lines. Moreover, circDENND4C could sponge miR-200b to target MMP-9. Subsequently, it was observed that knockdown of circDENND4C and MMP-9 or the upregulation of miR-200b repressed cell proliferation and cell cycle progression, increased cell apoptosis, and hindered cell migration and invasion. Finally, it was also found that the circDENND4C/miR-200b/MMP-9 regulatory axis might be involved with cell adhesion and tight junction to influence tumor metastasis. Conclusions Altogether, our study reveals a novel regulatory loop in which the circDENND4C/miR-200b/MMP-9 axis may modulate NSCLC progression, indicating potential biomarkers for the diagnosis or treatment of NSCLC.
Collapse
Affiliation(s)
- Yaming Lv
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lan Wang
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yunhui Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Dong Wei
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yajie Hu
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
23
|
Dorjay Tamang JS, Banerjee S, Baidya SK, Das S, Ghosh B, Jha T, Adhikari N. An overview of matrix metalloproteinase-12 in multiple disease conditions, potential selective inhibitors, and drug designing strategies. Eur J Med Chem 2025; 283:117154. [PMID: 39709794 DOI: 10.1016/j.ejmech.2024.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Matrix metalloproteases (MMPs) are the proteolytic enzymes accountable for extracellular matrix (ECM) modification through their Zn2+-dependent catalytic activity. Among these, MMP-12 is one of the crucial MMPs that contributes to various disease states including different types of cancers and other major pathophysiological conditions including COPD, asthma, emphysema, skin diseases, arthritis, vascular diseases, and neurological disorders. The majority of the MMP-12 inhibitors should have three constitutional pharmacophoric features (i.e., a hydrophobic group to occupy the S1' pocket, a zinc-binding motif for chelating to the catalytic Zn2+ ion present at the catalytic site, and a flexible and hydrogen bond forming linker region between the S1' pocket substituent and the zinc chelating group for interacting with the catalytic and Ω-loop amino acid residues). This review mainly focuses on the various roles of MMP-12 in different diseases along with the structural comparison with other MMPs as well as promising and MMP-12-selective inhibitors and molecular modeling studies performed on MMP-12 inhibitors. Therefore, this review will provide comprehensive information to the researchers for designing effective and MMP-12-selective inhibitors for therapeutic advancement in the future.
Collapse
Affiliation(s)
- Jigme Sangay Dorjay Tamang
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
24
|
Zhao W, Chen X, Han Z, Xun Z, Qi Y, Wang H, Chen C, Gong Z, Xue X. Nanoenzymes-Integrated and Microenvironment Self-Adaptive Hydrogel for the Healing of Burn Injury and Post-Burn Depression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413032. [PMID: 39721011 PMCID: PMC11831452 DOI: 10.1002/advs.202413032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Burn injuries often cause prolonged oxidative stress and inflammatory pain due to an initial increase in inflammatory responses, consequently exacerbating depressive disorders and severely impairing patients' quality of life. The primary function of traditional burn dressings is to prevent infection and facilitate tissue repair. However, these dressings are not intended for the inflammatory pain and depression that often occur during recovery. This study describes a self-healing hydrogel H@EFCP, which is designed to alleviate inflammatory pain and post-burn depression in burn injuries. This hydrogel is synthesized through the cross-linking of carboxymethyl chitosan with borate ester chelates formed from epigallocatechin gallate and 4-formylphenylboronic acid. The incorporated Prussian blue nanoparticles increase the ability of H@EFCP to regulate the inflammatory process. H@EFCP is effective in the treatment of skin burns by reducing oxidative stress and improving the microenvironment of peripheral inflammation in mice. This modulation consists of a reduction of central nervous system inflammation and the risk of post-burn depression. Behavioral assays indicate that the hydrogel significantly reduces feelings of despair and anxiety after burns. Consequently, H@EFCP provides a dual-effect solution for the care and recovery of burn patients, including both burn repair and the associated psychological effects.
Collapse
Affiliation(s)
- Weitao Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Ziwei Han
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Chang Chen
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Zhongying Gong
- Tianjin First Central Hospital, School of MedcineNankai UniversityNo. 24 Fukang Road, Nankai DistrictTianjin300192P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| |
Collapse
|
25
|
Miao L, Yang Y, Cheng M, Chen L, Han C. Ginsenoside Rb prevents the metastasis of hepatocarcinoma by blocking the platelet-tumor cell interaction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1721-1733. [PMID: 39172150 DOI: 10.1007/s00210-024-03387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The interaction between platelets and tumor cells is a crucial step in the progression of tumor metastasis. Blocking platelet-tumor cell interaction is a potential target against metastasis. Ginsenoside Rb (G-Rb) exhibits potential anti-tumor pharmacological properties and may offer a therapeutic option for cancer. PURPOSE This study aimed to investigate anti-metastatic effects of G-Rb through regulating the crosstalk of platelets with tumor cells. METHODS In order to explore anti-metastatic effects of G-Rb in vitro, HepG2 cell and platelets were co-cultured to mimic the interaction of platelets with tumor cells. Wound healing and Transwell assays were used to assess the effect of G-Rb on cell migration and invasion. The expression of epithelial-mesenchymal transition (EMT)-related markers was determined by RT-qPCR and western blot assays. The aggregation and activation of platelets were detected by flow cytometry. Moreover, a lung metastasis model of mice was established to evaluate inhibitory effects of G-Rb in vivo. Metastatic nodules on the lung surface were counted and sections of lung tissues were stained by H&E. RESULTS G-Rb effectively suppressed tumor metastasis in the co-culture of platelets with HepG2 cell. First, G-Rb treatment significantly inhibited the migration and invasion of HepG2 cells induced by platelets. Second, the expressions of EMT-related markers, including N-cadherin, Snail, and MMP9, were decreased by the treatment of G-Rb in the presence of platelets. Meanwhile, G-Rb also suppressed platelet hyperactivity by regulating the adhesion to tumor cells, activation, TCIPA, and TGF-β1 secretion of platelets in vitro. In addition, the results of in vivo experiments proved G-Rb administration not only significantly decreased lung metastasis but also attenuated platelets aberrant aggregation and activation in vivo. CONCLUSION Our findings showed that G-Rb inhibited tumor metastasis and platelet activation through mediating platelet-tumor cell interaction, indicating the potential values of G-Rb in tumor metastasis therapy.
Collapse
Affiliation(s)
- Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Yijun Yang
- Department of Pharmacy, Shandong Medical College, Jinan, 250002, People's Republic of China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- The Second Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
26
|
Zhang L, Shi J, Zhu MH, Huang Y, Lu Q, Sun P, Chen HZ, Lai X, Fang C. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 2025; 313:122801. [PMID: 39236630 DOI: 10.1016/j.biomaterials.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.
Collapse
Affiliation(s)
- Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
27
|
Qianyun Z, Jianjun W, Kaisi F, Jinhao L, Renhai C, Xiaoting D, Yongteng L, Liucheng Y, Kai W. Identification of key genes related to cancer associated fibroblasts in neuroblastoma: A comprehensive bioinformatics approach. Cancer Biomark 2025; 42:18758592251317406. [PMID: 40179430 DOI: 10.1177/18758592251317406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundNeuroblastoma (NB) is one of the most common and aggressive pediatric solid tumors, characterized by a highly complex pathogenesis. Within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) constitute a major cell population and play a pivotal role in facilitating communication among various stromal cells. However, the specific functions and contributions of CAFs in NB remain incompletely understood.ObjectiveTo investigate the impact of CAFs-related genes on the prognosis of NB, we developed a risk model to facilitate the diagnosis and prognostication of patients.MethodsIn this study, a CAFs gene prognostic model for NB was established using single-cell analysis and genomic sequencing data. The effectiveness of this prognostic model was subsequently evaluated through the development of a nomogram, immune infiltration analysis, drug prediction, and gene set enrichment analysis. Ultimately, the expression levels of the identified key genes were experimentally validated in NB tissues.ResultsA novel prognostic model for CAFs related to NB prognosis was established through single-cell analysis and transcriptome dataset analysis. The prognosis of the high-risk group was worse than that of the low-risk group. The validity of the model was confirmed by nomogram, drug sensitivity analysis, and immune infiltration methods. Finally, the high expression of the key gene STEAP2 in NB tissues was verified by experiments.ConclusionsThe study introduces a new predictive model that uses CAF markers to forecast the prognosis of NB. STEAP2 plays a key role in identifying high-risk neuroblastoma and may become a potential therapeutic target for NB.
Collapse
Affiliation(s)
- Zhao Qianyun
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Jianjun
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Kaisi
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Jinhao
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Renhai
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ding Xiaoting
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Yongteng
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Liucheng
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wu Kai
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Oselusi SO, Sibuyi NR, Martin DR, Meyer M, Madiehe AM. Potential matrix metalloproteinase 2 and 9 inhibitors identified from Ehretia species for the treatment of chronic wounds - Computational drug discovery approaches. Comput Biol Med 2025; 185:109487. [PMID: 39637455 DOI: 10.1016/j.compbiomed.2024.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Matrix metalloproteinases (MMPs) serve as prognostic factors in several pathophysiological conditions, including chronic wounds. Therefore, they are considered important therapeutic targets in the intervention and treatment of these conditions. In this study, computational tools such as molecular docking and molecular dynamics simulations were used to gain insight into protein‒ligand interactions and determine the free binding energy between Ehretia species phytoconstituents and gelatinases (MMP2 and MMP9). A total of 74 phytoconstituents from Ehretia species were compiled from the literature, and 46 of these compounds were identified as potential inhibitors of at least one type of MMP. Molecular docking revealed that lithospermic acid B, rosmarinic acid, and danshensu had stronger binding affinities against the two enzymes than the reference ligands. Furthermore, (9S, 10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic (∗-octadecatrienoic) had a higher binding energy for MMP2, whereas caffeic anhydride and caffeic acid established stronger binding energy with MMP9 than the reference ligand. These complexes also demonstrated relatively stable, favourable, and comparable conformational changes with those of unbound proteins at 500 ns. The free energy decomposition results further provide detailed insights into the contributions of active site residues and different types of interactions to the overall binding free energy. Finally, most of the hit phytoconstituents (rosmarinic acid, caffeic anhydride, caffeic acid, and danshensu) had good physicochemical, drug-likeness, and pharmacokinetic properties. Collectively, our findings showed that phytoconstituents from Ehretia species could be beneficial in the search for novel MMP inhibitors as therapeutic agents for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Samson O Oselusi
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Nicole Rs Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; Health Platform, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, South Africa
| | - Darius R Martin
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Abram M Madiehe
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
29
|
Xie J, Chen S, Chen Y, Tong J, Huang H, Liao J, Sun J, Cong L, Zeng Y. FFA intervention on LO2 cells mediates SNX-10 synthesis and regulates MMP9 secretion in LX2 cells via TGF-β1. Arch Biochem Biophys 2025; 764:110255. [PMID: 39662717 DOI: 10.1016/j.abb.2024.110255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a public health concern. Transforming growth factor-β1(TGF-β1) plays an important regulatory role in multiple MAFLD stages, as it can promote the expression of matrix metalloproteinase-9 (MMP9) and promote liver fibrosis. Sorting nexin protein-10 (SNX-10) may be involved in the occurrence and development of fatty liver disease. METHODS Free fatty acids (FFA) treatment was used to simulate the cellular lipid deposition stage of MAFLD and the interactions between cells were simulated via LX2 and LO2 coculture. The molecular interaction between the two cell types was studied via ELISA, immunoprecipitation, qPCR, and western blotting. RESULTS In FFA-treated LO2 cells, intracellular TGF-β1 expression increased as lipid deposition increased. FFA-treated LO2 cells promoted the expression and secretion of MMP9 by LX2 cells through paracrine pathways. MMP9 secretion decreased with decreasing SNX-10 expression in LX2 cells. The interaction between MMP9 and SNX-10 was confirmed by coimmunoprecipitation. TGF-β1 promoted the synthesis of SNX-10 through the p38 MAPK pathway, and SNX-10 affected the secretion of MMP9 through protein interactions, thereby affecting the development of liver fibrosis. CONCLUSIONS FFA induced lipid deposition in LO2 cells, and TGF-β1 mediated the p38 MAPK pathway to promote SNX-10 synthesis and stimulate MMP9 secretion, thereby regulating the involvement of LX2 in the process of liver fibrosis.
Collapse
Affiliation(s)
- Jianhui Xie
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shiyan Chen
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yangli Chen
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Junlu Tong
- Department of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Huijie Huang
- Department of Endocrinology and Metabolic Diseases, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| | - Jingwen Liao
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jixin Sun
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Li Cong
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| | - Yingjuan Zeng
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
30
|
Sun Y, Zhang H, Shi DB, Gao P. SP-1-activated LINC01016 overexpression promotes gastric cancer invasion and metastasis through inhibiting EIF4A3-mediated MMP9 mRNA decay. Cell Death Dis 2025; 16:54. [PMID: 39881131 PMCID: PMC11828860 DOI: 10.1038/s41419-024-07250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/31/2025]
Abstract
Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS). Furthermore, we found that LINC01016 is activated by transcriptional factor SP-1 and contributes to the overt promotion of cell migratory ability. EIF4A3 was identified as a binding partner of LINC01016 by RNA pull-down assay, mass spectrometry and western blot. We determined that LINC01016 can blocks the binding of EIF4A3 to MMP9 mRNA, thereby inhibiting EIF4A3-mediated nonsense-mediated RNA decay (NMD), increasing MMP9 mRNA level and protein expression levels to promote tumor progression. LINC01016 or LINC01016-mediated EIF4A3/MMP9 may be potential therapeutic targets for patients with GC.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China
- Department of Medical Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China
| | - Duan-Bo Shi
- Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China.
| | - Peng Gao
- Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
31
|
Zhou C, Zhong R, Zhang L, Yang R, Luo Y, Lei H, Li L, Cao J, Yuan Z, Tan X, Xie M, Qu H, He Z. Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation. Discov Oncol 2025; 16:47. [PMID: 39812944 PMCID: PMC11735722 DOI: 10.1007/s12672-025-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD. METHODS Firstly, the network pharmacology was used to screen the RosA targets, and LUAD-related differential expressed genes (DEGs) were acquired from the GEO database. The intersection of LUAD regulated by RosA (RDEGs) was obtained through the Venn diagram. Secondly, GO and KEGG enrichment analysis of RDEGs were performed, and protein-protein interaction networks (PPIs) were constructed to identify and visualize hub RDEGs. Then, molecular docking between hub RDEGs and RosA was performed, and further evaluation was carried out by using bioinformatics for the predictive value of the hub RDEGs. Finally, the mechanism of RosA in the treatment of LUAD was verified by establishing a xenograft model of NSCLC in nude mouse. RESULTS Bioinformatics and other analysis showed that, compared with the control group, the expressions of MMP-1, MMP-9, IGFBP3 and PLAU in LUAD tissues were significantly up-regulated, and the expressions of PPARG and FABP4 were significantly down-regulated, and these hub RDEGs had potential predictive value for LUAD. In vivo experimental results showed that RosA could inhibit the growth of transplanted tumors in nude mice bearing tumors of lung cancer cells, reduce the positive expression of Ki67 in lung tumor tissue, and hinder the proliferation of lung tumor cells. Upregulated expression of PPARG and FABP4 by activating the PPAR signaling pathway increases the level of ROS in lung tumor tissues and promotes apoptosis of lung tumor cells. In addition, RosA can also reduce the expression of MMP-9 and IGFBP3, inhibit the migration and invasion of lung tumor tissue cells. CONCLUSIONS This study demonstrated that RosA could induce apoptosis by regulating the PPAR signaling pathway and the expression of MMP-9, inhibit the proliferation, migration and invasion of lung cancer cells, thereby exerting anti-LUAD effects. This study provides new insight into the potential mechanism of RosA in treating LUAD and provides a new therapeutic avenue for treatment of LUAD.
Collapse
Affiliation(s)
- Chaowang Zhou
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Ruqian Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Lei Zhang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Renyi Yang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Yuxin Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Huijun Lei
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Liang Li
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Zhiying Yuan
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Xiaoning Tan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China
| | - Mengzhou Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Haoyu Qu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Zuomei He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China.
| |
Collapse
|
32
|
Błaszczak E, Miziak P, Odrzywolski A, Baran M, Gumbarewicz E, Stepulak A. Triple-Negative Breast Cancer Progression and Drug Resistance in the Context of Epithelial-Mesenchymal Transition. Cancers (Basel) 2025; 17:228. [PMID: 39858010 PMCID: PMC11764116 DOI: 10.3390/cancers17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its distinct clinical and molecular characteristics. Patients with TNBC face a high recurrence rate, an increased risk of metastasis, and lower overall survival compared to other breast cancer subtypes. Despite advancements in targeted therapies, traditional chemotherapy (primarily using platinum compounds and taxanes) continues to be the standard treatment for TNBC, often with limited long-term efficacy. TNBC tumors are heterogeneous, displaying a diverse mutation profile and considerable chromosomal instability, which complicates therapeutic interventions. The development of chemoresistance in TNBC is frequently associated with the process of epithelial-mesenchymal transition (EMT), during which epithelial tumor cells acquire a mesenchymal-like phenotype. This shift enhances metastatic potential, while simultaneously reducing the effectiveness of standard chemotherapeutics. It has also been suggested that EMT plays a central role in the development of cancer stem cells. Hence, there is growing interest in exploring small-molecule inhibitors that target the EMT process as a future strategy for overcoming resistance and improving outcomes for patients with TNBC. This review focuses on the progression and drug resistance of TNBC with an emphasis on the role of EMT in these processes. We present TNBC-specific and EMT-related molecular features, key EMT protein markers, and various signaling pathways involved. We also discuss other important mechanisms and factors related to chemoresistance in TNBC within the context of EMT, highlighting treatment advancements to improve patients' outcomes.
Collapse
Affiliation(s)
- Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | | | | | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
33
|
Wang Y, Chen X. Identification of potential MMP-8 inhibitors through virtual screening of natural product databases. In Silico Pharmacol 2025; 13:11. [PMID: 39780770 PMCID: PMC11704116 DOI: 10.1007/s40203-024-00299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Matrix metalloproteinase-8 (MMP-8), a type II collagenase, is a key enzyme in the degradation of collagens and is implicated in various pathological processes, making it a promising target for drug discovery. Despite advancements in the development of MMP-8 inhibitors, concerns over potential adverse effects persist. This study aims to address these concerns by focusing on the development of novel compounds with improved safety profiles while maintaining efficacy. In this study, we employed a computational approach to screen potent and safe inhibitors of MMP-8 from the Natural Product Activity and Species Source Database (NPASS). Initially, we constructed a pharmacophore model based on the crystal structure of the MMP-8-FIN complex (PDB ID: 4EY6) utilizing the Pharmit tool. This model then guided the selection of 44 promising molecules from NPASS, setting the stage for further analysis and evaluation. We comprehensively evaluated their drug-likeness and toxicity profiles. Molecules 21, 4, and 44 were identified as potentially effective MMP-8 inhibitors through a robust pipeline that included ADMET profiling, molecular docking, and molecular dynamics simulations. Notably, molecule 21 stood out for its low toxicity, high binding stability, and favorable ADMET profile, while molecule 44 demonstrated excellent affinity. These compounds offer structural novelty compared to known MMP-8 inhibitors. These computational results can be combined with in vitro experiments in the future to validate their activity and safety. These findings provide an important reference for drug design of MMP-8 inhibitors.
Collapse
Affiliation(s)
- Yi Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan, 250014 China
| | - Xiushan Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580 China
| |
Collapse
|
34
|
Chen JF, Ye SZ, Wang KJ, Meng XY, Yang BB, Wu KR, Ma Q. Long non-coding RNA OSTM1-AS1 promotes renal cell carcinoma progression by sponging miR-491-5p and upregulating MMP-9. Sci Rep 2025; 15:359. [PMID: 39747324 PMCID: PMC11696353 DOI: 10.1038/s41598-024-83154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as essential regulators in various human malignancies. Hundreds of lncRNAs were known to be abnormally expressed in renal cell carcinoma (RCC) through a lncRNA expression microarray, among which lncRNA OSTM1 antisense RNA 1(OSTM1-AS1) was revealed as one of the most abundant lncRNAs. However, the function of OSTM1-AS1 in RCC remains unknown. Here, we examined OSTM1-AS1 functional roles and mechanism in RCC development. OSTM1-AS1 expression was significantly highly expressed among RCC tissue specimens and cell lines. Functionally, OSTM1-AS1 knockdown significantly suppressed cell proliferation, migration along with metastasis of RCC cells. Mechanistically, miR-491-5p was targeted via OSTM1-AS1, and down-regulation of miR-491-5p reversed OSTM1-AS1 knockdown impact on RCC migration and invasion. MMP-9 was targeted via miR-491-5p, and MMP-9 overexpression reversed miR-491-5p or OSTM1-AS1 knockdown impact on cell migration and invasion. MMP-9 abundance was decreased by OSTM1-AS1 silence, that was reduced by miR-491-5p deficiency. Importantly, our investigation revealed that OSTM1-AS1 has the ability to interact with miR-491-5p, thereby increasing the MMP-9 expression. The in vivo trial demonstrated that OSTM1-AS1 suppression resulted in tumor growth inhibition among nude mice. In summary, our findings indicate, for the first time, at least to the best of our knowledge, that OSTM1-AS1 serves as an oncogene among RCC by promoting proliferation, invasion, and metastasis through its targeting of the miR-491-5p/MMP9 axis. Therefore, this axis could represent a promising alternative therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Jun-Feng Chen
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Bin-Bin Yang
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke Rong Wu
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Yi-Huan Genitourinary Cancer Group, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
35
|
Jamialahmadi K, Noruzi S. Matrix metalloproteinases, chemoresistance and cancer. PATHOPHYSIOLOGICAL ASPECTS OF PROTEASES IN CANCER 2025:385-409. [DOI: 10.1016/b978-0-443-30098-1.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Vempati RK, Malla RR. Coralyne Targets the Catalytic Domain of MMP9: An In Silico and In Vitro Investigation. Crit Rev Oncog 2025; 30:71-89. [PMID: 39819436 DOI: 10.1615/critrevoncog.2024056393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Coralyne (COR) is a protoberberine-like isoquinoline alkaloid, and it is known for double-stranded (ds) DNA intercalation and topoisomerase inhibition. It can also sensitize cancer cells through various mechanisms. COR reduces the proliferation and migration of breast cancer cells by inhibiting the expression and activity of matrix metalloproteinase 9 (MMP9). However, the mechanism involved in the inhibitory activity of COR on MMP9 is not known. In the present study, in silico docking studies showed that COR binds to the active site of MMP9 catalytic domain (MMP9-CD) with considerable affinity. The binding affinity of COR to the MMP9-CD, estimated by three different web servers: CB Dock, Seam Dock, and PyRx, was found to be either -7.4 or -7.5 kcal/mol. Another web server that is routinely used for docking studies, Docking Server, has predicted a binding affinity of -5.9 kcal/mol. All four docking servers predicted the same binding site for COR within the MMP9-CD. Corroborating our docking results, molecular dynamic simulation studies have also shown that COR interacts with the same key active site amino acid residues of the MMP9-CD that are essential for its proteolytic function. Molecular mechanics with generalized born and surface area (MMGBSA) calculations using Schrodinger's prime module have shown that the binding free energy with which COR binds to MMP9 is -50 kcal/mol. It inhibited activity of recombinant human MMP9 activity and induced significant cytotoxicity and reduced the proliferation of MDA-MB 468 cells. Overall, our in silico and in vitro experiments show that COR potentially inhibits the activity of MMP9 by directly binding to the active site of its catalytic domain and possibly inhibits proliferation of MDA-MB 468 cells.
Collapse
Affiliation(s)
- Rahul Kumar Vempati
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, India
| | | |
Collapse
|
37
|
Chen J, Wu H, Zuo T, Wu J, Chen Z. METTL3‑mediated N6‑methyladenosine modification of MMP9 mRNA promotes colorectal cancer proliferation and migration. Oncol Rep 2025; 53:9. [PMID: 39540393 DOI: 10.3892/or.2024.8842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
N6‑methyladenosine (m6A) is the predominant chemical modification of eukaryotic mRNA, dynamically mediated by the RNA methyltransferase, methyltransferase-like 3 (METTL3). m6A modification plays a critical role in cancer progression through post‑transcriptional regulation in various types of cancer. However, the role of METTL3 and its associated m6A modification in colorectal tumorigenesis remains to be fully elucidated. In the present study, it was demonstrated that METTL3 expression and the m6A levels were both upregulated in colorectal cancer (CRC) and positively associated with clinical progression, based on the bioinformatics analysis of cancer databases. Furthermore, knockdown and overexpression of METTL3 notably affected CRC cell viability, apoptosis and migration in vitro. Similarly, xenograft animal models confirmed that METTL3 promoted CRC tumorigenicity in vivo. Mechanistically, it was revealed that the m6A modification of matrix metallopeptidase 9 (MMP9) mRNA mediated by METTL3 promoted its expression in CRC by decreasing its degradation. Collectively, the findings of the present study suggested that the METTL3/MMP9 axis could serve as a novel promising therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Henglan Wu
- Department of Nephrology, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Ting Zuo
- Department of Anesthesia Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jianming Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhiheng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
38
|
Ye C, Liu X, Liu Z, Pan C, Zhang X, Zhao Z, Sun H. Fusobacterium nucleatum in tumors: from tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol Ther 2024; 25:2306676. [PMID: 38289287 PMCID: PMC10829845 DOI: 10.1080/15384047.2024.2306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Fusobacterium nucleatum, an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in cancer progression and prognosis. While extensive research has revealed mechanistic links between Fusobacterium nucleatum and colorectal cancer, a comprehensive review spanning its presence and metastatic implications in cancers beyond colorectal origin is conspicuously absent. This paper broadens our perspective from colorectal cancer to various malignancies associated with Fusobacterium nucleatum, including oral, pancreatic, esophageal, breast, and gastric cancers. Our central focus is to unravel the mechanisms governing Fusobacterium nucleatum colonization, initiation, and promotion of metastasis across diverse cancer types. Additionally, we explore Fusobacterium nucleatum's adverse impacts on cancer therapies, particularly within the domains of immunotherapy and chemotherapy. Furthermore, this paper underscores the clinical research significance of Fusobacterium nucleatum as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment.
Collapse
Affiliation(s)
- Chun Ye
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zilun Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuxuan Pan
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowei Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Central People’s Hospital of Ji’an, Shanghai East Hospital of Ji’an, Ji’an, China
| |
Collapse
|
39
|
Machfuudzoh A, Pitaksaringkarn W, Koshiba R, Higaki T, Rakwal R, Ohba Y, Asahina M, Satoh S, Iwai H. At2-MMP Is Required for Attenuation of Cell Proliferation during Wound Healing in Incised Arabidopsis Inflorescence Stems. PLANT & CELL PHYSIOLOGY 2024; 65:1821-1832. [PMID: 39275791 DOI: 10.1093/pcp/pcae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/16/2024]
Abstract
Wound healing of partially incised Arabidopsis inflorescence stems constitutes cell proliferation that initiates mainly in pith tissues about 3 d after incision and the healing process that completes in about 7 d. Although the initiation mechanisms of cell proliferation have been well documented, the suppression mechanisms remain elusive. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases well known as proteolytic enzymes in animal system functioning in extracellular matrix remodeling during physiological and pathological processes, including tissue differentiation, growth, defense, wound healing and control of cancer growth. In this study, we report that At2-MMP might contribute to the suppression mechanism for cell proliferation during the tissue-repair process of incised inflorescence stems. At2-MMP transcript was gradually upregulated from day 0 to 5 after incision and slightly decreased on day 7. Morphological analysis of incised stem of defected mutant at2-mmp revealed significantly enhanced cell proliferation around the incision site. Consistent with this, semi-quantitative analysis of dividing cells displayed a significant increment in the number of dividing cells in at2-mmp as compared to wild type. These results showed that the upregulation of At2-MMP at a later stage of the wound-healing process is likely to be involved in the completion of the process by attenuating cell proliferation.
Collapse
Affiliation(s)
- Afiifah Machfuudzoh
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Weerasak Pitaksaringkarn
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Ryo Koshiba
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860, 8555 Japan
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Yusuke Ohba
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320,8551 Japan
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, 320,8551 Japan
| | - Shinobu Satoh
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Hiroaki Iwai
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| |
Collapse
|
40
|
Zhou Y, Wang L, Xu W, An J, Hu G, Cao F, Huang L. Hsa_circ_0002346 inhibits proliferation, invasion, and migration of breast cancer cells and promotes apoptosis: A novel potential biomarker for breast cancer. Cancer Biomark 2024; 41:18758592241297847. [PMID: 40094400 DOI: 10.1177/18758592241297847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundCircular RNA hsa_circ_0002346 has been implicated in the progression of various tumors, yet the functional role in breast cancer remains poorly understood. This study aimed to investigate the significance of hsa_circ_0002346 in breast cancer (BC).MethodsQuantitative reverse transcriptase polymerase chain reaction assays were performed to detect hsa_circ_0002346 expression in BC cell lins and 27 patients with BC. Then, siRNAs were used to knock down hsa_circ_0002346. And detecting function of downregulated hsa_circ_0002346 by proliferation colony formation, apoptosis assays, wound-healing assays and Transwell assays. Finally, we assess the levels of the EMT-associated proteins.ResultsOur findings suggest that hsa_circ_0002346 levels were significantly downregulated in breast cancer and may play a crucial role in regulating key cellular processes associated with cancer progression. The expression level of hsa_circ_0002346 was correlated with lymph node metastasis. The knockdown of hsa_circ_0002346 resulted in increased tumor cell proliferation, invasion, migration and decreased apoptosis. Additionally, alterations in the expression of EMT-associated proteins further support the hypothesis that hsa_circ_0002346 is implicated in the metastatic processes of breast cancer.Conclusionhsa_circ_0002346 emerges as a promising biomarker for breast cancer and a potential therapeutic target for future treatment strategies.
Collapse
Affiliation(s)
- Yixin Zhou
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Linyi Wang
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wangjin Xu
- Department of Breast Surgery, Hangzhou Traditional Chinese Medicine Hospital, Hangzhou, China
| | - Jiaxiang An
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Guoming Hu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Feilin Cao
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Liming Huang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
41
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
42
|
Gamal H, Ismail KA, Omar AMME, Teleb M, Abu-Serie MM, Huang S, Abdelsattar AS, Zamponi GW, Fahmy H. Non-small cell lung cancer sensitisation to platinum chemotherapy via new thiazole-triazole hybrids acting as dual T-type CCB/MMP-9 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2388209. [PMID: 39140776 PMCID: PMC11328607 DOI: 10.1080/14756366.2024.2388209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.
Collapse
Affiliation(s)
- Hassan Gamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Khadiga A Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| | - A-Mohsen M E Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Abdalla S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Sciences and Technology, October Gardens, Giza, Egypt
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
43
|
Doppelt-Flikshtain O, Asbi T, Younis A, Ginesin O, Cohen Z, Tamari T, Berg T, Yanovich C, Aran D, Zohar Y, Assaraf YG, Zigdon-Giladi H. Inhibition of osteosarcoma metastasis in vivo by targeted downregulation of MMP1 and MMP9. Matrix Biol 2024; 134:48-58. [PMID: 39278602 DOI: 10.1016/j.matbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Osteosarcoma (OS) mortality stems from lung metastases. Matrix metalloproteinases (MMPs) facilitate metastatic dissemination by degrading extracellular matrix components. Herein we studied the impact of targeted MMP downregulation on OS metastasis. Differential gene expression analysis of human OS cell lines revealed high MMP9 expression in the majority of OS cell lines. Furthermore, 143B, a metastatic OS cell line, exhibited increased MMP1 and MMP9 mRNA levels. Gene set enrichment analysis on metastatic and non-metastatic OS patient specimens indicated epithelial-mesenchymal transition as the most enriched gene set, with MMP9 displaying strong association to genes in this network. Using the same dataset, Kaplan-Meier analysis revealed a correlation between MMP1 expression and dismal patient survival. Hence, we undertook targeted suppression of MMP1 and MMP9 gene expression in OS cell lines. The ability of OS cells to migrate and form colonies was markedly reduced upon MMP1 and MMP9 downregulation, whereas their cell proliferation capacity remained intact. MMP9 downregulation decreased tumor growth and lung metastases area in an orthotopic mouse OS model. Consistently, human OS lung metastasis specimens displayed marked MMP9 protein expression. Our findings highlight the role of MMP1 and MMP9 in OS metastasis, warranting further exploration of simultaneous inhibition of MMPs for future OS therapeutics.
Collapse
Affiliation(s)
- Ofri Doppelt-Flikshtain
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Thabet Asbi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Amin Younis
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Ofir Ginesin
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Ziv Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Tal Berg
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Chen Yanovich
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dvir Aran
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
44
|
Quan J, Xie D, Li Z, Yu X, Liang Z, Chen Y, Wu L, Huang D, Lin L, Fan L. Luteolin alleviates airway remodeling in asthma by inhibiting the epithelial-mesenchymal transition via β-catenin regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156090. [PMID: 39393303 DOI: 10.1016/j.phymed.2024.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Asthma is a prevalent long-term inflammatory condition that causes airway inflammation and remodeling. Increasing evidence indicates that epithelial-mesenchymal transition (EMT) holds a prominent implication in airway reconstruction in patients with asthma. Flavonoids obtained from Chinese Materia Medica (CMM), such as Luteolin (Lut), exhibit various beneficial effects in various asthma models. Lut has been shown to mitigate various asthma symptoms, including airway inflammation, hyperresponsiveness, bronchoconstriction, excessive mucus production, pulmonary autophagy, and neutrophilic asthma. However, whether flavonoids can suppress EMT-associated airway remodeling in asthma and the fundamental mechanisms involved remain unclear, with no studies specifically addressing Lut in this context. PURPOSE To evaluate the inhibition of airway remodeling in asthma by Lut and its potential mechanisms, while examining the significance of β-catenin in this process through cellular and animal studies. METHODS A BEAS-2B cell model stimulated by lipopolysaccharide (LPS) was established in vitro. Wound closure and Transwell assays were utilized to assess the cellular migratory ability. EMT- and fibrosis-related markers in LPS-stimulated cells were evaluated using RT-qPCR and western blotting. The status of the β-catenin/E-cadherin and β-catenin destruction complexes was evaluated using western blotting, immunofluorescence (IF) staining, and co-immunoprecipitation (Co-IP) analysis. The regulatory function of Lut in β-catenin-dependent EMT was further validated by β-catenin overexpression with adenovirus transduction and siRNA-mediated knockdown of β-catenin. Moreover, the counts of different types of bronchoalveolar lavage fluid (BALF) inflammatory cells from mice with asthma induced by ovalbumin (OVA) were evaluated in vivo using Congo red staining. Hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining were used to evaluate collagen deposition, mucus production, and inflammation in murine lung tissues. Western blotting and immunohistochemistry (IHC) assays were used to assess EMT- and fibrosis-related markers in the lung tissues in vivo. RESULT Six naturally derived flavonoids, including Lut, attenuated cell migration and prevented EMT in LPS-treated BEAS-2B cells. Moreover, Lut suppressed TGF-β1, MMP-9, fibronectin (FN), and α-smooth muscle actin (α-SMA) levels in LPS-stimulated BEAS-2B cells. Additionally, Lut downregulated the levels of β-catenin by modulating the β-catenin/E-cadherin and β-catenin destruction complexes, highlighting the pivotal role of β-catenin in EMT inhibition by Lut in LPS-stimulated BEAS-2B cells. Furthermore, Lut suppressed airway inflammation and attenuated EMT-associated airway remodeling through β-catenin blockade in OVA-induced asthmatic mice. The bronchial wall thickness notably reduced from 37.24 ± 4.00 μm in the asthmatic model group to 30.06 ± 4.40 μm in the Lut low-dose group and 24.69 ± 2.87 μm in the Lut high-dose group. CONCLUSION According to our current understanding, this research is the first to reveal that Lut diminishes airway remodeling in asthma by inhibiting EMT via β-catenin regulation, thereby filling a research gap concerning Lut and flavonoids. These results provide a theoretical basis for treating asthma with anti-asthmatic CMM, as well as a candidate and complementary therapeutic approach to treat asthma.
Collapse
Affiliation(s)
- Jingyu Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zihong Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Lin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
45
|
Xu J, Tang Z. Progress on angiogenic and antiangiogenic agents in the tumor microenvironment. Front Oncol 2024; 14:1491099. [PMID: 39629004 PMCID: PMC11611712 DOI: 10.3389/fonc.2024.1491099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
The development of tumors and their metastasis relies heavily on the process of angiogenesis. When the volume of a tumor expands, the resulting internal hypoxic conditions trigger the body to enhance the production of various angiogenic factors. These include vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and transforming growth factor-α (TGF-α), all of which work together to stimulate the activation of endothelial cells and catalyze angiogenesis. Antiangiogenic therapy (AAT) aims to normalize tumor blood vessels by inhibiting these angiogenic signals. In this review, we will explore the molecular mechanisms of angiogenesis within the tumor microenvironment, discuss traditional antiangiogenic drugs along with their limitations, examine new antiangiogenic drugs and the advantages of combination therapy, and consider future research directions in the field of antiangiogenic drugs. This comprehensive overview aims to provide insights that may aid in the development of more effective anti-tumor treatments.
Collapse
Affiliation(s)
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
46
|
Kim JW, Jeong JS, Kim JH, Kim CY, Chung EH, Ko JW, Kim TW. Turmeric extract alleviates airway inflammation via oxidative stress-driven MAPKs/MMPs pathway. Int Immunopharmacol 2024; 141:113018. [PMID: 39216235 DOI: 10.1016/j.intimp.2024.113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Turmeric (Curcuma longa L.) extract (CLE) has been shown to elicit several pharmacological properties and is widely used in Asian traditional medicine. Herein, we assessed the impact of CLE on airway inflammation in BALB/c mice and A549 cells to clarify the underlying mechanism. An asthmatic mouse model was established by administering ovalbumin (OVA). CLE (100 or 300 mg/kg/day) was orally administered daily from days 18 to 23, with dexamethasone (3 mg/kg/day) used as the positive control. Human airway epithelial cells, A549, were stimulated using recombinant tumor necrosis factor-α. The CLE100 and CLE400 groups exhibited a significant downregulation in eosinophil counts, cytokine levels, and immunoglobulin-E levels. Moreover, CLE administration dose-dependently suppressed oxidative stress and airway inflammation in the lung tissue. CLE administration inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the expression and activity of matrix metalloproteinase (MMP)-9. In vitro, CLE treatment reduced mRNA levels of proinflammatory cytokines, MAPK phosphorylation, and the expression and activity of MMP-2 and MMP-9. Additionally, 50 µg/mL CLE and 2.5 µg/mL curcumin showed similar anti-inflammatory effects. Collectively, our findings revealed that CLE could suppress airway inflammation in asthmatic mice and A549 cells via oxidative stress-driven MAPK/MMPs signaling, suggesting that CLE could be developed as a potential treatment option for patients with asthma.
Collapse
Affiliation(s)
- Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Eun-Hye Chung
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea.
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea.
| |
Collapse
|
47
|
Du F, Li J, Zhong X, Zhang Z, Zhao Y. Endothelial-to-mesenchymal transition in the tumor microenvironment: Roles of transforming growth factor-β and matrix metalloproteins. Heliyon 2024; 10:e40118. [PMID: 39568849 PMCID: PMC11577214 DOI: 10.1016/j.heliyon.2024.e40118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Cancer is a leading cause of global morbidity and mortality. Tumor cells grow in a complex microenvironment, comprising immune cells, stromal cells, and vascular cells, collaborating to support tumor growth and facilitate metastasis. Transforming growth factor-beta (TGF-β) is a multipotent factor that can not only affect fibrosis promotion but also assume distinct roles in the early and late stages of the tumor. Matrix metalloproteinases (MMPs) primarily function to degrade the extracellular matrix, a pivotal cellular player in tumor progression. Moreover, endothelial-to-mesenchymal transition (EndMT), similar to epithelial-to-mesenchymal transition, is associated with cancer progression by promoting angiogenesis, disrupting the endothelial barrier, and leading to cancer-associated fibroblasts. Recent studies have underscored the pivotal roles of TGF-β and MMPs in EndMT. This review delves into the contributions of TGF-β and MMPs, as well as their regulatory mechanisms, within the tumor microenvironment. This collective understanding offers fresh insights into the potential for combined targeted therapies in the fight against cancer.
Collapse
Affiliation(s)
- Fei Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacy, Meishan TianFu New Area People's Hospital, Meishan, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
48
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
49
|
Gomaa MS, Ahmed AHA, El Rayes SM, Ali IAI, Fathalla W, Alturki MS, Al Khzem AH, Almalki AH, Aldawsari MF, Pottoo FH, Khan FA, Amir M. Synthesis and antiproliferative activity of 2-oxo-3-phenylquinoxaline derivatives and related compounds against colon cancer. RSC Adv 2024; 14:35679-35695. [PMID: 39524090 PMCID: PMC11544594 DOI: 10.1039/d4ra06822j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
We have designed 17 new 2-oxo-3-phenylquinoxalines via the chemoselective Michael reaction of 3-phenylquinoxalin-2(1H)-one with acrylic acid derivatives. The ester, ethyl 3-(2-oxo-3-phenylquinoxalin-1(2H)-yl)propanoate, was reacted with hydroxylamine and hydrazine to produce N-hydroxy-3-(2-oxo-3-phenylquinoxalin-1(2H)-yl)propanamide and hydrazide, respectively. Further modifications were made through reactions with isothiocyanates and azide coupling with amines, yielding thiosemicarbazides and N-alkyl derivatives. Molecular docking studies identified compound 7j as the most potent binder, fitting well into the active site, with the phenyl ring occupying the S1 pocket and the amino acid chain positioned in the S2 pocket. The synthesized compounds (2a, 4, 7a, 7g, 7d, 7h, 7e, 7b, 7c, 7f, and 7j) were evaluated for their anti-cancer activity on colorectal cancer (HCT-116) cells. Compounds 2a and 7j showed significant reductions in cell viability, with IC50 values of 28.85 ± 3.26 μg mL-1 and 26.75 ± 3.50 μg mL-1, respectively. Image analysis of HCT-116 cells treated with 60 μg mL-1 of compound 7j for 48 hours revealed notable morphological changes in both nuclei and cells. The number of cells reduced from 447 in the control to 238 in the treated group, with a corresponding reduction in the area covered by cells from 41.9% to 17.6%. Nuclear disintegration and chromatin fragmentation were observed, confirming apoptosis. These results highlight the potent cytotoxic effect of compound 7j.
Collapse
Affiliation(s)
- M S Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Eastern Province Kingdom of Saudi Arabia
| | - Abdulghany H A Ahmed
- Chemistry Department, Faculty of Medicinal Science, University of Science and Technology Aden 15201 Yemen
| | - S M El Rayes
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia Egypt
| | - Ibrahim A I Ali
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia Egypt
| | - Walid Fathalla
- Department of Physical Sciences, Faculty of Engineering, Suez Canal University Ismailia Egypt
| | - Mansour S Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Eastern Province Kingdom of Saudi Arabia
| | - Abdulaziz Hassan Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Eastern Province Kingdom of Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University Al-Hawiah Taif 21944 Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - F H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Eastern Province P. O. Box 1982 Dammam 31441 Saudi Arabia
| | - Firdos A Khan
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, (IRMC), Imam Abdul Rahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Mohd Amir
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University Dammam 1982 Saudi Arabia
| |
Collapse
|
50
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|