1
|
Akbar S, Setia T, Das S, Kumari S, Rahaman SB, Wasim M, Ahmed B, Dewangan RP. Design, synthesis, and evaluation of 1,4-benzodioxane-hydrazone derivatives as potential therapeutics for skin cancer: In silico, in vitro, and in vivo studies. Bioorg Chem 2025; 160:108449. [PMID: 40220711 DOI: 10.1016/j.bioorg.2025.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
In the pursuit of novel chemotherapeutic agents for skin cancer, we synthesized a series of 1,4-benzodioxane-hydrazone derivatives (7a-l) using the Wolff-Kishner reaction. These compounds were initially screened against the NCI-60 oncological cell lines in a one-dose assay at 10 μM. Among them, compound 7e emerged as a potent inhibitor of cancer cell growth across 56 cell lines, with an average GI50 of 6.92 μM. Notably, it exhibited enhanced efficacy in melanoma cell lines, including MDA-MB-435, M14, SK-MEL-2, and UACC-62, with GI50 values of 0.20, 0.46, 0.57, and 0.27 μM, respectively. Apoptosis assay and cell cycle analysis studies revealed that compound 7e induced apoptosis and caused S-phase arrest in MDA-MB-435 cells. Furthermore, an in vitro enzyme inhibition assay against mTOR kinase yielded an IC50 of 5.47 μM, while molecular docking studies of compound 7e (docking score: -8.105 kcal/mol) supported its binding affinity. Compound 7e adhered to Lipinski's rule of five and displayed favourable ADMET properties. In vivo studies demonstrated its safety and efficacy in ameliorating skin cancer in a mice model when administered intraperitoneally at 20 mg/kg. Structure-activity relationships were established through in vitro, in vivo, molecular docking, and molecular dynamics analysis. Collectively, these findings highlight 1,4-benzodioxane-hydrazone derivatives as promising scaffold for the development of novel chemotherapeutic agents for skin cancer.
Collapse
Affiliation(s)
- Saleem Akbar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Tushar Setia
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shalini Kumari
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Sk Batin Rahaman
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Mohd Wasim
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India.
| | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India.
| |
Collapse
|
2
|
Xu G, Li L, Lv M, Li C, Yu J, Zeng X, Meng X, Yu G, Liu K, Cheng S, Luo H, Xu B. Discovery of novel 4-trifluoromethyl-2-anilinoquinoline derivatives as potential anti-cancer agents targeting SGK1. Mol Divers 2025; 29:1945-1965. [PMID: 39117890 DOI: 10.1007/s11030-024-10951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Given the critical necessity for the development of more potent anti-cancer drugs, a series of novel compounds incorporating trifluoromethyl groups within the privileged 2-anilinoquinoline scaffold was designed, synthesized, and subjected to biological evaluation through a pharmacophore hybridization strategy. Upon evaluating the in vitro anti-cancer characteristics of the target compounds, it became clear that compound 8b, which contains a (4-(piperazin-1-yl)phenyl)amino substitution at the 2-position of the quinoline skeleton, displayed superior efficacy against four cancer cell lines by inducing apoptosis and cell cycle arrest. Following research conducted in a PC3 xenograft mouse model, it was found that compound 8b exhibited significant anti-cancer efficacy while demonstrating minimal toxicity. Additionally, the analysis of a 217-kinase panel pinpointed SGK1 as a potential target for this compound class with anti-cancer capabilities. This finding was further verified through molecular docking analysis and cellular thermal shift assays. To conclude, our results emphasize that compound 8b can be used as a lead compound for the development of anti-cancer drugs that target SGK1.
Collapse
Affiliation(s)
- Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Lanlan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Mengfan Lv
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Cheng Li
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Xiaoping Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Xueling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China.
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China.
| |
Collapse
|
3
|
Saddik AA, Bakhite EA, Hassanien R, Farhan N, Sayed EM, Sharaky M. New 5, 6, 7, 8-Tetrahydro-Isoquinolines Bearing 2-Nitrophenyl Group Targeting RET Enzyme: Synthesis, Anticancer Activity, Apoptotic Induction and Cell Cycle Arrest. Chem Biodivers 2025; 22:e202402758. [PMID: 39607071 DOI: 10.1002/cbdv.202402758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
In this work, we synthesized new 5, 6, 7, 8-tetrahydroisoquinolines and 6, 7, 8, 9-tetrahydrothieno[2, 3-c]isoquinolines derivatives, and the structures of these new compounds were confirmed with different spectroscopic techniques. Furthermore, the anticancer activities of these compounds were assessed against eight tumor cell lines and one normal human skin fibroblast cell line (HSF). Subsequently, IC50 values of the synthesized compounds were determined for two specific cancer cell lines. Compound 3 exhibited the most potent antiproliferative activity against the HEPG2 cell line, whereas compound 9c demonstrated superior efficacy against the HCT116 cell line. Moreover, the mechanism of action for compound 3 on HEPG2 cells using flow cytometry and Annexin V-FITC apoptosis analysis was studied. Compound 3 caused cell cycle arrest at the G2/M with a 50-fold increase in apoptosis of the HEPG2 cell line. Finally, a molecular docking study was conducted to assess the inhibitory potential of compounds 3 and 7 against the RET enzyme. Results indicated that compounds 3 and 7 bind to the RET enzyme with binding energies of -5.2 and -5.6 kcal/mol, respectively. Although these values suggest inhibitory activity, they are less potent than the standard inhibitor, alectinib, which exhibits a binding energy of -7.2 kcal/mol.
Collapse
Affiliation(s)
- Abdelreheem A Saddik
- Chemistry Department, Faculty of Science, Assuit University, Assiut, Egypt
- Department of Materials Science and Engineering, National Yang-Ming Chiao Tung University (NYCU), Hsinchu, Taiwan
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assuit University, Assiut, Egypt
| | - Reda Hassanien
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Naseer Farhan
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Eman M Sayed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
- South Egypt Cancer Institute, Cancer Biology Depertment, Assuit University, Assiut, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Jahan S, Ikram M, Siraj S, Ullah S, Zakria M, Ahmad N. Emodin, a Potent Anthraquinone Mitigates MPTP-Induced Parkinsons' Disease Pathology by Regulating Nrf2 and Its Downstream Targets: In Silico and In Vivo Approach. Mol Neurobiol 2025:10.1007/s12035-025-04762-3. [PMID: 39976808 DOI: 10.1007/s12035-025-04762-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/08/2025] [Indexed: 05/28/2025]
Abstract
Parkinson's disease (PD) is marked by neurodegeneration that follows the destruction of dopaminergic neurons, mainly localized to the substantia nigra. It results in debilitating motor as well as non-motor symptoms. The current study investigated the neuroprotective potential of emodin, a naturally occurring anthraquinone derivative, in a well-established model of PD in mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The key focus is the Nrf2 signaling pathway, the major defense mechanism of the cells against oxidative damage and neuroinflammation, both exacerbated in the pathology of PD. Using molecular docking, the binding affinity of emodin to Nrf2 was predicted, revealing strong interactions that suggest emodin's potential to activate Nrf2. Subsequently, in vivo experiments were conducted where MPTP-induced PD mice were treated with emodin, and additional groups received Nrf2 modulators: dimethyl fumarate (DMF) as an agonist and all-trans retinoic acid (ATRA) as an antagonist. Emodin treatment led to a significant upregulation of Nrf2 expression, a reduction in oxidative stress markers such as malondialdehyde, and notable improvements in motor and cognitive behavior. DMF co-administration enhanced emodin's neuroprotective effects, whereas ATRA diminished them, highlighting the central role of Nrf2. These findings suggest that emodin effectively targets PD pathology via the Nrf2 pathway.
Collapse
Affiliation(s)
- Sarwat Jahan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
- Department of Pharmacology and Therapeutics, Northwest School of Medicine, Hayatabad, Peshawar, Pakistan
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan.
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| | - Sami Siraj
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shakir Ullah
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Zakria
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Nasir Ahmad
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
5
|
Elkamhawy A, Ammar UM, Kim M, Gul AR, Park TJ, Lee K. Discovery of novel naphthalene-based diarylamides as pan-Raf kinase inhibitors with promising anti-melanoma activity: rational design, synthesis, in vitro and in silico screening. Arch Pharm Res 2025; 48:150-165. [PMID: 39920399 PMCID: PMC11861015 DOI: 10.1007/s12272-025-01533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Raf kinase enzymes are often dysregulated in melanoma. While sorafenib demonstrates strong activity against wild-type B-Raf, it fails to effectively inhibit the mutated form of B-Raf. In this study, sorafenib served as a lead compound for the development of new derivatives designed to enhance inhibitory activity across multiple Raf isoforms (pan-Raf inhibitors). Novel naphthalene-based diarylamide derivatives were subsequently designed, synthesized, and evaluated for their biological activity against various Raf kinase isoforms and the melanoma A375 cell line. Among these, compound 9a, containing a difluoromethoxy group, demonstrated strong inhibitory activity across B-RafWT, B-RafV600E, and c-Raf. Additionally, it induced G2/M phase arrest and triggered dose-dependent apoptosis, effectively suppressing both cell proliferation and survival. Compound 9a also exhibited high selectivity for Raf isoforms with minimal off-target effects, underscoring its specificity and therapeutic potential for Raf-driven malignancies.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Usama M Ammar
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, 9 Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Minkyoung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Anam Rana Gul
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
6
|
Hashem O, Shahin AI, Al Hindawi MA, Fageeri MF, Al-Sbbagh SA, Tarazi H, El-Gamal MI. An overview of RAF kinases and their inhibitors (2019-2023). Eur J Med Chem 2024; 275:116631. [PMID: 38954961 DOI: 10.1016/j.ejmech.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Protein kinases (PKs) including RAF, perform a principal role in regulating countless cellular events such as cell growth, differentiation, and angiogenesis. Overexpression and mutation of RAF kinases are significant contributors to the development and spread of cancer. Therefore, RAF kinase inhibitors show promising outcomes as anti-cancer small molecules by suppressing the expression of RAF protein, blocking RAS/RAF interaction, or inhibiting RAF enzymes. Currently, there are insufficient reports about approving drugs with minimal degree of toxicity. Therefore, it is an urgent need to develop new RAF kinase inhibitors correlated with increased anticancer activity and lower cytotoxicity. This review outlines reported RAF kinase inhibitors for cancer treatment in patents and literature from 2019 to 2023. It highlights the available inhibitors by shedding light on their chemical structures, biochemical profiles, and current status. Additionally, we highlighted the hinge region-binding moiety of the reported compounds by showing the hydrogen bond patterns of representative inhibitors with the hinge region for each class. In recent years, RAF kinase inhibitors have gained considerable attention in cancer research and drug development due to their potential to be studied under clinical trials and their demonstration of various degrees of efficacy and safety profiles across different cancer types. However, addressing challenges related to drug resistance and safety represents a major avenue for the optimization and enhancement of RAF kinase inhibitors. Strategies to overcome such obstacles were discussed such as developing novel pan-RAF inhibitors, RAF dimer inhibitors, and combination treatments.
Collapse
Affiliation(s)
- Omar Hashem
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Afnan I Shahin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Manar A Al Hindawi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed F Fageeri
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saif A Al-Sbbagh
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP. An updated literature on BRAF inhibitors (2018-2023). Mol Divers 2024; 28:2689-2730. [PMID: 37470921 DOI: 10.1007/s11030-023-10699-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors.
Collapse
Affiliation(s)
- Lalmohan Maji
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
8
|
El-Damasy AK, Jin H, Park JW, Kim HJ, Khojah H, Seo SH, Lee JH, Bang EK, Keum G. Overcoming the imatinib-resistant BCR-ABL mutants with new ureidobenzothiazole chemotypes endowed with potent and broad-spectrum anticancer activity. J Enzyme Inhib Med Chem 2023; 38:2189097. [PMID: 36927348 PMCID: PMC10026764 DOI: 10.1080/14756366.2023.2189097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The design of kinase inhibitors targeting the oncogenic kinase BCR-ABL constitutes a promising paradigm for treating chronic myeloid leukaemia (CML). Nevertheless, the efficacy of imatinib, the first FDA-approved targeted therapy for CML, is curbed by the emergence of resistance. Herein, we report the identification of the 2-methoxyphenyl ureidobenzothiazole AK-HW-90 (2b) as a potent pan-BCR-ABL inhibitor against imatinib-resistant mutants, particularly T315I. A concise array of six compounds 2a-f was designed based on our previously reported benzothiazole lead AKE-5l to improve its BCR-ABLT315I inhibitory activity. Replacing the 6-oxypicolinamide moiety of AKE-5l with o-methoxyphenyl and changing the propyl spacer with phenyl afforded 2a and AK-HW-90 (2b) with IC50 values of 2.0 and 0.65 nM against BCR-ABLT315I, respectively. AK-HW-90 showed superior anticancer potency to imatinib against multiple cancer cells (NCI), including leukaemia K-562. The obtained outcomes offer AK-HW-90 as a promising candidate for the treatment of CML and other types of cancer.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heewon Jin
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jung Woo Park
- Center for Supercomputing Applications, Div. of National Supercomputing R&D, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Hyun Ji Kim
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hanan Khojah
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Seon Hee Seo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ju-Hyeon Lee
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
9
|
Singh A, Sonawane P, Kumar A, Singh H, Naumovich V, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022. ACS OMEGA 2023; 8:27819-27844. [PMID: 37576670 PMCID: PMC10413849 DOI: 10.1021/acsomega.3c00332] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 08/15/2023]
Abstract
Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and αC-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants.
Collapse
Affiliation(s)
- Ankit
Kumar Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pankaj Sonawane
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Adarsh Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vladislav Naumovich
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Prateek Pathak
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Maria Grishina
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Habibullah Khalilullah
- Department
of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of
Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative and Red Sea Research Center, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Amita Verma
- Bioorganic
and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical
Sciences, Sam Higginbottom University of
Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Pradeep Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
10
|
Kim HJ, Park JW, Seo S, Cho KH, Alanazi MM, Bang EK, Keum G, El-Damasy AK. Discovery of New Quinolone-Based Diarylamides as Potent B-RAF V600E/C-RAF Kinase Inhibitors Endowed with Promising In Vitro Anticancer Activity. Int J Mol Sci 2023; 24:ijms24043216. [PMID: 36834628 PMCID: PMC9963398 DOI: 10.3390/ijms24043216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The emergence of cancer resistance to targeted therapy represents a significant challenge in cancer treatment. Therefore, identifying new anticancer candidates, particularly those addressing oncogenic mutants, is an urgent medical demand. A campaign of structural modifications has been conducted to further optimize our previously reported 2-anilinoquinoline-diarylamides conjugate VII as a B-RAFV600E/C-RAF inhibitor. Considering the incorporation of a methylene bridge between the terminal phenyl and cyclic diamine, focused quinoline-based arylamides have been tailored, synthesized, and biologically evaluated. Among them, the 5/6-hydroxyquinolines 17b and 18a stood out as the most potent members, with IC50 values of 0.128 µM, 0.114 µM against B-RAFV600E, and 0.0653 µM, 0.0676 µM against C-RAF. Most importantly, 17b elicited remarkable inhibitory potency against the clinically resistant B-RAFV600K mutant with an IC50 value of 0.0616 µM. The putative binding mode of 17b and 18a were studied by molecular docking and molecular dynamics (MD). Moreover, the antiproliferative activity of all target compounds has been examined over a panel of NCI-60 human cancer cell lines. In agreement with cell-free assays, the designed compounds exerted superior anticancer impact over the lead quinoline VII against all cell lines at a 10 µM dose. Notably, both 17b and 18b showed highly potent antiproliferative activity against melanoma cell lines with growth percent under -90% (SK-MEL-29, SK-MEL-5, and UACC-62) at a single dose, while 17b maintained potency with GI50 values of 1.60-1.89 µM against melanoma cell lines. Taken together, 17b, a promising B-RAFV600E/V600K and C-RAF kinase inhibitor, may serve as a valuable candidate in the arsenal of anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Hyun Ji Kim
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Woo Park
- Supercomputing Application Center, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
| | - Sangjae Seo
- Supercomputing Application Center, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11421, Saudi Arabia
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
- Correspondence: (G.K.); (A.K.E.-D.)
| | - Ashraf K. El-Damasy
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Correspondence: (G.K.); (A.K.E.-D.)
| |
Collapse
|
11
|
Ilakiyalakshmi M, Arumugam Napoleon A. Review on recent development of quinoline for anticancer activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104168] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Kozyra P, Krasowska D, Pitucha M. New Potential Agents for Malignant Melanoma Treatment-Most Recent Studies 2020-2022. Int J Mol Sci 2022; 23:6084. [PMID: 35682764 PMCID: PMC9180979 DOI: 10.3390/ijms23116084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Pediatric Dermatology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
13
|
Mohammed HHH, Abd El-Hafeez AA, Ebeid K, Mekkawy AI, Abourehab MAS, Wafa EI, Alhaj-Suliman SO, Salem AK, Ghosh P, Abuo-Rahma GEDA, Hayallah AM, Abbas SH. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J Enzyme Inhib Med Chem 2022; 37:1346-1363. [PMID: 35548854 PMCID: PMC9116245 DOI: 10.1080/14756366.2022.2072308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Cancer Biology Department, Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Kareem Ebeid
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA.,Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
14
|
Kumar N, Goel N. Recent development of imidazole derivatives as potential anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Cancer, one of the key health problems globally, is a group of related diseases that share a number of characteristics primarily the uncontrolled growth and invasive to surrounding tissues. Chemotherapy is one of the ways for the treatment of cancer which uses one or more anticancer agents as per chemotherapy regimen. Limitations of most anticancer drugs due to a variety of reasons such as serious side effects, drug resistance, lack of sensitivity and efficacy etc. generate the necessity towards the designing of novel anticancer lead molecules. In this regard, the synthesis of biologically active heterocyclic molecules is an appealing research area. Among heterocyclic compounds, nitrogen containing heterocyclic molecules has fascinated tremendous consideration due to broad range of pharmaceutical activity. Imidazoles, extensively present in natural products as well as synthetic molecules, have two nitrogen atoms, and are five membered heterocyclic rings. Because of their countless physiological and pharmacological characteristics, medicinal chemists are enthused to design and synthesize new imidazole derivatives with improved pharmacodynamic and pharmacokinetic properties. The aim of this present chapter is to discuss the synthesis, chemistry, pharmacological activity, and scope of imidazole-based molecules in anticancer drug development. Finally, we have discussed the current challenges and future perspectives of imidazole-based derivatives in anticancer drug development.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore , Madhya Pradesh 453552 , India
| | - Nidhi Goel
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
15
|
Huo X, Ma Y, Chen Z, Yuan L, Zheng X, Li X, Fengting, Liang, You W, Zhao P. One‐Pot, Multi‐Component Synthesis of Novel 2‐Amino‐[1,2,4]triazolo[1,5‐
a
]pyrimidine‐6‐carboxamide Derivatives as Antiproliferative Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiansen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Yufeng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Zhiru Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Lili Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Xiaolan Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Xiongli Li
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Fengting
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Liang
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Wenwei You
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| |
Collapse
|
16
|
Omidkhah N, Ghodsi R. Synthesis of novel 2-methyl-4-carboxyquinolines, the new by-products of the Doebner reaction. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1912770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|