1
|
Zhu X, Li Q, Wu J, Ju Z. Discovery of Safe COX-2 Inhibitors: Achieving Reduced Colitis Side Effects through Balanced COX Inhibition. ChemMedChem 2025; 20:e202500096. [PMID: 40012482 DOI: 10.1002/cmdc.202500096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 02/28/2025]
Abstract
The severe adverse effects associated with imbalanced cyclooxygenase-2 (COX-2) inhibition continue to pose significant challenges in the development of contemporary anti-inflammatory drugs. In recent years, the approach to COX-2 inhibitor drug development has shifted from a focus on highly selective inhibition of COX-2 to a strategy that emphasizes more moderate selectivity. The amino acid sequence and structural similarities between inducible COX-2 and constitutive cyclooxygenase-1 (COX-1) isoforms present both substantial opportunities and challenges for the design of next generation of balanced COX-2 inhibitors. As part of our ongoing research into the discovering novel and safer COX-2 inhibitors, we reported herein a highly potent and balanced COX-2 inhibitor 21 d (IC50 value=1.35 μM, selectivity profile (IC50 (COX-1)/IC50 (COX-2)=22.34)). In vivo assays demonstrated that 21 d significantly alleviated histological damage and provided robust protection against dextran sulfate sodium (DSS)-induced acute colitis.
Collapse
Affiliation(s)
- Xinlin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qin Li
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400000, China
| | - Junhui Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Meenatchi V, Won SY, Almarhoon ZM, Han SS. Assessment of pyrazolone derivatives as a new class of cyclooxygenase-2 and aflatoxigenic fungal inhibitors. Int J Biol Macromol 2025; 311:143903. [PMID: 40334893 DOI: 10.1016/j.ijbiomac.2025.143903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
The development of anti-inflammatory compounds is crucial because of the complexity of the wound-healing process associated with bacterial infections. Anti-inflammatory compounds have been rapidly developed for use in biomedical fields. In this study, three new skin fibroblast cell promotors (pyrazolone derivatives) with pyrazolone cores were designed and synthesized to evaluate their inhibitory effects on the cyclooxygenase-2 enzyme. The pyrazolone derivatives were characterized using FTIR, 1H and 13C NMR, and DSC. These pyrazolone derivatives exhibited excellent biocompatibility, resulting in significant proliferation of NIH/3 T3 fibroblast cells, as confirmed through fluorescence microscopy in the live-dead cell assay. Moral anti-inflammatory property was verified by the strong interactions between inflammation-responsible enzyme 6-COX and ligands. In vitro anticancer activity assessments revealed that the pyrazolone derivatives did not reduce the viability of breast cancer MDA-MB231 cells as opposed to the control group. Additionally, the pyrazolone derivatives displayed great antibacterial activity against Staphylococcus aureus and Escherichia coli, with a 100 ± 0.1 % inhibitory efficiency for 24 h. Moreover, the pyrazolone derivatives showed good antifungal activity against Aspergillus flavus, effectively inhibiting the secretion of aflatoxins (98 ± 0.1 %). Our results demonstrated that these newly synthesized pyrazolone derivatives are promising candidates for application in anti-inflammatory or wound-dressing treatments.
Collapse
Affiliation(s)
- Venkatasamy Meenatchi
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - So Yeon Won
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
3
|
Mustafa H, Daud S, Sheraz S, Bibi M, Ahmad T, Sardar A, Fazal T, Khan A, Abid OUR. The Chemistry and Bioactivity of Mefenamic Acid Derivatives: A Review of Recent Advances. Arch Pharm (Weinheim) 2025; 358:e70004. [PMID: 40376734 DOI: 10.1002/ardp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Mefenamic acid (MA) represents an efficient nonsteroidal anti-inflammatory drug (NSAID) for treatment in many circumstances of painful conditions and inflammation, but its poor water solubility and gastrointestinal side effects often obstruct its clinical application. Consequently, researchers have been conducting studies on the synthesis of prodrugs and heterocyclic compounds as MA derivatives for the improvement of their pharmacological profile. This review discusses an overview of recent developments in the synthesis and biological applications of MA derivatives. It covers several strategies used to modify the chemical structure of MA to pursue pharmacokinetic improvement, solubility, and targeting features, among which are heterocyclic moieties and prodrug design. Following the many synthetically produced derivatives of MA, mainly proposed between classic organic synthesis and more recent methodologies, such as microwave-assisted synthesis and green chemistry protocols, this review will consider how different structural variations are able to influence the assumed pharmacological actions: analgesic, anti-inflammatory, and anticancer. The findings demonstrate significant progress toward the development of safer and more effective NSAID therapies; thus, they support, in a broad and unprecedented way, the potential of MA derivatives and prodrugs in transforming the state of pain management and inflammation treatment.
Collapse
Affiliation(s)
- Hifza Mustafa
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Saima Daud
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Sabahat Sheraz
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Maria Bibi
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Tauseef Ahmad
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Asma Sardar
- Department of Chemistry, Fatima Jinnah Woman University, Rawalpindi, Pakistan
| | - Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Asma Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | | |
Collapse
|
4
|
Presnukhina SI, Baykova SO, Chukanova EA, Metalnikova NM, Baykov SV, Soldatova NS, Postnikov PS, Boyarskiy VP. Copper-catalyzed N-arylation of 1,2,4-oxadiazin-5(6 H)-ones by diaryliodonium salts. Org Biomol Chem 2025; 23:4217-4225. [PMID: 40190216 DOI: 10.1039/d5ob00204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Herein, we developed a new synthetic approach for the preparation of N-arylated 1,2,4-oxadiazin-5(6H)-ones by direct arylation with diaryliodonium salts. The reaction with symmetrical diaryliodonium salts using CuI as a catalyst proceeded in toluene in the presence of DIPEA at 60 °C with the formation of the desired products in isolated yields of 46 to 97% (20 examples). The use of more readily available unsymmetrical diaryliodonium salts required higher reaction temperatures (up to 100 °C) to achieve similar yields. The only limitation observed in reaction was with an ortho-substituted iodonium salt. In all other cases, the developed approach allowed the preparation of a broad range of N-arylated 1,2,4-oxadiazin-5(6H)-ones under mild conditions utilizing a cheap and readily available catalyst.
Collapse
Affiliation(s)
- Sofia I Presnukhina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Svetlana O Baykova
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Elizaveta A Chukanova
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Nadezhda M Metalnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Vadim P Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| |
Collapse
|
5
|
Banerjee M, Chatterjee A, Aneja S, Chatterjee A. Mechanochemical Functionalization of Heterocycles by C-H Activation: An Update. J Org Chem 2025; 90:5323-5335. [PMID: 40162735 DOI: 10.1021/acs.joc.4c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The mechanochemical C-H activation of heterocycles presents a sustainable, solvent-free alternative to the traditional solution-phase synthesis. Heterocycles are fundamental molecular scaffolds in medicinal chemistry and drug discovery. This review highlights recent advances in mechanochemical methods for metal-catalyzed and metal-free C-H functionalization/derivatization, including arylation, alkenylation, acylation, borylation, trifluoromethylation, etc., applied across various heterocyclic compounds. Emphasizing green aspects, this synopsis provides a comprehensive overview of mechanochemical innovations, their unique features and advantages, transformative potential for ecofriendly synthesis, and future prospects of sustainability.
Collapse
Affiliation(s)
- Mainak Banerjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, India
| | - Abboy Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, India
| | - Shaurya Aneja
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, India
| | - Amrita Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, India
| |
Collapse
|
6
|
Rodrigues DCDN, Porto JCS, Dos Santos IL, Filho JIAB, Ferreira PMP. Repositioning anthelmintics for the treatment of inflammatory-based pathological conditions. Inflammopharmacology 2025; 33:551-571. [PMID: 39589670 DOI: 10.1007/s10787-024-01605-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 11/27/2024]
Abstract
Acute, uncontrolled and/or long-lasting inflammation causes a breakdown in immunological tolerance, leading to chronicity and contributing to a series of significant local or systemic tissue changes. Anti-inflammatory efficacy, fewer adverse effects, improved selectivity, and curative action are imminent issues for patients suffering from chronic inflammation-related pathologies. Then, we performed a complete and critical review about anthelmintics, discussing the main classes and the available preclinical evidence on repurposing to treat inflammation-based conditions. Despite low bioavailability, many benzimidazoles (albendazole and mebendazole), salicylanilides (niclosamide), macrocyclic lactones (avermectins), pyrazinoisoquinolones (praziquantel), thiazolides (nitazoxanide), piperazine derivatives, and imidazothiazoles (levamisole) indicate that repositioning is a promising strategy. They may represent a lower cost and time-saving course to expand anti-inflammatory options. Although mechanisms of action are not fully elucidated and well-delineated, in general, anthelmintics disrupt mitogen-activated protein kinases, the synthesis of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-12, and IFN-γ), the migration and infiltration of leukocytes, and decrease COX-2 expression, which impacts negatively on the release of prostanoids and leukotrienes. Moreover, some of them reduce nuclear accumulation of NF-κB (niclosamide, albendazole, and ivermectin), levels of nitric oxide (nitazoxanide and albendazole), and mucus, cytokines, and bronchoconstriction in experimental inflammatory pulmonary diseases (ivermectin and niclosamide). Considering the linking between cytokines, bradykinin, histamine, and nociceptors with algesia, anthelmintics also stand out for treating inflammatory pain disorders (ivermectin, niclosamide, nitazoxanide, mebendazole, levamisole), including for cancer-related pain status. There are obstacles, including the low bioavailability and the first-pass metabolism.
Collapse
Affiliation(s)
- Débora Caroline do Nascimento Rodrigues
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil
| | - Jhonatas Cley Santos Porto
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil
| | - Ingredy Lopes Dos Santos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil.
| |
Collapse
|
7
|
Nguyen LTH, Vu DH, Pham MQ, Ngo QA, Vo NB. Design, synthesis, anti-inflammatory evaluation, and molecular docking studies of novel quinazoline-4(3 H)-one-2-carbothioamide derivatives. RSC Adv 2025; 15:2850-2861. [PMID: 39877699 PMCID: PMC11774271 DOI: 10.1039/d4ra09094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
In this paper, a series of novel quinazoline-4(3H)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized via the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S8/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells. Compounds 8d (IC50 = 2.99 μM), 8g (IC50 = 3.27 μM), and 8k (IC50 = 1.12 μM) exhibited potent inhibition of NO production compared to the standard drug dexamethasone (IC50 = 14.20 μM). Compound 8a (IC50 = 13.44 μM) exhibited NO inhibition comparable to dexamethasone. Structure-activity relationship (SAR) studies indicated that the presence of both the thioamide functional group (NH-C[double bond, length as m-dash]S) directly attached to the phenyl ring containing halogen substituents (4-Cl, 8d), (4-Br, 8g) and (4-CF3, 8k), is responsible for the potent anti-inflammatory activity of these novel quinazolinone derivatives. Computational modeling studies revealed that compounds 8d, 8g, and 8k are potent inhibitors of TLR4 signaling through the formation of hydrophobic interactions and are stabilized by hydrogen bonds. Replacing the thioamide (8k) with an amide (8q) resulted in an 83-fold decrease in NO inhibitory potency. This highlights the important role of H-bonding involving the thioamide group. The structural shape difference results in favorable interactions of quinazolinones containing thioamide linkers compared to amide linkers to the target receptor. Furthermore, the ADMET profiles and physicochemical properties of these three lead compounds were predicted to meet the criteria for drug-like properties. Therefore, these compounds may be potential candidates for the treatment of many inflammatory diseases associated with immune disorders.
Collapse
Affiliation(s)
- Le Thanh Hang Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology 1 Dai Co Viet Street Hanoi Vietnam
| | - Dinh Hoang Vu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology 1 Dai Co Viet Street Hanoi Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry (INPC), Vietnam Academy of Science and Technology (VAST) Hanoi Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST) Hanoi Vietnam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| |
Collapse
|
8
|
Shen C, Mao Z, Chen T, Wei Y, Zhou T, Zhong N, Zhu G, Shi Q, Xie Z, Zhao H, Zhang X. Design, Synthesis, and Biological Evaluation of 2-Arylaminopyrimidine Derivatives as Dual Cathepsin L and JAK Inhibitors for the Treatment of Acute Lung Injury. J Med Chem 2025; 68:361-386. [PMID: 39699557 DOI: 10.1021/acs.jmedchem.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Acute lung injury (ALI) is a disease characterized by pulmonary inflammation, blood barrier functional disorder, and hypoxemia. Herein, a series of 2-aminopyrimidine derivatives were synthesized. Most of them exhibited inhibitory effects on inflammatory cytokines IL-6 and IL-8 in human bronchial epithelial (HBE) cells at a concentration of 5 μM without significant cytotoxicity. Compound A8 displayed an excellent anti-inflammatory activity, achieving inhibition rates of 83% for IL-6 and 85% for IL-8. Besides, A8 has a strong binding affinity to CTSL and a good inhibitory activity on JAKs. Western blot analysis indicated that compound A8 strongly blocked the maturation of CTSL and the phosphorylation of p-38, p-65, and STATs, thereby repressing the activation of the MAPK, NF-κB, and JAK/STAT signaling pathway. Moreover, animal experiments showed that A8 played a protective and therapeutic role in ALI in mice, validating its potential as a treatment for ALI.
Collapse
Affiliation(s)
- Chunwei Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhengtong Mao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianpeng Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yingying Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P. R. China
| | - Tao Zhou
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ningyuan Zhong
- Shaoxing Institute for Food and Drug Control, Shaoxing, Zhejiang 312071, P. R. China
| | - Gaoyang Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zheyu Xie
- Shaoxing Institute for Food and Drug Control, Shaoxing, Zhejiang 312071, P. R. China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P. R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
9
|
Ali S, Naz Awan A, Batool S, Aslam S, Naseer A. Comprehensive drug-like assessment of pyridine carbothioamide analogs: from molecular modeling to in-vivo evaluation. Future Med Chem 2025; 17:171-181. [PMID: 39743753 PMCID: PMC11749381 DOI: 10.1080/17568919.2024.2444864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
AIM To evaluate the anti-inflammatory potential of novel class of chemical compounds designed by the linkage of carbothioamide moiety with pyridine. MATERIALS & METHODS In silico analysis was conducted using molecular docking followed by an in vitro cytotoxicity assay and evaluation of anti-inflammatory activity. Subsequently, in vivo performance was determined using the Complete Freund's Adjuvant-induced inflammatory model, employing macroscopic, histopathological, and protein expression analyses. RESULTS Molecular interaction studies revealed that compound R2 displayed the most favorable binding mode with human nitric oxide synthase, cyclooxygenase-1, and cycloxygenase-2. All compounds exhibit dose-dependent cytotoxicity. Notably, compound R4 was safer at higher concentration, whereas compound R2 was comparatively toxic. The in vitro anti-inflammatory activity demonstrated half maximal inhibitory concentration (IC50) values ranging from 10.25 ± 0.0 to 23.15 ± 4.24 µM, with compound R6 exhibiting the lowest IC50 value and compound R3 showing the highest. The in vivo results corroborated the anti-inflammatory effects, with a significant reduction in paw size (p < 0.001). Among the tested compounds, compound R4 exhibited the most potent anti-inflammatory activity, whereas R2 exhibited the least potency. CONCLUSION The study highlights the promise of discovering new anti-inflammatory drugs containing pyridine moiety with proven potency, efficacy, and reduced side effects.
Collapse
Affiliation(s)
- Sana Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Asia Naz Awan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Sehrish Batool
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Shazmeen Aslam
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
| | - Ayesha Naseer
- Isra College of Pharmacy, Isra University, Hyderabad, Pakistan
| |
Collapse
|
10
|
Prakash H, Chahal S, Sindhu J, Tyagi P, Sharma D, Guin M, Srivastava N, Singh K. Diastereomeric pure pyrazolyl-indolyl dihydrofurans: Unveiling isomeric selectivity in antibacterial action via in vitro and in silico insights. Bioorg Med Chem Lett 2024; 114:130005. [PMID: 39454968 DOI: 10.1016/j.bmcl.2024.130005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Developing pure diastereoisomeric molecular hybrids for the selective inhibition of bacterial growth opened new avenues for combating the ever-increasing microbial resistance. Considering this, a series of diastereoisomeric pure pyrazolyl-dihydrofurans (7a-7y) were synthesized and characterized using NMR, LCMS, and X-ray crystallography. DFT based method was used to explore the configurational stability of cis over trans isomeric form. Considering 7a and 8a as representative isomeric forms with same structural framework, the difference in their bio-efficacy against bacterial and fungal strains was assessed using serial dilution method. The relatively high inhibition of bacterial growth by the cis isomeric form (7a) (MIC = 1.562 µg/mL), amoxicillin (MIC = 3.125 µg/mL) inspired us to broaden the substrate scope for synthesizing a series of pure diastereoisomeric cis forms as selective anti-bacterial agents. However, both the isomers displayed antifungal activity less than the standard drug (Fluconazole) employed in the study. All the reactions proceeded smoothly and yielded a diverse array of dihydrofuran derivatives. The developed synthetics were found to be non-cytotoxic against mouse fibroblast cells and didn't affect the seed germination of Brassica nigra seeds when treated at 1 mg/mL concentration. The experimentally determined in vitro results were further validated using in silico molecular docking and dynamics studies.
Collapse
Affiliation(s)
- Hari Prakash
- Jubilant Biosys Ltd., Knowledge Park-II, Greater Noida 201310, Uttar Pradesh, India; Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India
| | - Sandhya Chahal
- Department of Chemistry, Chaudhary Ranbir Singh University, Jind, Haryana 126102, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Prateek Tyagi
- Department of Chemistry, Zakir Husain Delhi College, New Delhi, Delhi 110002, India
| | - Deepansh Sharma
- Department of Life Sciences, J.C. Bose University, Science and Technology, YMCA, Faridabad 126001, India
| | - Mridula Guin
- Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India
| | - Noopur Srivastava
- Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India.
| | - Kuldeep Singh
- Jubilant Biosys Ltd., Knowledge Park-II, Greater Noida 201310, Uttar Pradesh, India.
| |
Collapse
|
11
|
Bal M, Köse A, Güngör SA. Investigation of photoluminescence and DNA binding properties of benzimidazole compounds containing benzophenone group. J Biomol Struct Dyn 2024; 42:7847-7859. [PMID: 37526238 DOI: 10.1080/07391102.2023.2242496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
The synthesis of benzimidazole compounds containing benzophenone group in accordance with the literature and the investigation of DNA binding properties of these compounds by using UV-vis and photoluminescence spectroscopy methods constitute the basis of this research. The structures of the compounds were determined by methods such as FT-IR, 1H, 13C NMR, UV-vis, Photoluminescence spectroscopy, and X-ray crystallography. By using methods such as UV-vis, Photoluminescence spectroscopy, and viscosity tests, information were collected about the binding types, binding mode, and binding energies of the compounds with DNA. In addition, the binding interactions of the compounds with DNA were investigated using the molecular docking technique. Using this information, calibration equations, correlation coefficients (r2), and DNA binding constants (Kb) were calculated for their compounds. The binding constants (Kb) calculated for substances A, B, and C were found to be 3.0 × 104, 7.0 × 104, and 3.0 × 104 M-1, respectively. UV-vis, EB competitive binding, and viscosity tests showed that the compounds tended to bind to the DNA structure via the groove binding mode. At the end of molecular docking studies, it was determined that compound B showed the best DNA binding activity in in vitro studies. Compared with the studies in the literature, it is thought that the synthesized compounds can take place in cancer drug research as DNA binding agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Materials Science and Engineering, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School, Kahramanmaras Istiklal University, Kahramanmaraş, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| |
Collapse
|
12
|
Borkens Y. The Pathology of the Brain Eating Amoeba Naegleria fowleri. Indian J Microbiol 2024; 64:1384-1394. [PMID: 39282207 PMCID: PMC11399382 DOI: 10.1007/s12088-024-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/02/2024] [Indexed: 09/18/2024] Open
Abstract
The genus Naegleria is a taxonomic subfamily consisting of 47 free-living amoebae. The genus can be found in warm aqueous or soil habitats worldwide. The species Naegleria fowleri is probably the best-known species of this genus. As a facultative parasite, the protist is not dependent on hosts to complete its life cycle. However, it can infect humans by entering the nose during water contact, such as swimming, and travel along the olfactory nerve to the brain. There it causes a purulent meningitis (primary amoebic meningoencephalitis or PAME). Symptoms are severe and death usually occurs within the first week. PAME is a frightening infectious disease for which there is neither a proven cure nor a vaccine. In order to contain the disease and give patients any chance to survival, action must be taken quickly. A rapid diagnosis is therefore crucial. PAME is diagnosed by the detection of amoebae in the liquor and later in the cerebrospinal fluid. For this purpose, CSF samples are cultured and stained and finally examined microscopically. Molecular techniques such as PCR or ELISA support the microscopic analysis and secure the diagnosis.
Collapse
Affiliation(s)
- Yannick Borkens
- Institut für Pathologie, Charité Campus Mitte, Virchowweg 15, Charité, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
| |
Collapse
|
13
|
Meng J, Qiu C, Lu C, He X, Zhao X. A new crystalline daidzein-piperazine salt with enhanced solubility, permeability, and bioavailability. Front Pharmacol 2024; 15:1385637. [PMID: 39104399 PMCID: PMC11298695 DOI: 10.3389/fphar.2024.1385637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
To overcome the poor solubility, permeability, and bioavailability of the plant isoflavone daidzein (DAI), a novel salt of DAI with anhydrous piperazine (PIP) was obtained based on cocrystallization strategy. The new salt DAI-PIP was characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and optical microscopy. The results showed that the maximum apparent solubility (Smax) of DAI-PIP increased by 7.27-fold and 1000-fold compared to DAI in pH 6.8 buffer and water, respectively. The peak apparent permeability coefficient (P app ) of DAI-PIP in the Caco-2 cell model was 30.57 ± 1.08 × 10-6 cm/s, which was 34.08% higher than that of DAI. Additionally, compared to DAI, the maximum plasma concentration (Cmax) value of DAI-PIP in beagle dogs was approximately 4.3 times higher, and the area under the concentration-time curve (AUC0-24) was approximately 2.4 times higher. This study provides a new strategy to enhance the dissolution performance and bioavailability of flavonoid drugs, laying a foundation for expanding their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
14
|
El-Sofany WI, Azzam EMS, Latif S, Hamden K. Spirothiazolidine-Derivative on Silver Nanoparticles and Carbon Nanotubes: Evaluation of Antibacterial, Anti-Fungal, Anti-Inflammatory, Antioxidant and Gastroprotective Activities. Pharmaceutics 2024; 16:901. [PMID: 39065599 PMCID: PMC11279549 DOI: 10.3390/pharmaceutics16070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
This study aims to develop innovative heterocyclic nanocomposites incorporating silver nanoparticles (SNPs) for potential therapeutic applications targeting infections, gastric ulceration, inflammation, and oxidative damage. By synthesizing new derivatives of spiro-thiazolidine-carbonitrile (Py-ST-X) and incorporating them into Ag nanoparticles (AgNPs) and carbon nanotubes (CNTs), we have prepared Ag@Py-ST-X and Ag@Py-ST-X@CNT nanocomposites, respectively. The physical properties of these materials were studied using XRD, TEM, SEM, and Zeta potential techniques. In our investigation involving rats with gastric ulcers, we observed noteworthy inhibitory effects on gastric acid enzyme activity, specifically H+/K+ATPase, by Ag@Py-ST-NO2 and Ag@Py-ST-Br nanocomposites, demonstrating reductions of 25 and 34%, respectively, compared to untreated ulcers. Nanotubulation of these compounds further improved their inhibitory efficacy to 29 and 45%, respectively. Additionally, these nanoparticles showed the most potent myeloperoxidase (MPO)-inhibitory activity, demonstrating 36 and 49% inhibition, respectively, with nanotubulated versions reaching 44 and 53%. Moreover, Ag@Py-ST-NO2@CNT and Ag@Py-ST-Br@CNT nanotubes showed significant antioxidant activity, reducing thiobarbituric acid reactive substances (TBARS) by 35 and 51%, and hydrogen peroxide (H2O2) levels by 49 and 71%, respectively. These therapeutic effects were confirmed by reductions in gastric surface area (GSA) by 44% and 52%, a decrease in ulcer index (UI) from 80% to 44 and 38%, and an increase in curative index (CI) from 19 to 55 and 62% following administration of Ag@Py-ST-NO2@CNT and Ag@Py-ST-Br@CNT, respectively. Histological studies support these findings, suggesting the potential of these nanocomposites as promising candidates for treating various disorders.
Collapse
Affiliation(s)
- Walaa I. El-Sofany
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - Eid. M. S. Azzam
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
- Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
15
|
Mallah D, Mirjalili BBF, Bamoniri A. Carbon nanofiber/taurine-catalyzed synthesis of coumarin and 1,2,4,5-tetra-substituted imidazole derivatives under metal-free conditions. Sci Rep 2024; 14:10677. [PMID: 38724578 PMCID: PMC11082250 DOI: 10.1038/s41598-024-61249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The main subject of this research is the development of a suitable, efficient, and biocompatible carbon nanofiber-based catalytic system for the synthesis of coumarin and 1,2,4,5-tetra-substituted imidazoles. Brønsted acid carbon nanofiber/taurine catalyst was made during three steps: acid treatment, acylation, and then amination. The basic principles and general advantages of the synthesis method are elaborated. The acidity of the prepared nano-catalyst was investigated using the Hammet acidity technique and UV-Vis spectroscopy, and the H0 value for 5 × 10-2 mg/mL of CNF/T in 0.3 mM 4-nitroaniline solution was determined to be 1.47. The structure of the catalyst was successfully characterized using FT-IR, TGA, FESEM, XRD, TEM, EDX, EDS-MAP, BET, and XPS techniques. Here, we report the ability of carbon nanofiber/taurine as a Brønsted acid catalyst for the synthesis of coumarins and 1,2,4,5-tetra-substituted imidazole through a metal-free, cost-effective, and biocompatible multicomponent route. Among the advantages of this protocol are reaction time, excellent efficiency, reusability, and high activity of the catalyst.
Collapse
Affiliation(s)
- Dina Mallah
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| |
Collapse
|
16
|
Podila N, Penddinti NK, Rudrapal M, Rakshit G, Konidala SK, Pulusu VS, Bhandare RR, Shaik AB. Design, synthesis, biological and computational screening of novel pyridine-based thiadiazole derivatives as prospective anti-inflammatory agents. Heliyon 2024; 10:e29390. [PMID: 38655368 PMCID: PMC11036016 DOI: 10.1016/j.heliyon.2024.e29390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, a novel series of pyridine-based thiadiazole derivatives (NTD1-NTD5) were synthesized as prospective anti-inflammatory agents by combining substituted carboxylic acid derivatives of 5-substituted-2-amino-1,3,4-thiadiazole with nicotinoyl isothiocyanate in the presence of acetone. The newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectrometry. First, the compounds underwent rigorous in vivo testing for acute toxicity and anti-inflammatory activity and the results revealed that three compounds-NTD1, NTD2, and NTD3, displayed no acute toxicity and significant anti-inflammatory activity, surpassing the efficacy of the standard drug, diclofenac. Notably, NTD3, which featured benzoic acid substitution, emerged as the most potent anti-inflammatory agent among the screened compounds. To further validate these findings, an in silico docking study was carried out against COX-2 bound to diclofenac (PDB ID: 1pxx). The computational analysis demonstrated that NTD2, and NTD3, exhibited substantial binding affinity, with the lowest binding energies (-8.5 and -8.4, kcal/mol) compared to diclofenac (-8.4 kcal/mol). This alignment between in vivo and in silico data supported the robust anti-inflammatory potential of these derivatives. Moreover, molecular dynamics simulations were conducted, extending over 100 ns, to examine the dynamic interactions between the ligands and the target protein. The results solidified NTD3's position as a leading candidate, showing potent inhibitory activity through strong and sustained interactions, including stable hydrogen bond formations. This was further confirmed by RMSD values of 2-2.5 Å and 2-3Ǻ, reinforcing NTD3's potential as a useful anti-inflammatory agent. The drug likeness analysis of NTD3 through SwissADME indicated that most of the predicted parameters including Lipinski rule were within acceptable limits. While these findings are promising, further research is necessary to elucidate the precise relationships between the chemical structures and their activity, as well as to understand the mechanisms underlying their pharmacological effects. This study lays the foundation for the development of novel anti-inflammatory therapeutics, potentially offering improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Naresh Podila
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | | | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, India, Ranchi, 835215, Jharkhand, India
| | - Sathish Kumar Konidala
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Veera Shakar Pulusu
- Ohio University, Department of Chemistry & Biochemistry, Athens, OH, USA, 45701
| | - Richie R. Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P O Box 346, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, P O Box 346, Ajman, United Arab Emirates
| | - Afzal B. Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
17
|
Rayan SA, George RF, Mohamed NM, Said MF. Exploring of novel oxazolones and imidazolones as anti-inflammatory and analgesic candidates with cyclooxygenase inhibitory action. Future Med Chem 2024; 16:963-981. [PMID: 38639393 PMCID: PMC11221545 DOI: 10.4155/fmc-2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Aim: Over the last few decades, therapeutic needs have led to a search for safer COX-2 inhibitors with potential anti-inflammatory and analgesic activity. Materials & methods: A new series of oxazolone and imidazolone derivatives 3a-c and 4a-r were synthesized and evaluated as anti-inflammatory and analgesic agents. COX-1/COX-2 isozyme selectivity testing and molecular docking were performed. Results: All compounds showed good activities comparable to those of the reference, celecoxib. The most active compounds 3a, 4a, 4c, 4e and 4f showed promising gastric tolerability with an ulcer index lower than that of celecoxib. The molecular docking of p-methoxyphenyl derivative 4c showed alkyl interaction with the side pocket His75 of COX-2 and achieved the best anti-inflammatory activity, with a COX-2 selectivity index better than that of celecoxib.
Collapse
Affiliation(s)
- Seham A Rayan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11585, Egypt
| | - Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| |
Collapse
|
18
|
Zeng W, Pan J, Li W, Huang B, Lu X, Xiao J. Pyrazole derivative Z10 ameliorates acute pancreatitis by inhibiting the ERK/Ddt pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167088. [PMID: 38401696 DOI: 10.1016/j.bbadis.2024.167088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Acute pancreatitis (AP) can lead to death; however, there is no specific treatment for AP. Screening of drugs for AP treatment is rarely performed. Compounds were screened in a primary pancreatic acinar cell and peritoneal macrophage coculture system. Compounds were used in vitro and in vivo. Compound targets were predicted and validated. Among the 18 nitrogen-containing heterocycles, Z10 was shown to decrease the cerulein plus lipopolysaccharide (CL)-induced secretion of both acinar digestive enzymes and macrophage cytokines. Z10 was also shown to ameliorate CL-induced or sodium taurocholate-induced AP in mice. Proteomics analysis and enzyme linked immunosorbent assay (ELISA) revealed that Z10 decreased the levels of D-dopachrome tautomerase (Ddt) within macrophages and those in the extracellular milieu under CL treatment. Z10 also decreased Ddt expression in AP mice. Moreover, exogenous Ddt induced cytokine and digestive enzyme secretion, which could be inhibited by Z10. Ddt knockdown inhibited CL-induced cytokine secretion. Medium from CL-treated macrophages induced the release of amylase by acinar cells, and Ddt knockdown medium decreased amylase secretion. The target of Z10 was predicted to be ERK2. Z10 increased the thermostability of ERK1/2 but not ERK1 K72A/ERK2 K52A. The docking poses of ERK1 and ERK2 with Z10 were similar. Z10 inhibited ERK1/2 phosphorylation, and Ddt levels and cytokines were regulated by ERK1/2 during AP. Additionally, Z10 could not further inhibit cytokines under ERK1/2 knockdown with CL. Thus, this study revealed that Z10-mediated ERK1/2 inhibition decreased Ddt expression and secretion by macrophages. Ddt inhibition decreased cytokine release and digestive enzyme secretion.
Collapse
Affiliation(s)
- Wenying Zeng
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jian Pan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Wanlian Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Borong Huang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xing Lu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| | - Juan Xiao
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
19
|
Tian L, Cao C, Ho J, Stenzel MH. Maximizing Aqueous Drug Encapsulation: Small Nanoparticles Formation Enabled by Glycopolymers Combining Glucose and Tyrosine. J Am Chem Soc 2024; 146:8120-8130. [PMID: 38477486 DOI: 10.1021/jacs.3c12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Highly potent heterocyclic drugs are frequently poorly water soluble, leading to limited or abandoned further drug development. Nanoparticle technology offers a powerful delivery approach by enhancing the solubility and bioavailability of hydrophobic therapeutics. However, the common usage of organic solvents causes unwanted toxicity and process complexity, therefore limiting the scale-up of nanomedicine technology for clinical translation. Here, we show that an organic-solvent-free methodology for hydrophobic drug encapsulation can be obtained using polymers based on glucose and tyrosine. An aqueous solution based on a tyrosine-containing glycopolymer is able to dissolve solid dasatinib directly without adding an organic solvent, resulting in the formation of very small nanoparticles of around 10 nm loaded with up to 16 wt % of drug. This polymer is observed to function as both a drug solubilizer and a nanocarrier at the same time, offering a simple route for the delivery of insoluble drugs.
Collapse
|
20
|
Mehta V, Dwivedi AR, Ludhiadch A, Rana V, Goel KK, Uniyal P, Joshi G, Kumar A, Kumar B. A decade of USFDA-approved small molecules as anti-inflammatory agents: Recent trends and Commentaries on the "industrial" perspective. Eur J Med Chem 2024; 263:115942. [PMID: 38000212 DOI: 10.1016/j.ejmech.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Inflammation is the human body's defence process against various pathogens, toxic substances, irradiation, and physically injured cells that have been damaged. Inflammation is characterized by swelling, pain, redness, heat, as well as diminished tissue function. Multiple important inflammatory markers determine the prognosis of inflammatory processes, which include likes of pro-inflammatory cytokines which are controlled by nuclear factor kappa-B (NF-kB), mitogen-activated protein kinase (MAPK), Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway, all of which are activated in response to the stimulation of specific receptors. Besides these, the cyclooxygenase (COX) enzyme family also plays a significant role in inflammation. The current review is kept forth to compile a summary of small molecules-based drugs approved by the USFDA during the study period of 2013-2023. A thorough discussion has also been made to focus on biologics, macromolecules, and small chemical entities approved during this study period and their greener synthetic routes with a brief discussion on the chemical spacing parameters of anti-inflammatory drugs. The compilation is expected to assist the medicinal chemist and the scientist actively engaged in drug discovery and development of anti-inflammatory agents from newer perspectives during the current years.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | | | - Abhilash Ludhiadch
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, 10032, USA
| | - Vikas Rana
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India.
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Panchgaon, Manesar, 122413, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
21
|
Saeed K, Rafiq M, Khalid M, Hussain A, Siddique F, Hanif M, Hussain S, Mahmood K, Ameer N, Ahmed MM, Ali Khan M, Yaqub M, Jabeen M. Synthesis, characterization, computational assay and anti-inflammatory activity of thiosemicarbazone derivatives: Highly potent and efficacious for COX inhibitors. Int Immunopharmacol 2024; 126:111259. [PMID: 37992446 DOI: 10.1016/j.intimp.2023.111259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.
Collapse
Affiliation(s)
- Kinza Saeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Rafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Saghir Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
22
|
Alkahtani HM, Almehizia AA, Al-Omar MA, Obaidullah AJ, Zen AA, Hassan AS, Aboulthana WM. In Vitro Evaluation and Bioinformatics Analysis of Schiff Bases Bearing Pyrazole Scaffold as Bioactive Agents: Antioxidant, Anti-Diabetic, Anti-Alzheimer, and Anti-Arthritic. Molecules 2023; 28:7125. [PMID: 37894604 PMCID: PMC10609138 DOI: 10.3390/molecules28207125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In continuation of our research programs for the discovery, production, and development of the pharmacological activities of molecules for various disease treatments, Schiff bases and pyrazole scaffold have a broad spectrum of activities in biological applications. In this context, this manuscript aims to evaluate and study Schiff base-pyrazole molecules as a new class of antioxidant (total antioxidant capacity, iron-reducing power, scavenging activity against DPPH, and ABTS radicals), anti-diabetic (α-amylase% inhibition), anti-Alzheimer's (acetylcholinesterase% inhibition), and anti-arthritic (protein denaturation% and proteinase enzyme% inhibitions) therapeutics. Therefore, the Schiff bases bearing pyrazole scaffold (22a, b and 23a, b) were designed and synthesized for evaluation of their antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic properties. The results for compound 22b demonstrated significant antioxidant, anti-diabetic (α-amylase% inhibition), and anti-Alzheimer's (ACE%) activities, while compound 23a demonstrated significant anti-arthritic activity. Prediction of in silico bioinformatics analysis (physicochemical properties, bioavailability radar, drug-likeness, and medicinal chemistry) of the target derivatives (22a, b and 23a, b) was performed. The molecular lipophilicity potential (MLP) of the derivatives 22a, b and 23a, b was measured to determine which parts of the surface are hydrophobic and which are hydrophilic. In addition, the molecular polar surface area (PSA) was measured to determine the polar surface area and the non-polar surface area of the derivatives 22a, b and 23a, b. This study could be useful to help pharmaceutical researchers discover a new series of potent agents that may act as an antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic.
Collapse
Affiliation(s)
- Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Amer A. Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham Ng11 8NS, UK;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo 12622, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
23
|
Almehizia AA, Khattab AENA, Darwish AM, Al-Omar MA, Naglah AM, Bhat MA, Kalmouch A. Anti-inflammatory activity of novel derivatives of pyrazolo [3,4d] pyridazine against digestive system inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2729-2739. [PMID: 37126195 DOI: 10.1007/s00210-023-02493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
The digestive system is exposed to severe inflammation as a result of taking some medications that have gastrointestinal side effects. Sixty Swiss-albino male mice were randomly distributed into six groups to treat inflammations of the colon, stomach, and small intestine caused by taking high doses of diclofenac (D), with two novel synthesized compounds, pyrazolo [3,4 d] pyridazine derivatives (Co1 and Co2). Myeloperoxidase enzyme activity was determined in the colon and small intestinal tissues. Serum contents of TNF-α, IL-22, IgG, and IgM were determined by ELISA. Histopathological examinations of the colon, small intestinal, and stomach tissues were microscopically analyzed. TNF-α, IL-22, and TNFSF11 gene expression were measured in the colon, intestinal, and spleen using qRT-PCR. Diclofenac caused surface columnar epithelial cell loss, focal necrosis of the gastric mucosa, inflammatory cell infiltration, and congested blood vessels in the stomach, colon, and small intestinal tissues. Co1 component was found to be better than Co2 component in reducing the focal necrosis of gastric mucosa and improving the histological structures of the stomach, colon, and small intestinal tissues. After 14 days, the activity of the myeloperoxidase enzyme was increased in group D and decreased in groups DCo1, DCo2, Co1, and Co2. Serum concentrations of TNF-α and IgG were increased, while IL-22 and IGM were reduced in the D, DCo1, and DCo2 groups compared with the Co1 and control groups. TNF-α gene was upregulated in the D group and downregulated in the Co1 group, while the IL-22 gene was downregulated in the D group and upregulated in the Co1 group compared with the control group. The CO1 component may be useful in reducing digestive system inflammation.
Collapse
Affiliation(s)
- Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abd El-Nasser A Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed Mohamed Darwish
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Mohamed A Al-Omar
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
24
|
Gao R, Li F, Zhang Y, Kong P, Gao Y, Wang J, Liu X, Li S, Jiang L, Zhang J, Zhang C, Feng Z, Huang P, Wang W. An anti-inflammatory chondroitin sulfate-poly(lactic- co-glycolic acid) composite electrospinning membrane for postoperative abdominal adhesion prevention. Biomater Sci 2023; 11:6573-6586. [PMID: 37602380 DOI: 10.1039/d3bm00786c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Postoperative abdominal adhesion is a very common and serious complication, resulting in pain, intestinal obstruction and heavy economic burden. Post-injury inflammation that could activate the coagulation cascade and deposition of fibrin is a major cause of adhesion. Many physical barrier membranes are used to prevent abdominal adhesion, but their efficiency is limited due to the lack of anti-inflammatory activity. Here, an electrospinning membrane composed of poly(lactic-co-glycolic acid) (PLGA) providing support and mechanical strength and chondroitin sulfate (CS) conferring anti-inflammation activity is fabricated for preventing abdominal adhesion after injury. The PLGA/CS membrane shows a highly dense fiber network structure with improved hydrophilicity and good cytocompatibility. Importantly, the PLGA/CS membrane with a mass ratio of CS at 20% provides superior anti-adhesion efficiency over a native PLGA membrane and commercial poly(D, L-lactide) (PDLLA) film in abdominal adhesion trauma rat models. The mechanism is that the PLGA/CS membrane could alleviate the local inflammatory response as indicated by the promoted percentage of anti-inflammatory M2-type macrophages and decreased expression of pro-inflammatory factors, such as IL-1β, TNF-α and IL-6, resulting in the suppression of the coagulation system and the activation of the fibrinolytic system. Furthermore, the deposition of fibrin at the abdominal wall was inhibited, and the damaged abdominal tissue was repaired with the treatment of the PLGA/CS membrane. Collectively, the PLGA/CS electrospinning membrane is a promising drug-/cytokine-free anti-inflammatory barrier for post-surgery abdominal adhesion prevention and a bioactive composite for tissue regeneration.
Collapse
Affiliation(s)
- Rui Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Fenghui Li
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extra-corporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Yushan Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pengxu Kong
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yu Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Xiang Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Shuangyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Liqin Jiang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
25
|
Girgis AS, Panda SS, Kariuki BM, Bekheit MS, Barghash RF, Aboshouk DR. Indole-Based Compounds as Potential Drug Candidates for SARS-CoV-2. Molecules 2023; 28:6603. [PMID: 37764378 PMCID: PMC10537473 DOI: 10.3390/molecules28186603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has posed a significant threat to society in recent times, endangering human health, life, and economic well-being. The disease quickly spreads due to the highly infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research efforts by the scientific community since its emergence in 2019, no effective therapeutics have been discovered yet. While some repurposed drugs have been used to control the global outbreak and save lives, none have proven universally effective, particularly for severely infected patients. Although the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to combat current and future infections. This study reviews some of the most promising repurposed drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse bio-properties in various biological fields. The study also discusses natural and synthetic indole-containing compounds with anti-SARS-CoV-2 properties and computer-aided drug design (in silico studies) for optimizing anti-SARS-CoV-2 hits/leads.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; (B.M.K.)
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| |
Collapse
|
26
|
Goel KK, Thapliyal S, Kharb R, Joshi G, Negi A, Kumar B. Imidazoles as Serotonin Receptor Modulators for Treatment of Depression: Structural Insights and Structure-Activity Relationship Studies. Pharmaceutics 2023; 15:2208. [PMID: 37765177 PMCID: PMC10535231 DOI: 10.3390/pharmaceutics15092208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Serotoninergic signaling is identified as a crucial player in psychiatric disorders (notably depression), presenting it as a significant therapeutic target for treating such conditions. Inhibitors of serotoninergic signaling (especially selective serotonin reuptake inhibitors (SSRI) or serotonin and norepinephrine reuptake inhibitors (SNRI)) are prominently selected as first-line therapy for the treatment of depression, which benefits via increasing low serotonin levels and norepinephrine by blocking serotonin/norepinephrine reuptake and thereby increasing activity. While developing newer heterocyclic scaffolds to target/modulate the serotonergic systems, imidazole-bearing pharmacophores have emerged. The imidazole-derived pharmacophore already demonstrated unique structural characteristics and an electron-rich environment, ultimately resulting in a diverse range of bioactivities. Therefore, the current manuscript discloses such a specific modification and structural activity relationship (SAR) of attempted derivatization in terms of the serotonergic efficacy of the resultant inhibitor. We also featured a landscape of imidazole-based development, focusing on SAR studies against the serotoninergic system to target depression. This study covers the recent advancements in synthetic methodologies for imidazole derivatives and the development of new molecules having antidepressant activity via modulating serotonergic systems, along with their SAR studies. The focus of the study is to provide structural insights into imidazole-based derivatives as serotonergic system modulators for the treatment of depression.
Collapse
Affiliation(s)
- Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| | - Somesh Thapliyal
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
| | - Rajeev Kharb
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
| | - Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
- Department of Chemistry, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| |
Collapse
|
27
|
Li X, Luo H, Song R, Zhang Y, Gong X, Cai H, Luo X. Selective Cross-Dehydrogenative Coupling of Various Acyclic Enamides with Heteroarenes via Rh(III)-Catalyzed C-H Activation. Org Lett 2023; 25:5262-5267. [PMID: 37417807 DOI: 10.1021/acs.orglett.3c01786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The developed methodology describes an efficient Rh(III)-catalyzed oxidative C-H/C-H cross-coupling between acyclic enamides and heteroarenes. This cross dehydrogenative coupling (CDC) reaction offers advantages, including excellent regioselectivity and stereoselectivity, good functional group compatibility, and a broad substrate scope. Mechanistically, Rh(III)-catalyzed β-C(sp2)-H activation of acyclic enamides is proposed to be the critical step.
Collapse
Affiliation(s)
- Xiaolan Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ruixin Song
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yuting Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xian Gong
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xuzhong Luo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
28
|
Liu J, Chao T, Liu Y, Gong C, Zhang Y, Xiong H. Heterocyclic Molecular Targeted Drugs and Nanomedicines for Cancer: Recent Advances and Challenges. Pharmaceutics 2023; 15:1706. [PMID: 37376154 DOI: 10.3390/pharmaceutics15061706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is a top global public health concern. At present, molecular targeted therapy has emerged as one of the main therapies for cancer, with high efficacy and safety. The medical world continues to struggle with the development of efficient, extremely selective, and low-toxicity anticancer medications. Heterocyclic scaffolds based on the molecular structure of tumor therapeutic targets are widely used in anticancer drug design. In addition, a revolution in medicine has been brought on by the quick advancement of nanotechnology. Many nanomedicines have taken targeted cancer therapy to a new level. In this review, we highlight heterocyclic molecular-targeted drugs as well as heterocyclic-associated nanomedicines in cancer.
Collapse
Affiliation(s)
- Junxia Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200000, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
29
|
Li Petri G, Holl R, Spanò V, Barreca M, Sardo I, Raimondi MV. Editorial: Emerging heterocycles as bioactive compounds. Front Chem 2023; 11:1202192. [PMID: 37179776 PMCID: PMC10169830 DOI: 10.3389/fchem.2023.1202192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Affiliation(s)
- Giovanna Li Petri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Drug Discovery Unit, Ri.MED Foundation, Palermo, Italy
| | - Ralph Holl
- Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ignazio Sardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Oxadiazole Schiff Base as Fe 3+ Ion Chemosensor: "Turn-off" Fluorescent, Biological and Computational Studies. J Fluoresc 2023; 33:751-772. [PMID: 36515760 DOI: 10.1007/s10895-022-03083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
Compound, (E)-5-(4-((thiophen-2-ylmethylene)amino)phenyl)-1,3,4-oxadiazole-2-thiol (3) was synthesized via condensation reaction of 5-(4-aminophenyl)-1,3,4-oxadiazole-2-thiol with thiophene-2-carbaldehyde in ethanol. For the synthesis and structural confirmation the FT-IR, 1H, 13C-NMR, UV-visible spectroscopy, and mass spectrometry were carried out. The long-term stability of the probe (3) was validated by the experimental as well as theoretical studies. The sensing behaviour of the compound 3 was monitored with various metal ions (Ca2+, Cr3+, Fe3+, Co2+, Mg2+, Na+, Ni2+, K+) using UV- Vis. and fluorescence spectroscopy techniques by various methods (effect of pH and density functional theory) which showing the most potent sensing behaviour with iron. Job's plot analysis confirmed the binding stoichiometry ratio 1:1 of Fe3+ ion and compound 3. The limit of detection (LOD), the limit of quantification (LOQ), and association constant (Ka) were calculated as 0.113 µM, 0.375 µM, and 5.226 × 105 respectively. The sensing behavior was further confirmed through spectroscopic techniques (FT-IR and 1H-NMR) and DFT calculations. The intercalative mode of binding of oxadiazole derivative 3 with Ct-DNA was supported through UV-Vis spectroscopy, fluorescence spectroscopy, viscosity, cyclic voltammetry, and circular dichroism measurements. The binding constant, Gibb's free energy, and stern-volmer constant were find out as 1.24 × 105, -29.057 kJ/mol, and 1.82 × 105 respectively. The cleavage activity of pBR322 plasmid DNA was also observed at 3 × 10-5 M concentration of compound 3. The computational binding score through molecular docking study was obtained as -7.4 kcal/mol. Additionally, the antifungal activity for compound 3 was also screened using broth dilution and disc diffusion method against C. albicans strain. The synthesized compound 3 showed good potential scavenging antioxidant activity against DPPH and H2O2 free radicals.
Collapse
|
31
|
Discovery of New Heterocyclic/Benzofuran Hybrids as Potential Anti-Inflammatory Agents: Design, Synthesis, and Evaluation of the Inhibitory Activity of Their Related Inflammatory Factors Based on NF-κB and MAPK Signaling Pathways. Int J Mol Sci 2023; 24:ijms24043575. [PMID: 36834992 PMCID: PMC9958778 DOI: 10.3390/ijms24043575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
NF-κB and MAPK are classic inflammation signaling pathways which regulate inflammation signal transmission and induce the expression of many inflammatory factors. Based on the potent anti-inflammatory activity of benzofuran and its derivatives, several new heterocyclic/benzofuran hybrids were first designed and synthesized by molecular hybridization. Their structure was confirmed by 1H NMR, 13C NMR, HRMS or X-single crystal diffraction. The anti-inflammatory activity of these new compounds was screened by compounds; compound 5d exhibited an excellent inhibitory effect on the generation of NO (IC50 = 52.23 ± 0.97 μM), and low cytotoxicity (IC50 > 80 μM) against the RAW-264.7 cell lines. To further elucidate the possible anti-inflammatory mechanisms of compound 5d, the hallmark protein expressions of the NF-κB and MAPK pathways were studied in LPS-stimulated RAW264.7 cells. The results indicate that compound 5d not only significantly inhibits the phosphorylation levels of IKKα/IKKβ, IKβα, P65, ERK, JNK and P38 in the classic MAPK/NF-κB signaling pathway in a dose-dependent manner, but also down-regulates the secretion of pro-inflammatory factors such as NO, COX-2, TNF-α and IL-6. Further, the in vivo anti-inflammatory activity of compound 5d indicated that it could regulate the involvement of neutrophils, leukocytes and lymphocytes in inflammation processes, and reduce the expression of IL-1β, TNF-α and IL-6 in serum and tissues. These results strongly suggest that the piperazine/benzofuran hybrid 5d has a good potential for developing an anti-inflammatory lead compound, and the anti-inflammatory mechanism might be related to the NF-κB and MAPK signaling pathways.
Collapse
|
32
|
Aroua LM, Alosaimi AH, Alminderej FM, Messaoudi S, Mohammed HA, Almahmoud SA, Chigurupati S, Albadri AEAE, Mekni NH. Synthesis, Molecular Docking, and Bioactivity Study of Novel Hybrid Benzimidazole Urea Derivatives: A Promising α-Amylase and α-Glucosidase Inhibitor Candidate with Antioxidant Activity. Pharmaceutics 2023; 15:457. [PMID: 36839780 PMCID: PMC9963656 DOI: 10.3390/pharmaceutics15020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
A novel series of benzimidazole ureas 3a-h were elaborated using 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a-h. The antioxidant and possible antidiabetic activities of the target benzimidazole-ureas 3a-h were evaluated. Almost all compounds 3a-h displayed strong to moderate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA, compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the majority of the compounds tested had good to moderate activity. The most favorable results were obtained with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 μM), 3e (IC50 = 20.7 ± 0.06 μM), and 3g (IC50 = 22.33 ± 0.12 μM) had good α-amylase inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 μM). Furthermore, the inhibitory effect of 3c (IC50 = 17.47 ± 0.03 μM), 3e (IC50 = 21.97 ± 0.19 μM), and 3g (IC50 = 23.01 ± 0.12 μM) on α-glucosidase was also comparable to acarbose (IC50 = 15.41 ± 0.32 μM). According to in silico molecular docking studies, compounds 3a-h had considerable affinity for the active sites of human lysosomal acid α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined compounds had potential anti-hyperglycemic action.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
- Laboratory of Structural Organic Chemistry—Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Abdulelah H. Alosaimi
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Nejib H. Mekni
- Laboratory of Structural Organic Chemistry—Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- High Institute of Medical Technologies of Tunis, El Manar University, Tunis 1006, Tunisia
| |
Collapse
|
33
|
Siddiqa A, Tajammal A, Irfan A, Azam M, Munawar MA, Hardy R, Basra MAR. Synthesis, molecular docking, bio-evaluation and quantitative structure activity relationship of new chalcone derivatives as antioxidants. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Saroha B, Kumar G, Kumar R, Kumari M, Kumar S. A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry. Chem Biol Drug Des 2022; 100:843-869. [PMID: 34592059 DOI: 10.1111/cbdd.13966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Over the past few decades, the dynamic progress in the synthesis and screening of heterocyclic compounds against various targets has made a significant contribution in the field of medicinal chemistry. Among the wide array of heterocyclic compounds, triazole moiety has attracted the attention of researchers owing to its vast therapeutic potential and easy preparation via copper and ruthenium-catalyzed azide-alkyne cycloaddition reactions. Triazole skeletons are found as major structural components in a different class of drugs possessing diverse pharmacological profiles including anti-cancer, anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, anti-tubercular, and anti-depressant among various others. Furthermore, in the past few years, a significantly large number of triazole hybrids were synthesized with various heterocyclic moieties in order to gain the added advantage of the improved pharmacological profile, overcoming the multiple drug resistance and reduced toxicity from molecular hybridization. Among these synthesized triazole hybrids, many compounds are available commercially and used for treating different infections/disorders like tazobactam and cefatrizine as potent anti-bacterial agents while isavuconazole and ravuconazole as anti-fungal activities to name a few. In this review, we will summarize the biological activities of various 1,2,3-triazole hybrids with copious oxygen-containing heterocycles as lead compounds in medicinal chemistry. This review will be very helpful for researchers working in the field of molecular modeling, drug design and development, and medicinal chemistry.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Kumari
- Department of Chemistry, Govt. College for Women Badhra, Charkhi Dadri, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
35
|
An insight on medicinal attributes of pyrimidine scaffold: An updated review. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Novel Quinazolinone–Isoxazoline Hybrids: Synthesis, Spectroscopic Characterization, and DFT Mechanistic Study. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Quinazolinone and isoxazoline systems have attracted much attention due to their interesting pharmacological properties. The association of these two pharmacophores in a single hybrid structure can boost the biological activity or bring a new one. Inspired by this new paradigm, in the present work we report the synthesis and spectroscopic characterization of new quinazolinone–isoxazoline hybrids. The target compounds were obtained via 1,3-dipolar cycloaddition reactions of arylnitriloxides and N-allylquinazolinone. The synthesized compounds were characterized using spectroscopic techniques such as IR, 1D NMR (1H and 13C), 2D NMR (COSY and HSQC), and high-resolution mass spectrometry (HRMS). The spectral data show that this reaction leads only to the 3,5-disubstituted isoxazoline regioisomer, and that the observed regiochemistry is not affected by the nature of the substituents in the phenyl ring of the dipole. In addition, a theoretical study was performed using density functional theory (DFT) to support the experimental results in regard to the regiochemistry of the studied reactions. The computational mechanistic study was in good agreement with the experimental data.
Collapse
|
37
|
Design and synthesis of mogrol derivatives modified on A ring with anti-inflammatory and anti-proliferative activities. Bioorg Med Chem Lett 2022; 74:128924. [DOI: 10.1016/j.bmcl.2022.128924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
|
38
|
Becerra D, Abonia R, Castillo JC. Recent Applications of the Multicomponent Synthesis for Bioactive Pyrazole Derivatives. Molecules 2022; 27:4723. [PMID: 35897899 PMCID: PMC9331265 DOI: 10.3390/molecules27154723] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pyrazole and its derivatives are considered a privileged N-heterocycle with immense therapeutic potential. Over the last few decades, the pot, atom, and step economy (PASE) synthesis of pyrazole derivatives by multicomponent reactions (MCRs) has gained increasing popularity in pharmaceutical and medicinal chemistry. The present review summarizes the recent developments of multicomponent reactions for the synthesis of biologically active molecules containing the pyrazole moiety. Particularly, it covers the articles published from 2015 to date related to antibacterial, anticancer, antifungal, antioxidant, α-glucosidase and α-amylase inhibitory, anti-inflammatory, antimycobacterial, antimalarial, and miscellaneous activities of pyrazole derivatives obtained exclusively via an MCR. The reported analytical and activity data, plausible synthetic mechanisms, and molecular docking simulations are organized in concise tables, schemes, and figures to facilitate comparison and underscore the key points of this review. We hope that this review will be helpful in the quest for developing more biologically active molecules and marketed drugs containing the pyrazole moiety.
Collapse
Affiliation(s)
- Diana Becerra
- Escuela de Ciencias Química, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte, Tunja 150003, Colombia;
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A.A. 25360, Cali 76001, Colombia;
| | - Juan-Carlos Castillo
- Escuela de Ciencias Química, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte, Tunja 150003, Colombia;
| |
Collapse
|
39
|
Bhatia R, Vyas A, El‐Bahy SM, Hessien MM, Mersal GAM, Ibrahim MM, Dogra R, Kumar B. Rationale Design, Synthesis, Pharmacological and
In‐silico
Investigation of Indole‐Functionalized Isoxazoles as Anti‐inflammatory Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohit Bhatia
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| | - Akshun Vyas
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| | - Salah M. El‐Bahy
- Department of Chemistry Turabah University College, Taif University P.O.Box 11099 Taif 21944 Saudi Arabia
| | - Mahmoud M. Hessien
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Raghav Dogra
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| |
Collapse
|
40
|
Sehrawat S, Sandhu N, Anand V, Pandey SK, Sharma A, Yadav RK, Singh AP, Singh AP. Study of 5-Bromo-2-Thiophene Carboxaldehyde Derived Novel Schiff Baseas a Biologically Active Agent as well as X-Ray Crystallographic Studyof C-S Coupled Benzothiazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
41
|
Novel quinoline-based derivatives: A new class of PDE4B inhibitors for adjuvant-induced arthritis. Eur J Med Chem 2022; 238:114497. [PMID: 35660249 DOI: 10.1016/j.ejmech.2022.114497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
A total of 31 quinoline-based derivatives were designed and synthesized to develop novel anti-inflammatory drugs. After the toxicity of synthetic compounds to RAW264.7 cells were evaluated in vitro, their anti-inflammatory activity was assessed by inhibiting lipopolysaccharide (LPS)-induced NO production levels in the RAW264.7 cells. Among the derivatives, compound f4 had the best anti-inflammatory activity, which could reduce the production of pro-inflammatory cytokines NO, IL-1β, and TNF-α with corresponding IC50 values of 20.40 ± 0.94, 18.98 ± 0.21 and 23.48 ± 0.46 μM. Western blot showed that f4 could inhibit the expression of LPS-induced inflammatory mediators iNOS and COX-2. Molecular docking showed that f4 could also enter the PDE4B receptor binding pocket, and the cellular thermal shift assay method indicated that the PDE4B protein bound to f4 had increased stability. Meanwhile, the inhibitory effect of this compound on the PDE4B enzyme (IC50 = 0.94 ± 0.36 μM) was comparable to that of the positive drug rolipram (IC50 = 1.04 ± 0.28 μM). Finally, in vivo studies showed that f4 could improve the degree of foot swelling and knee joint pathology in adjuvant-induced arthritic rats and decrease the levels of serum inflammatory factors TNF-α and IL-1β in a dose-dependent manner. Therefore, the development and design of quinoline-based derivatives for anti-inflammatory applications could be considered opportunities and challenges.
Collapse
|
42
|
Foliar Applications of Bacillus subtilis HA1 Culture Filtrate Enhance Tomato Growth and Induce Systemic Resistance against Tobacco mosaic virus Infection. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040301] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The application of microbial products as natural biocontrol agents for inducing systemic resistance against plant viral infections represents a promising strategy for sustainable and eco-friendly agricultural applications. Under greenhouse conditions, the efficacy of the culture filtrate of Bacillus subtilis strain HA1 (Acc# OM286889) for protecting tomato plants from Tobacco mosaic virus (TMV) infection was assessed. The results showed that the dual foliar application of this culture filtrate (HA1-CF) 24 h before and 24 h after TMV inoculation was the most effective treatment for enhancing tomato plant development, with substantial improvements in shoot and root parameters. Furthermore, compared to non-treated plants, HA1-CF-treated tomato had a significant increase in total phenolic and flavonoid contents of up to 27% and 50%, respectively. In addition, a considerable increase in the activities of reactive oxygen species scavenging enzymes (PPO, SOD, and POX) and a significant decrease in non-enzymatic oxidative stress markers (H2O2 and MDA) were reported. In comparison to untreated control plants, all HA1-CF-treated plants showed a significant reduction in TMV accumulation in systemically infected tomato leaves, up to a 91% reduction at 15 dpi. The qRT-PCR results confirmed that HA1-CF stimulated the transcription of several defense-related tomato genes (PR-1, PAL, CHS, and HQT), pointing to their potential role in induced resistance against TMV. GC–MS analysis showed that phenol, 2,4-bis (1,1-dimethylethyl)-, Pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- and eicosane are the primary ingredient compounds in the HA1-CF ethyl acetate extract, suggesting that these molecules take part in stimulating induced systemic resistance in tomato plants. Our results imply that HA1-CF is a potential resistance inducer to control plant viral infections, a plant growth promoter, and a source of bioactive compounds for sustainable disease management.
Collapse
|
43
|
Dawoud NTA, El-Fakharany EM, Abdallah AE, El-Gendi H, Lotfy DR. Synthesis, and docking studies of novel heterocycles incorporating the indazolylthiazole moiety as antimicrobial and anticancer agents. Sci Rep 2022; 12:3424. [PMID: 35236889 PMCID: PMC8891364 DOI: 10.1038/s41598-022-07456-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
The current study was directed toward developing a new series of fused heterocycles incorporating indazolylthiazole moiety. The newly synthesized compounds were characterized through elemental analysis and spectral data (IR, 1H-NMR, 13C-NMR, and Mass Spectrometry). The cytotoxic effect of the newly synthesized compounds was evaluated against normal human cells (HFB-4) and cancer cell lines (HepG-2 and Caco-2). Among the synthesized compounds, derivatives 4, and 6 revealed a significant selective antitumor activity, in a dose-dependent manner, against both HepG-2 and Caco-2 cell lines, with lower risk toward HFB-4 cells (normal cells). Derivative 8 revealed the maximum antitumor activity toward both tumor cell lines, with an SI value of about 26 and IC50 value of about 5.9 μg/mL. The effect of these derivatives (8, 4, and 6) upon the expression of 5 tumor regulating genes was studied through quantitative real-time PCR, where its interaction with these genes was simulated through the molecular docking study. Furthermore, the antimicrobial activity results revealed that compounds 2, 7, 8, and 9 have a potential antimicrobial activity, with maximum broad-spectrum activity through compound 3 against the three tested pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans. The newly prepared compounds also revealed anti-biofilm formation activity with maximum activity against Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans, respectively.
Collapse
Affiliation(s)
- Nadia T A Dawoud
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt.
| | - Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Doaa R Lotfy
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
44
|
Zhang XF, Luan MZ, Yan WB, Zhao FL, Hou Y, Hou GG, Meng QG. Anti-neuroinflammatory effects of novel 5,6-dihydrobenzo[h]quinazolin-2-amine derivatives in lipopolysaccharide-stimulated BV2 microglial cells. Eur J Med Chem 2022; 235:114322. [DOI: 10.1016/j.ejmech.2022.114322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 01/07/2023]
|
45
|
Jin Q, Zhao YL, Liu YP, Zhang RS, Zhu PF, Zhao LQ, Qin XJ, Luo XD. Anti-inflammatory and analgesic monoterpenoid indole alkaloids of Kopsia officinalis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114848. [PMID: 34798159 DOI: 10.1016/j.jep.2021.114848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Ya gai", an important part of Dai medical theory, is traditionally recognized as an antidote. Kopsia officinalis Tsiang et P. T. Li is a "Ya gai" related medicine and has been widely used by Dai people for the treatment of pain and inflammation. Previous literature on title species suggested that monoterpenoid indole alkaloids (MIAs) could be its main bioactive components. However, the specific bioactive ingredients for inflammation-related treatment are still unrevealed, which inspired us to conduct a phytochemical and pharmacological investigation related to its traditional use. AIM OF THE STUDY To support the traditional use of K. officinalis by assessing the anti-inflammatory and analgesic effects of its purified MIAs. MATERIAL AND METHODS Compounds were isolated and purified from the barks and leaves of K. officinalis using diverse chromatographic methods. The structures were established by means of extensive spectroscopic analyses and quantum computational technique. The anti-inflammatory activities of the purified MIAs were evaluated in vitro based on the suppression of lipopolysaccharide-activated inflammatory mediators (COX-2, IL-1β, and TNF-α) in RAW 264.7 macrophage cells. Anti-inflammatory and analgesic activities in vivo were assessed with carrageenan-induced paw edema and acetic acid-stimulated writhing in mice models. RESULTS 23 MIAs including four new compounds were obtained and structurally established. Most of isolates showed significant anti-inflammatory effects in vitro by inhibiting inflammatory mediators (COX-2, IL-1β, and TNF-α). Further pharmacological evaluation in vivo revealed that 12-hydroxy-19(R)-hydroxy-ibophyllidine (1) and 11,12-methylenedioxykopsinaline N4-oxide (5) remarkably decreased the number of writhing, while kopsinic acid (8), (-)-kopsinilam (12), and normavacurine-21-one (20) significantly relieved paw edema, respectively, even better than the positive control aspirin. CONCLUSIONS The in vitro and in vivo findings supported the traditional use of K. officinalis with respect to its anti-inflammatory and analgesic effect, as well as provided potent bioactive MIAs for further chemical modification and pharmacological investigation.
Collapse
Affiliation(s)
- Qiong Jin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ruo-Song Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pei-Feng Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lan-Qin Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
46
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
47
|
Goggiamani A, Iazzetti A, Arcadi A, Calcaterra A, Chiarini M, Fabrizi G, Fochetti A, Marrone F, Marsicano V, Serraiocco A. Synthesis of Indole/Benzofuran-Containing Diarylmethanes through Palladium-Catalyzed Reaction of Indolylmethyl or Benzofuranylmethyl Acetates with Boronic Acids. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe palladium-catalyzed synthesis of indole/benzofuran-containing diarylmethanes starting from indolylmethyl or benzofuranylmethyl acetates with boronic acids has been investigated. The success of the reaction is influenced by the choice of precatalyst: with indolylmethyl acetates the reaction works well with [Pd(η3-C3H5)Cl]2/XPhos while with benzofuranylmethyl acetates Pd2(dba)3/XPhos is more efficient. The good to high yields and the simplicity of the experimental procedure make this protocol a versatile synthetic tool for the preparation of 2- and 3-substituted indoles and 2-benzo[b]furans. The methodology can be advantageously extended to the preparation of a key precursor of Zafirlukast.
Collapse
Affiliation(s)
| | - Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore
| | - Antonio Arcadi
- Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università degli studi di L’ Aquila
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi di L’ Aquila
| | - Andrea Calcaterra
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| | - Marco Chiarini
- Università degli Studi di Teramo, Facoltà di Bioscienze e tecnologie agro-alimentari e ambientali
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| | - Andrea Fochetti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| | - Federico Marrone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| | - Vincenzo Marsicano
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi di L’ Aquila
| | - Andrea Serraiocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| |
Collapse
|
48
|
Kumar B, Kumar N, Thakur A, Kumar V, Kumar R, Kumar V. A Review on the Arylpiperazine Derivatives as Potential Therapeutics for the Treatment of Various Neurological Disorders. Curr Drug Targets 2022; 23:729-751. [DOI: 10.2174/1389450123666220117104038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Abstract:
Neurological disorders are disease conditions related to the neurons and central nervous system (CNS). Any kind of structural, electrical, biochemical and functional abnormalities in neurons can lead to various types of disorders like Alzheimer’s disease (AD), depression, Parkinson’s disease (PD), epilepsy, stroke, etc. Currently available medicines are symptomatic and do not treat the disease state. Thus, novel CNS active agents with the potential of complete treatment of an illness are highly desired. A range of small organic molecules are being explored as potential drug candidates for the cure of different neurological disorders. In this context, arylpiperazine has been found to be a versatile scaffold and indispensable pharmacophore in many CNS active agents. A number of molecules with arylpiperazine nucleus have been developed as potent leads for the treatment of AD, PD, depression and other disorders. The arylpiperazine nucleus can be optionally substituted at different chemical structures and offer flexibility for the synthesis of large number of derivatives. In the current review article, we have explored the role of various arylpiperazine containing scaffolds against different neurological disorders, including AD, PD, and depression. The structure-activity relationship studies were conducted for recognizing potent lead compounds. This review article may provide important clues on the structural requirements for the design and synthesis of effective molecules as curative agents for different neurological disorders.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Amandeep Thakur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | | | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| |
Collapse
|
49
|
Orlando T, Lopes LC, Neumann DAM, Andrade VP, Mittersteiner M, Rocha CQ, Zanatta N, Bonacorso HG, Martins MAP, Salbego PRS. Uncovering the origins of supramolecular similarity in a series of benzimidazole structures. CrystEngComm 2022. [DOI: 10.1039/d2ce00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative similarity indices (IX) were combined with crystallization mechanism proposals to shed more light on the origins of the supramolecular similarity between a series of benzimidazole derivative structures.
Collapse
Affiliation(s)
- Tainára Orlando
- Department of Chemistry, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | - Leandro C. Lopes
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Darlon A. M. Neumann
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Valquiria P. Andrade
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cláudia Q. Rocha
- Department of Chemistry, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Paulo R. S. Salbego
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Engineering and Environmental Technology (DETA), Federal University of Santa Maria (UFSM), Frederico Westphalen Campus, RS, Brazil
| |
Collapse
|
50
|
Design, synthesis and structure-activity relationship studies of 4-indole-2-arylaminopyrimidine derivatives as anti-inflammatory agents for acute lung injury. Eur J Med Chem 2021; 225:113766. [PMID: 34425313 PMCID: PMC8357485 DOI: 10.1016/j.ejmech.2021.113766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), a clinically high mortality disease, has not been effectively treated till now, and the development of anti-acute lung injury drugs is imminent. Acute lung injury was efficiently treated by inhibiting the cascade of inflammation, and reducing the inflammatory response in the lung. A series of novel compounds with highly efficient inhibiting the expression of inflammatory factors were designed by using 4-indolyl-2-aminopyrimidine as the core skeleton. Totally eleven 4-indolyl-2-arylaminopyrimidine derivatives were designed and synthesized. As well, the related anti-ALI activity of these compounds was evaluated. Compounds 6c and 6h showed a superior activity among these compounds, and the inhibition rate of IL-6 and IL-8 release ranged from 62% to 77%, and from 65% to 72%, respectively. Furthermore, most of compounds had no significant cytotoxicity in vitro. The infiltration of inflammatory cells into lung tissue significantly reduced by using compound 6h (20 mg/kg) in the ALI mice model, which achieved the effect of protecting lung tissue and improving ALI. In addition, the inflammatory response was inhibited by using compound 6h through inhibiting phosphorylation of p-38 and ERK in MAPK signaling pathway, and resulted in protective effect on ALI. These data indicated that compound 6h showed good anti-inflammatory activity in vitro and in vivo, which was expected to become a leading compound for the treatment of ALI.
Collapse
|