1
|
Abdelall EKA, Elshemy HAH, Labib MB, Philoppes JN, Ali FEM, Ahmed AKM. Synthesis of new selective agents with dual anti-inflammatory and SARS-CoV-2 M pro inhibitory activity: Antipyrine-celecoxib hybrid analogues; COX-2, COVID-19 cytokine storm and replication inhibitory activities. Bioorg Chem 2025; 160:108429. [PMID: 40199011 DOI: 10.1016/j.bioorg.2025.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Herein, a great aim to introduce novel pyrazolone derivatives with multiple activities, including selective COX-2 and cytokine inhibition in addition to SARS-CoV-2 Mpro inhibitory effects. All the synthesized compounds 4a-c, 5, 6a,b, 7a-f, 8a,b, 9a,b, 10a,b and 11a-f were evaluated in vitro for investigation of selective COX-2 inhibitory activity. The results introduced the most selective compounds 7a, 7d, 7e, 9a, and 11f that were further screened in vivo to evaluate their anti-inflammatory activity, safety concerning gastric ulcer and myocardial infarction. Compounds 7e, 9a and 11f exhibited % edema inhibition (43.87-54.31) compared to celecoxib (54.17%17 %) at the same time. Histopathological examination of gastric and cardiac tissues proved the safe profiles of compounds 7e and 11 f. The reduction in cardiac biomarkers level (CK-MP, AST, LDH) and the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) ensured the cardiac safety of 7e and 11f. Also, RT-PCR results confirmed the efficacy of compounds 7e and 11f to inhibit gene expression of cytokines responsible for the overwhelming inflammation in COVID-19 infection, including TNF-α, IL-6, IL-2 and IL-1β. Additionally, SARS-CoV-2 Mpro inhibitory assay revealed the potency of the compound 7e against Mpro enzyme (IC50 = 13.24 μM). Furthermore, the proper fitting of 7e inside both COX-2 and Mpro active site through the docking study supported the affinity of 7e to inhibit both enzymes. Therefore, a belief stated that compound 7e is a promising lead compound with a safe profile, acting as a selective COX-2 and cytokine inhibitor. Also, 7e reduces the COVID-19 infection's cytokine storm and inhibits viral replication via targeting the Mpro enzyme.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Heba A H Elshemy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Madlen B Labib
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - John N Philoppes
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fares E M Ali
- Department of pharmacology and toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Amira K M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
2
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
3
|
Papaneophytou C. Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management. Int J Mol Sci 2024; 25:8105. [PMID: 39125676 PMCID: PMC11311956 DOI: 10.3390/ijms25158105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Respiratory viral infections (VRTIs) rank among the leading causes of global morbidity and mortality, affecting millions of individuals each year across all age groups. These infections are caused by various pathogens, including rhinoviruses (RVs), adenoviruses (AdVs), and coronaviruses (CoVs), which are particularly prevalent during colder seasons. Although many VRTIs are self-limiting, their frequent recurrence and potential for severe health complications highlight the critical need for effective therapeutic strategies. Viral proteases are crucial for the maturation and replication of viruses, making them promising therapeutic targets. This review explores the pivotal role of viral proteases in the lifecycle of respiratory viruses and the development of protease inhibitors as a strategic response to these infections. Recent advances in antiviral therapy have highlighted the effectiveness of protease inhibitors in curtailing the spread and severity of viral diseases, especially during the ongoing COVID-19 pandemic. It also assesses the current efforts aimed at identifying and developing inhibitors targeting key proteases from major respiratory viruses, including human RVs, AdVs, and (severe acute respiratory syndrome coronavirus-2) SARS-CoV-2. Despite the recent identification of SARS-CoV-2, within the last five years, the scientific community has devoted considerable time and resources to investigate existing drugs and develop new inhibitors targeting the virus's main protease. However, research efforts in identifying inhibitors of the proteases of RVs and AdVs are limited. Therefore, herein, it is proposed to utilize this knowledge to develop new inhibitors for the proteases of other viruses affecting the respiratory tract or to develop dual inhibitors. Finally, by detailing the mechanisms of action and therapeutic potentials of these inhibitors, this review aims to demonstrate their significant role in transforming the management of respiratory viral diseases and to offer insights into future research directions.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
4
|
Zhang Y, Tian Y, Yan A. A SAR and QSAR study on 3CLpro inhibitors of SARS-CoV-2 using machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:531-563. [PMID: 39077983 DOI: 10.1080/1062936x.2024.2375513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024]
Abstract
The 3C-like Proteinase (3CLpro) of novel coronaviruses is intricately linked to viral replication, making it a crucial target for antiviral agents. In this study, we employed two fingerprint descriptors (ECFP_4 and MACCS) to comprehensively characterize 889 compounds in our dataset. We constructed 24 classification models using machine learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), extreme Gradient Boosting (XGBoost), and Deep Neural Networks (DNN). Among these models, the DNN- and ECFP_4-based Model 1D_2 achieved the most promising results, with a remarkable Matthews correlation coefficient (MCC) value of 0.796 in the 5-fold cross-validation and 0.722 on the test set. The application domains of the models were analysed using dSTD-PRO calculations. The collected 889 compounds were clustered by K-means algorithm, and the relationships between structural fragments and inhibitory activities of the highly active compounds were analysed for the 10 obtained subsets. In addition, based on 464 3CLpro inhibitors, 27 QSAR models were constructed using three machine learning algorithms with a minimum root mean square error (RMSE) of 0.509 on the test set. The applicability domains of the models and the structure-activity relationships responded from the descriptors were also analysed.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Y Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
5
|
Xiao YQ, Long J, Zhang SS, Zhu YY, Gu SX. Non-peptidic inhibitors targeting SARS-CoV-2 main protease: A review. Bioorg Chem 2024; 147:107380. [PMID: 38636432 DOI: 10.1016/j.bioorg.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.
Collapse
Affiliation(s)
- Ya-Qi Xiao
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
6
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
7
|
Huang CY, Metz A, Lange R, Artico N, Potot C, Hazemann J, Müller M, Dos Santos M, Chambovey A, Ritz D, Eris D, Meyer S, Bourquin G, Sharpe M, Mac Sweeney A. Fragment-based screening targeting an open form of the SARS-CoV-2 main protease binding pocket. Acta Crystallogr D Struct Biol 2024; 80:123-136. [PMID: 38289714 PMCID: PMC10836397 DOI: 10.1107/s2059798324000329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
To identify starting points for therapeutics targeting SARS-CoV-2, the Paul Scherrer Institute and Idorsia decided to collaboratively perform an X-ray crystallographic fragment screen against its main protease. Fragment-based screening was carried out using crystals with a pronounced open conformation of the substrate-binding pocket. Of 631 soaked fragments, a total of 29 hits bound either in the active site (24 hits), a remote binding pocket (three hits) or at crystal-packing interfaces (two hits). Notably, two fragments with a pose that was sterically incompatible with a more occluded crystal form were identified. Two isatin-based electrophilic fragments bound covalently to the catalytic cysteine residue. The structures also revealed a surprisingly strong influence of the crystal form on the binding pose of three published fragments used as positive controls, with implications for fragment screening by crystallography.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Alexander Metz
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Roland Lange
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Nadia Artico
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Céline Potot
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | - Manon Müller
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | | | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Deniz Eris
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Solange Meyer
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | - May Sharpe
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
8
|
ElNaggar MH, Elgazar AA, Gamal G, Hamed SM, Elsayed ZM, El-Ashrey MK, Abood A, El Hassab MA, Soliman AM, El-Domany RA, Badria FA, Supuran CT, Eldehna WM. Identification of sulphonamide-tethered N-((triazol-4-yl)methyl)isatin derivatives as inhibitors of SARS-CoV-2 main protease. J Enzyme Inhib Med Chem 2023; 38:2234665. [PMID: 37434404 PMCID: PMC10405867 DOI: 10.1080/14756366.2023.2234665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
SARS-CoV-2 pandemic in the end of 2019 led to profound consequences on global health and economy. Till producing successful vaccination strategies, the healthcare sectors suffered from the lack of effective therapeutic agents that could control the spread of infection. Thus, academia and the pharmaceutical sector prioritise SARS-CoV-2 antiviral drug discovery. Here, we exploited previous reports highlighting the anti-SARS-CoV-2 activities of isatin-based molecules to develop novel triazolo-isatins for inhibiting main protease (Mpro) of the virus, a crucial enzyme for its replication in the host cells. Particularly, sulphonamide 6b showed promising inhibitory activity with an IC50= 0.249 µM. Additionally, 6b inhibited viral cell proliferation with an IC50 of 4.33 µg/ml, and was non-toxic to VERO-E6 cells (CC50 = 564.74 µg/ml) displaying a selectivity index of 130.4. In silico analysis of 6b disclosed its ability to interact with key residues in the enzyme active site, supporting the obtained in vitro findings.
Collapse
Affiliation(s)
- Mai H. ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ghada Gamal
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Shimaa M. Hamed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed K. El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amira Abood
- Chemistry of Natural and microbial products, National Research center, Egypt
- Department of Bioscience, University of Kent, Canterbury, UK
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| |
Collapse
|
9
|
Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur J Med Chem 2023; 260:115772. [PMID: 37659195 PMCID: PMC10529944 DOI: 10.1016/j.ejmech.2023.115772] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected ∼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Jiang X, Li J, Viayna A, Luque FJ, Woodson M, Jing L, Gao S, Zhao F, Xie M, Toth K, Tavis J, Tollefson AE, Liu X, Zhan P. Identification of novel 1,2,3-triazole isatin derivatives as potent SARS-CoV-2 3CLpro inhibitors via click-chemistry-based rapid screening. RSC Med Chem 2023; 14:2068-2078. [PMID: 37859715 PMCID: PMC10583828 DOI: 10.1039/d3md00306j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) is considered an attractive target for the development of anti-COVID-19 agents due to its vital function. The N-substituted isatin derivative L-26 is a potential SARS-CoV-2 3CLpro inhibitor, but it has poor cell-based antiviral activity and high cytotoxicity. With L-26 as the lead compound, 58 isatin derivatives were prepared using click-chemistry-based miniaturized synthesis and their 3CLpro inhibitory activities were determined by a fluorescence resonance energy transfer-based enzymatic assay. Compounds D1N8 (IC50 = 0.44 ± 0.12 μM) and D1N52 (IC50 = 0.53 ± 0.21 μM) displayed excellent inhibitory potency against SARS-CoV-2 3CLpro, being equivalent to that of L-26 (IC50 = 0.30 ± 0.14 μM). In addition, the cytotoxicity of D1N8 (CC50 >20 μM) and D1N52 (CC50 >20 μM) decreased significantly compared with L-26 (CC50 <2.6 μM). Further molecular dynamics simulations revealed the potential binding interactions between D1N52 and SARS-CoV-2 3CLpro. These efforts lay a solid foundation for the research of novel anti-SARS-CoV-2 agents targeting 3CLpro.
Collapse
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Jing Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Antonio Viayna
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB) Av. Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB) Barcelona Spain
| | - F Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB) Av. Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB) Barcelona Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB) Barcelona Spain
| | - Molly Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - John Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| |
Collapse
|
11
|
Girgis AS, Panda SS, Kariuki BM, Bekheit MS, Barghash RF, Aboshouk DR. Indole-Based Compounds as Potential Drug Candidates for SARS-CoV-2. Molecules 2023; 28:6603. [PMID: 37764378 PMCID: PMC10537473 DOI: 10.3390/molecules28186603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has posed a significant threat to society in recent times, endangering human health, life, and economic well-being. The disease quickly spreads due to the highly infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research efforts by the scientific community since its emergence in 2019, no effective therapeutics have been discovered yet. While some repurposed drugs have been used to control the global outbreak and save lives, none have proven universally effective, particularly for severely infected patients. Although the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to combat current and future infections. This study reviews some of the most promising repurposed drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse bio-properties in various biological fields. The study also discusses natural and synthetic indole-containing compounds with anti-SARS-CoV-2 properties and computer-aided drug design (in silico studies) for optimizing anti-SARS-CoV-2 hits/leads.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; (B.M.K.)
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| |
Collapse
|
12
|
Pang X, Xu W, Liu Y, Li H, Chen L. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Eur J Med Chem 2023; 257:115491. [PMID: 37244162 DOI: 10.1016/j.ejmech.2023.115491] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication and transcription and represents an attractive drug target for fighting COVID-19. Many SARS-CoV-2 Mpro inhibitors have been reported, including covalent and noncovalent inhibitors. The SARS-CoV-2 Mpro inhibitor PF-07321332 (Nirmatrelvir) designed by Pfizer has been put on the market. This paper briefly introduces the structural characteristics of SARS-CoV-2 Mpro and summarizes the research progress of SARS-CoV-2 Mpro inhibitors from the aspects of drug repurposing and drug design. These information will provide a basis for the drug development of treating the infection of SARS-CoV-2 and even other coronaviruses in the future.
Collapse
Affiliation(s)
- Xiaojing Pang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Saramago LC, Santana MV, Gomes BF, Dantas RF, Senger MR, Oliveira Borges PH, Ferreira VNDS, dos Santos Rosa A, Tucci AR, Dias Miranda M, Lukacik P, Strain-Damerell C, Owen CD, Walsh MA, Ferreira SB, Silva-Junior FP. AI-Driven Discovery of SARS-CoV-2 Main Protease Fragment-like Inhibitors with Antiviral Activity In Vitro. J Chem Inf Model 2023; 63:2866-2880. [PMID: 37058135 PMCID: PMC10124747 DOI: 10.1021/acs.jcim.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 04/15/2023]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 μM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Luiz Carlos Saramago
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Marcos V. Santana
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Bárbara Figueira Gomes
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Mario R. Senger
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Pedro Henrique Oliveira Borges
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
- LaSOPB-Laboratório de Síntese
Orgânica e Prospecção Biológica, Instituto de Química,
Universidade Federal do Rio de Janeiro, 21040-900 Rio de
Janeiro, Brazil
| | - Vivian Neuza dos Santos Ferreira
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Alice dos Santos Rosa
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Amanda Resende Tucci
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Milene Dias Miranda
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Petra Lukacik
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - C. David Owen
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Martin Austin Walsh
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Sabrina Baptista Ferreira
- LaSOPB-Laboratório de Síntese
Orgânica e Prospecção Biológica, Instituto de Química,
Universidade Federal do Rio de Janeiro, 21040-900 Rio de
Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| |
Collapse
|
14
|
Bugalia S, Dhayal Y, Sachdeva H, Kumari S, Atal K, Phageria U, Saini P, Gurjar OP. Review on Isatin- A Remarkable Scaffold for Designing Potential Therapeutic Complexes and Its Macrocyclic Complexes with Transition Metals. J Inorg Organomet Polym Mater 2023; 33:1-20. [PMID: 37359385 PMCID: PMC10164246 DOI: 10.1007/s10904-023-02666-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
Role of synthetic coordination chemistry in pharmaceutical science is expeditiously increased due to its sundry relevances in this field. The present review endows the synthesized macrocyclic complexes of transition metal ions containing isatin and its derivatives as ligand precursors, their characterization and their copious pharmaceutical applications. Isatin (1H-Indole-2,3-dione) is a protean compound (presence of lactam and keto moiety permits to change its molecular framework) that can be obtained from marine animals, plants, and is also found in mammalian tissues and in human fluids as a metabolite of amino acids. It can be used for the synthesis of miscellaneous organic and inorganic complexes and for designing of drugs since it has remarkable utility in pharmaceutical industry due to its wide range of biological and pharmacological activities, for instance anti-microbial, anti-HIV, anti-tubercular, anti-cancer, anti-viral, anti-oxidant, anti-inflammatory, anti-angiogenic, analgesic activity, anti-Parkinson's disease, anti-convulsant etc. This review provides extensive information about the latest methods for the synthesis of isatin or its substituted derivatives based macrocyclic complexes of transition metals and their plentiful applications in medicinal chemistry. Graphical Abstract
Collapse
Affiliation(s)
- Swati Bugalia
- Department of Chemistry, University of Rajasthan, Jaipur, 302004 India
| | | | - Harshita Sachdeva
- Department of Chemistry, University of Rajasthan, Jaipur, 302004 India
| | - Sushama Kumari
- Department of Chemistry, University of Rajasthan, Jaipur, 302004 India
| | - Krishna Atal
- Department of Chemistry, University of Rajasthan, Jaipur, 302004 India
| | - Urmila Phageria
- Department of Chemistry, Govt. Lohia College, Churu, 331001 India
| | - Pooja Saini
- Department of Chemistry, University of Rajasthan, Jaipur, 302004 India
| | - Om Prakash Gurjar
- Department of Chemistry, University of Rajasthan, Jaipur, 302004 India
| |
Collapse
|
15
|
Moghimi P, Sabet-Sarvestani H, Shiri A. Synthesis, molecular docking and dynamics studies of pyridazino[4,5- b]quinoxalin-1(2 H)-ones as targeting main protease of COVID-19. J Biomol Struct Dyn 2023; 41:13198-13210. [PMID: 36951505 DOI: 10.1080/07391102.2023.2191127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/15/2023] [Indexed: 03/24/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a crisis in public health. Because, the 3CLpro, the main protease of SARS-CoV-2, possesses a critical role in coronavirus replication, many efforts have been devoted to developing various inhibitors to prevent the fast spread of COVID-19. In the current work, a number of various pyridazino[4,5-b]quinoxalin-1(2H)-one derivatives bearing thiadiazine and thiadiazole fragments has been prepared via a straightforward and practical strategy involving the reaction of 2-(ethoxycarbonyl)-3-formylquinoxaline 1,4-dioxide with thiocarbohydrazide under reflux conditions. To determine the bioavailability of pyridazino[4,5-b]quinoxalin-1(2H)-one derivatives, Lipinski's rule of five has been carried out. Regarding this rule, none of the synthesized compounds exhibit any deviation from Lipinski's rule of five. Furthermore, molecular docking and molecular dynamics approaches have been implemented to figure out the potential interactions of products with SARS-CoV-2 main protease. The outcomes of molecular docking studies demonstrate that the phenyl and nitrophenyl substituted pyridazino[4,5-b]quinoxalin-1(2H)-one show the lowest binding affinity among the other compounds, indicating a favorable orientation in the active site of the chymotrypsin-like cysteine protease. In addition, the MD simulation performed to evaluate the stability of the protein-ligand complex represents that the average binding energy of the nitrophenyl complex is less than that of the phenyl complex. Therefore, according to the in silico results, the inhibitory effect of the nitrophenyl complex is more significant than the phenyl complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parvin Moghimi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Chen R, Gao Y, Liu H, Li H, Chen W, Ma J. Advances in research on 3C-like protease (3CL pro) inhibitors against SARS-CoV-2 since 2020. RSC Med Chem 2023; 14:9-21. [PMID: 36760740 PMCID: PMC9890616 DOI: 10.1039/d2md00344a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 in late 2019 is still threatening global human health. Although some vaccines and drugs are available in the market, controlling the spread of the SARS-CoV-2 virus remains a huge challenge. 3C-like protease (3CLpro) is a highly conserved key protease for SARS-CoV-2 replication, and no relevant homologous protein with a similar cleavage site to 3CLpro has been identified in humans, highlighting that development of 3CLpro inhibitors exhibits great promise for treatment of COVID-19. In this review, the authors describe the structure and function of 3CLpro. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the SARS-CoV-2 3CLpro inhibitors reported since 2020 are classified into peptidomimetic covalent inhibitors, non-peptidomimetic covalent inhibitors and non-covalent small molecule inhibitors, and the representative inhibitors, their biological activities and binding models are highlighted. Collectively, we hope that all the information presented here will provide new insights into the design and development of more effective 3CLpro inhibitors against SARS-CoV-2 as novel anti-coronavirus drugs.
Collapse
Affiliation(s)
- Roufen Chen
- School of Medicine, Huaqiao University Quanzhou 362000 China
| | - Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 China
| | - Han Liu
- School of Medicine, Huaqiao University Quanzhou 362000 China
| | - He Li
- School of Medicine, Huaqiao University Quanzhou 362000 China
| | - Wenfa Chen
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 China
| | - Junjie Ma
- School of Medicine, Huaqiao University Quanzhou 362000 China
| |
Collapse
|
17
|
Zheng L, Chen Y, Bao J, He L, Dong S, Qi Y, Zhang JZH. Discovery of novel inhibitors of SARS-CoV-2 main protease. J Biomol Struct Dyn 2022; 40:12526-12534. [PMID: 34472424 PMCID: PMC8436407 DOI: 10.1080/07391102.2021.1972041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Corona Virus Disease 2019 (COVID-19), referred to as 'New Coronary Pneumonia', is a type of acute infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Mpro is one of the main targets for treating COVID-19. The current research on Mpro mainly focuses on the repurposing of old drugs, and there are only a few novel ligands that inhibit Mpro. In this research, we used computational free energy calculation to screen a compound library against Mpro, and discovered four novel compounds with the two best compounds (AG-690/13507628 and AG-690/13507724) having experimental measured IC50 of just under 3 μM and low cell toxicity. Detailed decomposition of the interactions between the inhibitors and Mpro reveals key interacting residues and interactions that determine the activity. The results from this study should provide a basis for further development of anti-SARS-CoV-2 drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lei Zheng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yanmei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liping He
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China,Suzhen Dong ;
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China,CONTACT Yifei Qi ;
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China,Department of Chemistry, New York University, New York, NY, USA,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China,John Z. H. Zhang Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| |
Collapse
|
18
|
Barakat A, Mostafa A, Ali M, Al-Majid AM, Domingo LR, Kutkat O, Moatasim Y, Zia K, Ul-Haq Z, Elshaier YAMM. Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies. Int J Mol Sci 2022; 23:ijms231911861. [PMID: 36233160 PMCID: PMC9569468 DOI: 10.3390/ijms231911861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The search for an effective anti-viral to inhibit COVID-19 is a challenge for the specialized scientific research community. This work investigated the anti-coronavirus activity for spirooxindole-based phenylsulfone cycloadducts in a single and combination protocols. The newly designed anti-SARS-CoV-2 therapeutics spirooxindoles synthesized by [3 + 2] cycloaddition reactions represent an efficient approach. One-pot multicomponent reactions between phenyl vinyl sulfone, substituted isatins, and amines afforded highly stereoselective anti-SARS-CoV-2 therapeutics spirooxindoles with three stereogenic centers. Herein, the newly synthesized spirooxindoles were assessed individually against the highly pathogenic human coronaviruses and proved to be highly potent and safer. Interestingly, the synergistic effect by combining the potent, tested spirooxindoles resulted in an improved antiviral activity as well as better host-cell safety. Compounds 4i and 4d represented the most potent activity against MERS-CoV with IC50 values of 11 and 23 µM, respectively. Both compounds 4c and 4e showed equipotent activity with the best IC50 against SARS-CoV-2 with values of 17 and 18 µM, respectively, then compounds 4d and 4k with IC50 values of 24 and 27 µM, respectively. Then, our attention oriented to perform a combination protocol as anti-SARS-CoV-2 for the best compounds with a different binding mode and accompanied with different pharmacophores. Combination of compound 4k with 4c and combination of compounds 4k with 4i proved to be more active and safer. Compounds 4k with 4i displayed IC50 = 3.275 µM and half maximal cytotoxic-concentration CC50 = 11832 µM. MD simulation of the most potential compounds as well as in silico ADMET properties were investigated. This study highlights the potential drug-like properties of spirooxindoles as a cocktail anti-coronavirus protocol.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (A.B.); (Y.A.M.M.E.); Tel.: +966-11467-5901 (A.B.); Fax: +966-11467-5992 (A.B.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32958, Egypt
- Correspondence: (A.B.); (Y.A.M.M.E.); Tel.: +966-11467-5901 (A.B.); Fax: +966-11467-5992 (A.B.)
| |
Collapse
|
19
|
Belhachemi MHM, Benmohammed A, Saiah H, Boukabcha N, Saidj M, Dege N, Djafri A, Chouaih A. Synthesis, structural determination, molecular docking and biological activity of 1-(4-fluorobenzyl)-5-bromolindolin-2,3-dione. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS-CoV-2 main protease (M pro): Structure, function, and emerging therapies for COVID-19. MedComm (Beijing) 2022; 3:e151. [PMID: 35845352 PMCID: PMC9283855 DOI: 10.1002/mco2.151] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.
Collapse
Affiliation(s)
- Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang‐Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ya‐Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐Wen Zhang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Ping Huang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Guang‐Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
21
|
Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. Eur J Med Chem 2022; 238:114508. [PMID: 35688005 PMCID: PMC9162962 DOI: 10.1016/j.ejmech.2022.114508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 posed a serious threat to human life and health, and SARS-CoV-2 Mpro has been considered as an attractive drug target for the treatment of COVID-19. Herein, we report 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 Mpro developed by in-house library screening and biological evaluation. Similarity search led to the identification of compound F8–S43 with the enzymatic IC50 value of 10.76 μM. Further structure-based drug design and synthetic optimization uncovered compounds F8–B6 and F8–B22 as novel non-peptidomimetic inhibitors of Mpro with IC50 values of 1.57 μM and 1.55 μM, respectively. Moreover, enzymatic kinetic assay and mass spectrometry demonstrated that F8–B6 was a reversible covalent inhibitor of Mpro. Besides, F8–B6 showed low cytotoxicity with CC50 values of more than 100 μM in Vero and MDCK cells. Overall, these novel SARS-CoV-2 Mpro non-peptidomimetic inhibitors provide a useful starting point for further structural optimization.
Collapse
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guofeng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bingding Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yangbin Lu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zheng Guo
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongtian Yu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
22
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Proia E, Ragno A, Antonini L, Sabatino M, Mladenovič M, Capobianco R, Ragno R. Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. J Comput Aided Mol Des 2022; 36:483-505. [PMID: 35716228 PMCID: PMC9206107 DOI: 10.1007/s10822-022-00460-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/28/2022] [Indexed: 11/05/2022]
Abstract
The main protease (Mpro) of SARS-Cov-2 is the essential enzyme for maturation of functional proteins implicated in viral replication and transcription. The peculiarity of its specific cleavage site joint with its high degree of conservation among all coronaviruses promote it as an attractive target to develop broad-spectrum inhibitors, with high selectivity and tolerable safety profile. Herein is reported a combination of three-dimensional quantitative structure-activity relationships (3-D QSAR) and comparative molecular binding energy (COMBINE) analysis to build robust and predictive ligand-based and structure-based statistical models, respectively. Models were trained on experimental binding poses of co-crystallized Mpro-inhibitors and validated on available literature data. By means of deep optimization both models' goodness and robustness reached final statistical values of r2/q2 values of 0.97/0.79 and 0.93/0.79 for the 3-D QSAR and COMBINE approaches respectively, and an overall predictiveness values of 0.68 and 0.57 for the SDEPPRED and AAEP metrics after application to a test set of 60 compounds covered by the training set applicability domain. Despite the different nature (ligand-based and structure-based) of the employed methods, their outcome fully converged. Furthermore, joint ligand- and structure-based structure-activity relationships were found in good agreement with nirmatrelvir chemical features properties, a novel oral Mpro-inhibitor that has recently received U.S. FDA emergency use authorization (EUA) for the oral treatment of mild-to-moderate COVID-19 infected patients. The obtained results will guide future rational design and/or virtual screening campaigns with the aim of discovering new potential anti-coronavirus lead candidates, minimizing both time and financial resources. Moreover, as most of calculation were performed through the well-established web portal 3d-qsar.com the results confirm the portal as a useful tool for drug design.
Collapse
Affiliation(s)
- Eleonora Proia
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Alessio Ragno
- Department of Computer, Control and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Rome, Italy
| | - Lorenzo Antonini
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Manuela Sabatino
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Milan Mladenovič
- Department of Chemistry, Faculty of Science, Kragujevac Center for Computational Biochemistry, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000, Kragujevac, Serbia
| | - Roberto Capobianco
- Department of Computer, Control and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Rome, Italy
- Sony AI, Rome, Italy
| | - Rino Ragno
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
24
|
Li S, Wang L, Meng J, Zhao Q, Zhang L, Liu H. De Novo design of potential inhibitors against SARS-CoV-2 Mpro. Comput Biol Med 2022; 147:105728. [PMID: 35763931 PMCID: PMC9197785 DOI: 10.1016/j.compbiomed.2022.105728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
The impact of the ravages of COVID-19 on people's lives is obvious, and the development of novel potential inhibitors against SARS-CoV-2 main protease (Mpro), which has been validated as a potential target for drug design, is urgently needed. This study developed a model named MproI-GEN, which can be used for the de novo design of potential Mpro inhibitors (MproIs) based on deep learning. The model was mainly composed of long-short term memory modules, and the last layer was re-trained with transfer learning. The validity (0.9248), novelty (0.9668), and uniqueness (0.0652) of the designed potential MproI library (PMproIL) were evaluated, and the results showed that MproI-GEN could be used to design structurally novel and reasonable molecules. Additionally, PMproIL was filtered based on machine learning models and molecular docking. After filtering, the potential MproIs were verified with molecular dynamics simulations to evaluate the binding stability levels of these MproIs and SARS-CoV-2 Mpro, thereby illustrating the inhibitory effects of the potential MproIs against Mpro. Two potential MproIs were proposed in this study. This study provides not only new possibilities for the development of COVID-19 drugs but also a complete pipeline for the discovery of novel lead compounds.
Collapse
Affiliation(s)
- Shimeng Li
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Lianxin Wang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Jinhui Meng
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China; Shenyang Key Laboratory of Computer Simulating and Information Processing of Bio-macromolecules, Shenyang, 110036, China.
| | - Hongsheng Liu
- Shenyang Key Laboratory of Computer Simulating and Information Processing of Bio-macromolecules, Shenyang, 110036, China; Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, China; Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China; School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
25
|
Shih PC, Mao YW, Hu JW, Hsieh HY, Shih TM, Lu LP, Chang WH, Huang CH, Lin CH, Lin CH, Tan P, Yang YC, Chien MH, Su CC, Yeh CH, Chuang PY, Hsieh TL, Wang CC, Hsieh PS, Chou TY, Tsai GE. Development of Ultrapure and Potent Tannic Acids as a Pan-coronal Antiviral Therapeutic. ACS Pharmacol Transl Sci 2022; 5:400-412. [PMID: 37582235 PMCID: PMC9128009 DOI: 10.1021/acsptsci.1c00264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rampageous transmission of SARS-CoV-2 has been devastatingly impacting human life and public health since late 2019. The waves of pandemic events caused by distinct coronaviruses at present and over the past decades have prompted the need to develop broad-spectrum antiviral drugs against them. In this study, our Pentarlandir ultrapure and potent tannic acids (UPPTA) showed activities against two coronaviral strains, SARS-CoV-2 and HCoV-OC43, the earliest-known coronaviruses. The mode of inhibition of Pentarlandir UPPTA is likely to act on 3-chymotrypsin-like protease (3CLpro) to prevent viral replication, as supported by results of biochemical analysis, a 3CLpro assay, and a "gain-of-function" 3CLpro overexpressed cell-based method. Even in the 3CLpro overexpressed environment, Pentarlandir UPPTA remained its antiviral characteristic. Utilizing cell-based virucidal and cytotoxicity assays, the 50% effective concentrations (EC50) and 50% cytotoxicity concentration (CC50) of Pentarlandir UPPTA were determined to be ∼0.5 and 52.5 μM against SARS-CoV-2, while they were 1.3 and 205.9 μM against HCoV-OC43, respectively. In the pharmacokinetic studies, Pentarlandir UPPTA was distributable at a high level to the lung tissue with no accumulation in the body, although the distribution was affected by the food effect. With further investigation in toxicology, Pentarlandir UPPTA demonstrated an overall safe toxicology profile. Taking these findings together, Pentarlandir UPPTA is considered to be a safe and efficacious pancoronal antiviral drug candidate that has been advanced to clinical development.
Collapse
Affiliation(s)
- Po-Chang Shih
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Yi-Wen Mao
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Jhe-Wei Hu
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Han-Yi Hsieh
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Tsai-Miao Shih
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Lu-Ping Lu
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Wei-Hua Chang
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Chan-Hui Huang
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Chia-Hung Lin
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Chih-Hung Lin
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Peng Tan
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Ya-Ching Yang
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Ming-Hong Chien
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Chen-Che Su
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Cheng-Hsin Yeh
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Pei-Yun Chuang
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Tien-Lan Hsieh
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Ching-Cheng Wang
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
| | - Po-Shiuan Hsieh
- Institute
of Physiology, National Defense Medical
Center, Taipei
City 11490, Taiwan
- Department
of Medical Research, Tri-Service General
Hospital, Taipei City 114, Taiwan
| | - Teh-Ying Chou
- Department
of Pathology and Laboratory Medicine, Taipei
Veterans General Hospital, Taipei City 112, Taiwan
- Institute
of Clinical Medicine, National Yang-Ming
Chiao Tung University, Taipei City 112304, Taiwan
| | - Guochuan Emil Tsai
- Department
of Research and Development, SyneuRx International
(Taiwan) Corp., New Taipei City 22175, Taiwan
- UCLA School
of Medicine, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Moghimi P, Sabet-Sarvestani H, Kohandel O, Shiri A. Pyrido[1,2- e]purine: Design and Synthesis of Appropriate Inhibitory Candidates against the Main Protease of COVID-19. J Org Chem 2022; 87:3922-3933. [PMID: 35225616 PMCID: PMC8905926 DOI: 10.1021/acs.joc.1c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/28/2022]
Abstract
A series of tricyclic and polycyclic pyrido[1,2-e]purine derivatives were designed and synthesized via a two-step, one-pot reaction of 2,4-dichloro-5-amino-6-methylpyrimidine with pyridine under reflux conditions. Various derivatives of pyrido[1,2-e]purine were also synthesized by substituting the chlorine atom with secondary amines. After careful physiochemical and pharmacokinetic predictions, the inhibitory effects of the synthesized compounds against the main protease of SARS-CoV-2 have been evaluated by molecular docking and molecular dynamics approaches. The in silico results revealed that among all of the studied compounds, the morpholine/piperidine-substituted pyrido[1,2-e]purine derivatives are the best candidates as effective inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Parvin Moghimi
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| | | | - Omid Kohandel
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| |
Collapse
|
27
|
Synthesis, in vitro antimicrobial evaluation, and molecular docking studies of new isatin-1,2,3-triazole hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Elsaman T, Mohamed MS, Eltayib EM, Abdel-aziz HA, Abdalla AE, Munir MU, Mohamed MA. Isatin derivatives as broad-spectrum antiviral agents: the current landscape. Med Chem Res 2022; 31:244-273. [PMID: 35039740 PMCID: PMC8754539 DOI: 10.1007/s00044-021-02832-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
In recent decades, several viruses have resulted in large outbreaks with serious health, economic and social consequences. The current unprecedented outbreak of the new coronavirus, SARS-COV-2, necessitates intensive efforts for delivering effective therapies to eradicate such a deadly virus. Isatin is an opulent heterocycle that has been proven to provide tremendous opportunities in the area of drug discovery. Over the last fifty years, suitably functionalized isatin has shown remarkable and broad-spectrum antiviral properties. The review herein is an attempt to compile all of the reported information about the antiviral activity of isatin derivatives with an emphasis on their structure-activity relationships (SARs) along with mechanistic and molecular modeling studies. In this regard, we are confident that the review will afford the scientific community a valuable platform to generate more potent and cost-effective antiviral therapies based on isatin templates.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hatem A. Abdel-aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622 Egypt
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
29
|
Gohain SB, Boruah PK, Das MR, Thakur AJ. Gold-coated iron oxide core–shell nanostructures for the oxidation of indoles and the synthesis of uracil-derived spirooxindoles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of isatins and uracil-based spirooxindoles catalysed by Au/Fe3O4 core–shell nanoparticles under mild conditions and low reaction times.
Collapse
Affiliation(s)
| | - Purna Kanta Boruah
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Manash Ranjan Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
30
|
El-Masry RM, Al-Karmalawy AA, Alnajjar R, Mahmoud SH, Mostafa A, Kadry HH, Abou-Seri SM, Taher AT. Newly synthesized series of oxoindole–oxadiazole conjugates as potential anti-SARS-CoV-2 agents: in silicoand in vitrostudies. NEW J CHEM 2022; 46:5078-5090. [DOI: 10.1039/d1nj04816c] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pharmacophoric features of the novel series of 1,3,4-oxadiazole–oxoindole conjugates (IVa–g) as potential anti-SARS-CoV-2 agents based on the reported Mproinhibitor (Ia) are presented.
Collapse
Affiliation(s)
- Rana M. El-Masry
- Organic Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), October 6 city, Giza, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Hanan H. Kadry
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sahar M. Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Azza T. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City, Giza, Egypt
| |
Collapse
|
31
|
Clinically available/under trial drugs and vaccines for treatment of SARS-COV-2. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300481 DOI: 10.1016/b978-0-323-91172-6.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Prior 2019 to work date entire world is seriously influenced by an appalling illness called COVID sickness [Coronavirus disease-2019 (COVID-19)] which is brought about by another strain of coronavirus known as severe acute respiratory syndrome-Coronavirus-2. This pandemic was first seen in the Hubei area in Wuhan city of China. To date above 170 million individuals have been influenced by this infection and more than 3 million individuals died. The race of finding specific therapeutic drugs and efficacious vaccine candidates is still going on to tackle the pandemic-associated morbidities. This chapter discussed different clinically accessible medications (remdesivir, hydroxychloroquine, azithromycin, etc.) and immunizations (mRNA-1273, Sputanik, Pfizer, etc.) which are either in use or under trial for the treatment of COVID-19.
Collapse
|
32
|
Abstract
The main protease (Mpro) plays a crucial role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and is highly conserved, rendering it one of the most attractive therapeutic targets for SARS-CoV-2 inhibition. Currently, although two drug candidates targeting SARS-CoV-2 Mpro designed by Pfizer are under clinical trials, no SARS-CoV-2 medication is approved due to the long period of drug development. Here, we collect a comprehensive list of 817 available SARS-CoV-2 and SARS-CoV Mpro inhibitors from the literature or databases and analyze their molecular mechanisms of action. The structure-activity relationships (SARs) among each series of inhibitors are discussed. Additionally, we broadly examine available antiviral activity, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and animal tests of these inhibitors. We comment on their druggability or drawbacks that prevent them from becoming drugs. This Perspective sheds light on the future development of Mpro inhibitors for SARS-CoV-2 and future coronavirus diseases.
Collapse
Affiliation(s)
- Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
33
|
Yan G, Li D, Lin Y, Fu Z, Qi H, Liu X, Zhang J, Si S, Chen Y. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors. Cell Biosci 2021; 11:199. [PMID: 34865653 PMCID: PMC8645223 DOI: 10.1186/s13578-021-00720-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible and has caused a pandemic named coronavirus disease 2019 (COVID-19), which has quickly spread worldwide. Although several therapeutic agents have been evaluated or approved for the treatment of COVID-19 patients, efficacious antiviral agents are still lacking. An attractive therapeutic target for SARS-CoV-2 is the main protease (Mpro), as this highly conserved enzyme plays a key role in viral polyprotein processing and genomic RNA replication. Therefore, the identification of efficacious antiviral agents against SARS-CoV-2 Mpro using a rapid, miniaturized and economical high-throughput screening (HTS) assay is of the highest importance at the present. Results In this study, we first combined the fluorescence polarization (FP) technique with biotin-avidin system (BAS) to develop a novel and step-by-step sandwich-like FP screening assay to quickly identify SARS-CoV-2 Mpro inhibitors from a natural product library. Using this screening assay, dieckol, a natural phlorotannin component extracted from a Chinese traditional medicine Ecklonia cava, was identified as a novel competitive inhibitor against SARS-CoV-2 Mpro in vitro with an IC50 value of 4.5 ± 0.4 µM. Additionally, dieckol exhibited a high affinity with SARS-CoV-2 Mpro using surface plasmon resonance (SPR) analysis and could bind to the catalytic sites of Mpro through hydrogen-bond interactions in the predicted docking model. Conclusions This innovative sandwich-like FP screening assay enables the rapid discovery of antiviral agents targeting viral proteases, and dieckol will be an excellent lead compound for generating more potent and selective antiviral agents targeting SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Gangan Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, 241002, Wuhu, China
| | - Dongsheng Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Zhenghao Fu
- Institute for Drug Screening and Evaluation, Wannan Medical College, 241002, Wuhu, China
| | - Haiyan Qi
- Institute for Drug Screening and Evaluation, Wannan Medical College, 241002, Wuhu, China
| | - Xiaoping Liu
- Institute for Drug Screening and Evaluation, Wannan Medical College, 241002, Wuhu, China
| | - Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| | - Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, 241002, Wuhu, China. .,Anhui Provincial Engineering Laboratory for Screening and Reevaluation of Bioactive Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, 241002, Wuhu, China.
| |
Collapse
|
34
|
Españo E, Kim J, Lee K, Kim JK. Phytochemicals for the treatment of COVID-19. J Microbiol 2021; 59:959-977. [PMID: 34724178 PMCID: PMC8559138 DOI: 10.1007/s12275-021-1467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has underscored the lack of approved drugs against acute viral diseases. Plants are considered inexhaustible sources of drugs for several diseases and clinical conditions, but plant-derived compounds have seen little success in the field of antivirals. Here, we present the case for the use of compounds from vascular plants, including alkaloids, flavonoids, polyphenols, and tannins, as antivirals, particularly for the treatment of COVID-19. We review current evidence for the use of these phytochemicals against SARS-CoV-2 infection and present their potential targets in the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jiyeon Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Kiho Lee
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea.
| |
Collapse
|
35
|
Gupta A, Pradhan A, Maurya VK, Kumar S, Theengh A, Puri B, Saxena SK. Therapeutic approaches for SARS-CoV-2 infection. Methods 2021; 195:29-43. [PMID: 33962011 PMCID: PMC8096528 DOI: 10.1016/j.ymeth.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023] Open
Abstract
Therapeutic approaches to COVID-19 treatment require appropriate inhibitors to target crucial proteins of SARS-CoV-2 replication machinery. It's been approximately 12 months since the pandemic started, yet no known specific drugs are available. However, research progresses with time in terms of high throughput virtual screening (HTVS) and rational design of repurposed, novel synthetic and natural products discovery by understanding the viral life cycle, immuno-pathological and clinical outcomes in patients based on host's nutritional, metabolic, and lifestyle status. Further, complementary and alternative medicine (CAM) approaches have also improved resiliency and immune responses. In this article, we summarize all the therapeutic antiviral strategies for COVID-19 drug discovery including computer aided virtual screening, repurposed drugs, immunomodulators, vaccines, plasma therapy, various adjunct therapies, and phage technology to unravel insightful mechanistic pathways of targeting SARS-CoV-2 and host's intrinsic, innate immunity at multiple checkpoints that aid in the containment of the disease.
Collapse
Affiliation(s)
- Ankur Gupta
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Anish Pradhan
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Angila Theengh
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Bipin Puri
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India.
| |
Collapse
|
36
|
3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg Chem 2021; 114:105131. [PMID: 34243074 PMCID: PMC8241580 DOI: 10.1016/j.bioorg.2021.105131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 01/25/2023]
Abstract
Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.
Collapse
|
37
|
Nandini Asha R, Ravindran Durai Nayagam B, Bhuvanesh N. Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2. Bioorg Chem 2021; 112:104967. [PMID: 33975232 PMCID: PMC8096530 DOI: 10.1016/j.bioorg.2021.104967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/26/2022]
Abstract
Nowadays, over 200 countries face a wellbeing emergency because of epidemiological disease COVID-19 caused by the SARS-CoV-2 virus. It will cause a very high effect on the world's economy and the worldwide health sector. The present work is an investigation of the newly synthesized 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine (M1BZP) molecule's inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. M1BZP crystallizes in monoclinic type with P1211 space group. For the title compound M1BZP, spectroscopic characterization like 1H NMR, 13C NMR, FTIR, were carried out. The geometry of the compound had been optimized by the DFT method and its results were compared with the X-ray diffraction data. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Intermolecular interactions in the crystal network were determined using Hirshfeld surface analyses. The molecular electrostatic potential (MEP) picture was drawn using the same level of theory to visualize the chemical reactivity and charge distribution on the molecule. Molecular docking study performed for the synthesized compound revealed an efficient interaction with the COVID-19 protease and resulted in good activities. We hope the present study would help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus. Virtual ADME studies were carried out as well and a relationship between biological, electronic, and physicochemical qualifications of the target compound was determined. Toxicity prediction by computational technique for the title compound was also carried out.
Collapse
Affiliation(s)
- R Nandini Asha
- Department of Chemistry and Research Centre, Pope's College (Autonomous), Sawyerpuram-628251, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.
| | - B Ravindran Durai Nayagam
- Department of Chemistry and Research Centre, Pope's College (Autonomous), Sawyerpuram-628251, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
38
|
Eldehna WM, Abo-Ashour MF, Al-Warhi T, Al-Rashood ST, Alharbi A, Ayyad RR, Al-Khayal K, Abdulla M, Abdel-Aziz HA, Ahmad R, El-Haggar R. Development of 2-oindolin-3-ylidene-indole-3-carbohydrazide derivatives as novel apoptotic and anti-proliferative agents towards colorectal cancer cells. J Enzyme Inhib Med Chem 2021; 36:319-328. [PMID: 33345633 PMCID: PMC7751403 DOI: 10.1080/14756366.2020.1862100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial anti-apoptotic Bcl2 and BclxL proteins, are overexpressed in multiple tumour types, and has been involved in the progression and survival of malignant cells. Therefore, inhibition of such proteins has become a validated and attractive target for anticancer drug discovery. In this manner, the present studies developed a series of novel isatin-indole conjugates (7a-j and 9a-e) as potential anticancer Bcl2 and BclxL inhibitors. The progression of the two examined colorectal cancer cell lines was significantly inhibited by all of the prepared compounds with IC50 ranges132-611 nM compared to IC50 = 4.6 µM for 5FU, against HT-29 and IC50 ranges 37-468 nM compared to IC50 = 1.5 µM for 5FU, against SW-620. Thereafter, compounds 7c and 7g were selected for further investigations. Interestingly, both compounds exhibited selective cytotoxicity against both cell lines with high safety to normal fibroblast (HFF-1). In addition, both compounds 7c and 7g induced apoptosis and inhibited Bcl2 and BclxL expression in a dose-dependent manner. Collectively, the high potency and selective cytotoxicity suggested that conjugates 7c and 7g could be a starting point for further optimisation to develop novel pro-apoptotic and antitumor agents towards colon cancer.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rezk R Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
39
|
Gossen J, Albani S, Hanke A, Joseph BP, Bergh C, Kuzikov M, Costanzi E, Manelfi C, Storici P, Gribbon P, Beccari AR, Talarico C, Spyrakis F, Lindahl E, Zaliani A, Carloni P, Wade RC, Musiani F, Kokh DB, Rossetti G. A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. ACS Pharmacol Transl Sci 2021; 4:1079-1095. [PMID: 34136757 PMCID: PMC8009102 DOI: 10.1021/acsptsci.0c00215] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/27/2022]
Abstract
The SARS-CoV-2 coronavirus outbreak continues to spread at a rapid rate worldwide. The main protease (Mpro) is an attractive target for anti-COVID-19 agents. Unexpected difficulties have been encountered in the design of specific inhibitors. Here, by analyzing an ensemble of ∼30 000 SARS-CoV-2 Mpro conformations from crystallographic studies and molecular simulations, we show that small structural variations in the binding site dramatically impact ligand binding properties. Hence, traditional druggability indices fail to adequately discriminate between highly and poorly druggable conformations of the binding site. By performing ∼200 virtual screenings of compound libraries on selected protein structures, we redefine the protein's druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding. This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore. The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2 Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen protein targets with malleable binding sites.
Collapse
Affiliation(s)
- Jonas Gossen
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Simone Albani
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Anton Hanke
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
- Institute
of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - Benjamin P. Joseph
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Cathrine Bergh
- Science for
Life Laboratory & Swedish e-Science Research Center, Department
of Applied Physics, KTH Royal Institute
of Technology, Stockholm, 11428, Sweden
| | - Maria Kuzikov
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14-km 163,5 in AREA Science Park, Basovizza,
Trieste, 34149, Italy
| | - Candida Manelfi
- Dompé
Farmaceutici SpA, Via Campo di Pile, L’Aquila, 67100, Italy
| | - Paola Storici
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14-km 163,5 in AREA Science Park, Basovizza,
Trieste, 34149, Italy
| | - Philip Gribbon
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | | | - Carmine Talarico
- Dompé
Farmaceutici SpA, Via Campo di Pile, L’Aquila, 67100, Italy
| | - Francesca Spyrakis
- Department
of Drug Science and Technology, University
of Turin, via Giuria
9, Turin, 10125, Italy
| | - Erik Lindahl
- Science for
Life Laboratory & Swedish e-Science Research Center, Department
of Applied Physics, KTH Royal Institute
of Technology, Stockholm, 11428, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-106 91, Sweden
| | - Andrea Zaliani
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | - Paolo Carloni
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Rebecca C. Wade
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
- Zentrum
für Molekulare Biologie der University Heidelberg, DKFZ-ZMBH
Alliance, INF 282, Heidelberg, 69120, Germany
- Interdisciplinary
Center for Scientific Computing (IWR), Heidelberg
University, INF 368, Heidelberg, 69120, Germany
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Daria B. Kokh
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
| | - Giulia Rossetti
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Jülich
Supercomputing Center (JSC), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Department
of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, 44517, Germany
| |
Collapse
|
40
|
Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe SD, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacol Transl Sci 2021; 4:1096-1110. [PMID: 35287429 PMCID: PMC7986981 DOI: 10.1021/acsptsci.0c00216] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 μM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Jeanette Reinshagen
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Francesca Esposito
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Laura Vangeel
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Markus Wolf
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and
Pharmacology
ITMP, Theodor Stern Kai
7, 60596 Frankfurt
am Main, Germany
- Institute
of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Angela Corona
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Daniela Iaconis
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Carmine Talarico
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Candida Manelfi
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Rolando Cannalire
- Department
of Pharmacy, University of Naples Federico
II, Via D. Montesano,
49, 80131 Naples, Italy
| | - Giulia Rossetti
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
- Faculty
of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jonas Gossen
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
| | - Simone Albani
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40216 Bologna, Italy
| | - Katja Herzog
- EU-OPENSCREEN
ERIC, Robert-Rössle-Straße
10, 13125 Berlin, Germany
| | - Yang Ye
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Barbara Giabbai
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Dirk Jochmans
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Jasper Rymenants
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Vincenzo Summa
- Department
of Pharmacy, University of Naples Federico
II, Via D. Montesano,
49, 80131 Naples, Italy
| | - Enzo Tramontano
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | | | - Pieter Leyssen
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Paola Storici
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Johan Neyts
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Philip Gribbon
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
41
|
Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe SD, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacol Transl Sci 2021; 4:1096-1110. [PMID: 35287429 DOI: 10.1101/2020.12.16.422677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 05/18/2023]
Abstract
Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 μM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Jeanette Reinshagen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Laura Vangeel
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Carmine Talarico
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jonas Gossen
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Simone Albani
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40216 Bologna, Italy
| | - Katja Herzog
- EU-OPENSCREEN ERIC, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Yang Ye
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Barbara Giabbai
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Jasper Rymenants
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Pieter Leyssen
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Paola Storici
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
42
|
Tian D, Liu Y, Liang C, Xin L, Xie X, Zhang D, Wan M, Li H, Fu X, Liu H, Cao W. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed Pharmacother 2021; 137:111313. [PMID: 33556871 PMCID: PMC7857046 DOI: 10.1016/j.biopha.2021.111313] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 outbreak and pandemic that began near the end of 2019 has posed a challenge to global health. At present, many candidate small-molecule therapeutics have been developed that can inhibit both the infection and replication of SARS-CoV-2 and even potentially relieve cytokine storms and other related complications. Meanwhile, host-targeted drugs that inhibit cellular transmembrane serine protease (TMPRSS2) can prevent SARS-CoV-2 from entering cells, and its combination with chloroquine and dihydroorotate dehydrogenase (DHODH) inhibitors can limit the spread of SARS-CoV-2 and reduce the morbidity and mortality of patients with COVID-19. The present article provides an overview of these small-molecule therapeutics based on insights from medicinal chemistry research and focuses on RNA-dependent RNA polymerase (RdRp) inhibitors, such as the nucleoside analogues remdesivir, favipiravir and ribavirin. This review also covers inhibitors of 3C-like protease (3CLpro), papain-like protease (PLpro) and other potentially innovative active ingredient molecules, describing their potential targets, activities, clinical status and side effects.
Collapse
Affiliation(s)
- Dengke Tian
- School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Life Sciences, Jilin University, Changchun, 130012, PR China; Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an 712046, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| |
Collapse
|
43
|
Liang C, Hui N, Liu Y, Qiao G, Li J, Tian L, Ju X, Jia M, Liu H, Cao W, Yu P, Li H, Ren X. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: A Chinese herbal medicine repurposed for COVID-19 pandemic. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100027. [PMID: 35399819 PMCID: PMC7833308 DOI: 10.1016/j.phyplu.2021.100027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 04/17/2023]
Abstract
Background In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.
Collapse
Key Words
- 3C-like protease (3CLpro)
- 3CLpro, 3C-like protease
- ACE2, Angiotensin-converting enzyme 2
- AECOPD, Acute exacerbation of chronic obstructive pulmonary disease
- AIDS, Acquired immune deficiency syndrome
- AQP3, Aquaporins 3
- ARDS, Acute respiratory distress syndrome
- CAT, COPD assessment test
- CC50, 50% Cytotoxic concentration
- CCL-2/MCP-1, C—C motif ligand 2/monocyte chemoattractant protein-1
- CFDA, China Food and Drug Administration
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- COVID-19, Coronavirus disease 2019
- CPE, Cytopathic effect
- CSS, Cytokine storm syndrome
- CT, Computed tomography
- CXCL-10/IP-10, C-X-C Motif Chemokine Ligand 10/ Interferon Gamma-induced Protein 10
- Cytokine storm syndrome (CSS)
- DMSO, Dimethyl sulfoxide
- E protein, Envelope protein
- ERK, Extracellular signal-regulated kinase
- FBS, Fatal bovine serum
- Forsythia honeysuckle (Lianhuaqingwen,LH) capsules
- Grb2, Growth factor receptor-bound protein 2
- HIV, Human immunodeficiency virus
- HPLC, High-performance liquid chromatography
- HSV-1, Herpes simplex virus type 1
- HVJ, Hemagglutinating virus of Japan
- Hep-2, Human epithelial type 2
- Huh-7, Human Hepatocellular Carcinoma-7
- IAV, Influenza A virus
- IBV, Influenza B virus
- IC50, 50% Inhibition concentration
- IFN-λ1, Interferon-λ1
- IL-6, Interleukin-6
- IL-6R, IL-6 Receptor
- IL-8, Interleukin-8
- IP-10, Interferon-inducible protein-10
- JAK/STAT, Janus kinase/signal transducers and activators of transcription
- JAK1/2, Janus kinase1/2
- LD50, 50% Lethal dose
- LH capsules, Forsythia honeysuckle (Lianhuaqingwen) capsules
- M protein, Membrane protein
- MAPK, Mitogen-activated protein kinase
- MCP-1, Monocyte chemotactic protein 1
- MDCK, Madin-darby canine kidney
- MEK, Mitogen-activated protein kinase kinase
- MERS, Middle east respiratory syndrome
- MIP-1β, Macrophage Inflammatory Protein-1β
- MLD50, 50% Minimum lethal dose
- MOF, Multifunctional organ damage
- MOI, Multiplicity of infection
- MTT, Methyl Thiazolyl Tetrazolium
- NF-kB, Nuclear transcription factor kappa-B
- NHC, National Health Commission
- ORFs, Open reading frames
- PBS, Phosphate buffered saline
- PHN, Phillyrin
- PI3K, Phosphoinositide 3-kinases
- PKA/p-CREB, Protein kinase A /phosphorylated cAMP response element-binding protein
- PKB, Akt, Protein kinase B
- PLpro, Papain-like proteases
- PRC, People's Republic of China
- QC, Quality control
- RANTES, Regulated on activation normal T cell expressed and secreted
- RSV, Respiratory syncytial virus
- RT-PCR, Reverse transcription PCR
- Ras, Ras GTPase
- SARS-CoV-2
- TCID50, 50% Tissue culture infective dose
- TD0, Non-toxic Dose
- TD50, Half-toxic dose
- Vero E6, African Green Monkey Kidney Epithelial-6
- gp-130, Glycoprotein 130
- mIL-6R, Membrane-bound form IL-6 Receptor
- mTOR, Mammalian target of rapamycin
- nsps, Non-structural proteins
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xingke Ju
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Pengcheng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
44
|
Rossi FV, Gentili D, Marcantoni E. Metal-Promoted Heterocyclization: A Heterosynthetic Approach to Face a Pandemic Crisis. Molecules 2021; 26:2620. [PMID: 33947170 PMCID: PMC8124705 DOI: 10.3390/molecules26092620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
The outbreak of SARS-CoV-2 has drastically changed our everyday life and the life of scientists from all over the world. In the last year, the scientific community has faced this worldwide threat using any tool available in order to find an effective response. The recent formulation, production, and ongoing administration of vaccines represent a starting point in the battle against SARS-CoV-2, but they cannot be the only aid available. In this regard, the use of drugs capable to mitigate and fight the virus is a crucial aspect of the pharmacological strategy. Among the plethora of approved drugs, a consistent element is a heterocyclic framework inside its skeleton. Heterocycles have played a pivotal role for decades in the pharmaceutical industry due to their high bioactivity derived from anticancer, antiviral, and anti-inflammatory capabilities. In this context, the development of new performing and sustainable synthetic strategies to obtain heterocyclic molecules has become a key focus of scientists. In this review, we present the recent trends in metal-promoted heterocyclization, and we focus our attention on the construction of heterocycles associated with the skeleton of drugs targeting SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Federico Vittorio Rossi
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
- Laboratori Alchemia Srl, Via San Faustino, 20134 Milano, Italy
| | - Dario Gentili
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
| | - Enrico Marcantoni
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
| |
Collapse
|
45
|
Khatoon S, Aroosh A, Islam A, Kalsoom S, Ahmad F, Hameed S, Abbasi SW, Yasinzai M, Naseer MM. Novel coumarin-isatin hybrids as potent antileishmanial agents: Synthesis, in silico and in vitro evaluations. Bioorg Chem 2021; 110:104816. [PMID: 33799180 DOI: 10.1016/j.bioorg.2021.104816] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Leishmaniasis being one of the six major tropical diseases that affects nearly 0.7-1.3 million people annually, has so far limited and high toxic therapeutic options. Herein, we report the synthesis, in silico, and in vitro evaluations of novel coumarin-incorporated isatin hydrazones (Spf-1 - Spf-10) as highly potent and safe antileishmanial agents. Molecular docking was initially carried out to decipher the binding confirmation of lead molecules towards the active cavity of the target protein (Leishmanolysin gp63) of Leishmania tropica. Among all the docked compounds, only Spf-6, Spf-8, and Spf-10 showed high binding affinities due to a pattern of strong conventional hydrogen bonds and hydrophobic π-interactions. The molecular dynamics simulations showed the stable pattern of such bonding and structure-based confirmation with a time scale of 50 ns towards the top compound (Spf-10) and protein. These analyses affirmed the high stability of the system. Three out of ten compounds evaluated for their antileishmanial activity against Leishmania tropica promastigotes and amastigotes were found to be active at micromolar concentrations (IC50 range 0.1-4.13 μmol/L), and most importantly, they were also found to be highly biocompatible when screened for their toxicity in human erythrocytes.
Collapse
Affiliation(s)
- Saira Khatoon
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aiman Aroosh
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Arshad Islam
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan; Department of Pathology, Government Lady Reading Hospital Medical Teaching Institution, Peshawar, KPK, Pakistan
| | - Saima Kalsoom
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Masoom Yasinzai
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
46
|
Shagufta, Ahmad I. The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. Eur J Med Chem 2021; 213:113157. [PMID: 33486200 PMCID: PMC7802596 DOI: 10.1016/j.ejmech.2021.113157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022]
Abstract
The unforeseen emergence of coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the Wuhan province of China in December 2019, subsequently its abrupt spread across the world has severely affected human life. In a short span of time, COVID-19 has sacked more than one million human lives and marked as a severe global pandemic, which is drastically accountable for the adverse effect directly to the human society, particularly the health care system and the economy. The unavailability of approved and effective drugs or vaccines against COVID-19 further created conditions more adverse and terrifying. To win the war against this pandemic within time there is a desperate need for the most adequate therapeutic treatment, which can be achieved by the collaborative research work among scientists worldwide. In continuation of our efforts to support the scientific community, a review has been presented which discusses the structure and the activity of numerous molecules exhibiting promising SARS-CoV-2 and other CoVs inhibition activities. Furthermore, this review offers an overview of the structure, a plausible mechanism of action of SARS-CoV-2, and crucial structural features substantial to inhibit the primary virus-based and host-based targets involved in SARS-CoV-2 treatment. We anticipate optimistically that this perspective will provide the reader and researcher’s better understanding regarding COVID-19 and pave the path in the direction of COVID-19 drug discovery and development paradigm.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|