1
|
Chen C, Hao Z, Chen J, Li S, Su Y, Jiang S, Ma L, Lv H, Pei X, Zhang P, Wang H, Yang G. Design, synthesis, and biological evaluation of C-12 modified ocotillol-type derivatives as novel P-glycoprotein modulators for overcoming multidrug resistance. Eur J Med Chem 2025; 294:117757. [PMID: 40382839 DOI: 10.1016/j.ejmech.2025.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Ocotillol-type ginsenoside derivatives exhibit significant potential as modulators of P-glycoprotein (Pgp). To date, structural investigations of Ocotillol-type saponins have predominantly focused on modifications at the C-3 position of the A-ring, with limited exploration of the C-12 position on the C-ring. In this study, we designed and synthesized a series of C-12 modified ocotillol-type derivatives and assessed their efficacy in reversing multidrug resistance (MDR) in KBV cells. Most of the newly synthesized derivatives exhibited minimal cytotoxicity and potent MDR reversal capabilities. Notably, compound 9e emerged as the most effective agent in reversing tumor MDR in vitro, showing more than twice the potency of verapamil. Furthermore, 9e displayed high selectivity for Pgp, being 40- and 20-fold more effective than verapamil in inhibiting Rh123 efflux and enhancing doxorubicin sensitivity, respectively. Molecular docking analysis revealed that 9e possesses a unique T-shaped configuration that occupies the access channel of Pgp, obstructing the peristaltic extrusion mechanism of TM12 and TM9, thereby inhibiting the efflux function of Pgp. Overall, 9e represents a promising lead compound for the development of novel Pgp modulators to overcome MDR in cancer therapy.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ziqian Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Jiaxuan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yongyuan Su
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Suwei Jiang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Lin Ma
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hanqi Lv
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xinjie Pei
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Ma RF, Wu Q, Liu H, Zhao XC, Song H, Zhang H. Lathyrane diterpenoids with multidrug resistance reversal activity from the tubers of Euphorbia antiquorum. PHYTOCHEMISTRY 2024; 228:114233. [PMID: 39111380 DOI: 10.1016/j.phytochem.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Nine previously unreported lathyrane diterpenoids named euphorantesters A-I, along with 16 known analogues, have been separated from the tubers of Euphorbia antiquorum. Their structures were established by means of spectroscopic analyses, time-dependent density functional theory based electronic circular dichroism calculation and single crystal X-ray crystallography. Their reversal ability against P-glycoprotein-mediated multidrug resistance (MDR) in MCF-7/ADR cell line was then evaluated, and 15 ones exhibited moderate MDR reversal activity with reversal fold falling in the range of 1.12-13.15. The most active euphorantester B could effectively increase the sensitivity of MCF-7/ADR cell to adriamycin comparably to the reference drug verapamil.
Collapse
Affiliation(s)
- Ren-Fen Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qian Wu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Hu Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xue-Chun Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Hui Song
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
3
|
Yu L, Ren R, Li S, Zhang C, Chen C, Lv H, Zou Z, Pei X, Song Z, Zhang P, Wang H, Yang G. Novel pyxinol amide derivatives bearing an aliphatic heterocycle as P-glycoprotein modulators for overcoming multidrug resistance. Eur J Med Chem 2024; 272:116466. [PMID: 38704938 DOI: 10.1016/j.ejmech.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.
Collapse
Affiliation(s)
- Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruiyin Ren
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Cheng Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hanqi Lv
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zongji Zou
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xinjie Pei
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
4
|
Tan S, Zou Z, Luan X, Chen C, Li S, Zhang Z, Quan M, Li X, Zhu W, Yang G. Synthesis, Anti-Inflammatory Activities, and Molecular Docking Study of Novel Pyxinol Derivatives as Inhibitors of NF-κB Activation. Molecules 2024; 29:1711. [PMID: 38675532 PMCID: PMC11052049 DOI: 10.3390/molecules29081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pyxinol, an active metabolite of ginsenosides in human hepatocytes, exhibits various pharmacological activities. Here, a series of C-3 modified pyxinol derivatives was designed and virtually screened by molecular docking with the key inflammation-related proteins of the nuclear factor kappa B (NF-κB) pathway. Some of the novel derivatives were synthesized to assess their effects in inhibiting the production of nitric oxide (NO) and mitochondrial reactive oxygen species (MtROS) in lipopolysaccharide-triggered RAW264.7 cells. Derivative 2c exhibited the highest NO and MtROS inhibitory activities with low cytotoxicity. Furthermore, 2c decreased the protein levels of interleukin 1β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2 and suppressed the activation of NF-κB signaling. Cellular thermal shift assays indicated that 2c could directly bind with p65 and p50 in situ. Molecular docking revealed that 2c's binding to the p65-p50 heterodimer and p50 homodimer was close to their DNA binding sites. In summary, pyxinol derivatives possess potential for development as NF-κB inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (S.T.); (Z.Z.); (X.L.); (C.C.); (S.L.); (Z.Z.); (M.Q.); (X.L.)
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (S.T.); (Z.Z.); (X.L.); (C.C.); (S.L.); (Z.Z.); (M.Q.); (X.L.)
| |
Collapse
|
5
|
Zhao X, Di J, Luo D, Vaishnav Y, Kamal, Nuralieva N, Verma D, Verma P, Verma S. Recent developments of P-glycoprotein inhibitors and its structure-activity relationship (SAR) studies. Bioorg Chem 2024; 143:106997. [PMID: 38029569 DOI: 10.1016/j.bioorg.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
P-glycoprotein (P-gp) over-expression is a key factor in multi-drug resistance (MDR), which is a major factor in the failure of cancer treatment. P-gp inhibitors have been demonstrated to have powerful pharmacological properties and may be used as a therapeutic approach to overcome the MDR in cancer cells. Combining clinical investigations with biochemical and computational research may potentially lead to a clearer understanding of the pharmacological properties and the mechanisms of action of these P-gp inhibitors. The task of turning these discoveries into effective therapeutic candidates for a variety of malignancies, including resistant and metastatic kinds, falls on medicinal chemists. A variety of P-gp inhibitors with great potency, high selectivity, and minimal toxicity have been identified in recent years. The latest advances in drug design, characterization, structure-activity relationship (SAR) research, and modes of action of newly synthesized, powerful small molecules P-gp inhibitors over the previous ten years are highlighted in this review. P-gp transporter over-expression has been linked to MDR, therefore the development of P-gp inhibitors will expand our understanding of the processes and functions of P-gp-mediated drug efflux, which will be helpful for drug discovery and clinical cancer therapies.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Nargiza Nuralieva
- School of Education, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Deepti Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Payal Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shekhar Verma
- University College of Pharmacy Raipur, Chhattisgarh Swami Vivekananda Technical University, Newai, Bhilai 491107, Chhattisgarh, India.
| |
Collapse
|
6
|
Yang G, Liu S, Zhang C, Yu L, Zou Z, Wang C, Gao M, Li S, Ma Y, Xu R, Song Z, Liu R, Wang H. Discovery of Pyxinol Amide Derivatives Bearing Amino Acid Residues as Nonsubstrate Allosteric Inhibitors of P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2023. [PMID: 37332162 DOI: 10.1021/acs.jmedchem.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Nonsubstrate allosteric inhibitors of P-glycoprotein (Pgp), which are considered promising modulators for overcoming multidrug resistance (MDR), are relatively unknown. Herein, we designed and synthesized amino acids bearing amide derivatives of pyxinol, the main ginsenoside metabolite produced by the human liver, and examined their MDR reversal abilities. A potential nonsubstrate inhibitor (7a) was identified to undergo high-affinity binding to the putative allosteric site of Pgp at the nucleotide-binding domains. Subsequent assays confirmed that 7a (25 μM) was able to suppress both basal and verapamil-stimulated Pgp-ATPase activities (inhibition rates of 87 and 60%, respectively) and could not be pumped out by Pgp, indicating that it was a rare nonsubstrate allosteric inhibitor. Moreover, 7a interfered with Pgp-mediated Rhodamine123 efflux while exhibiting high selectivity for Pgp. Notably, 7a also markedly enhanced the therapeutic efficacy of paclitaxel, with a tumor inhibition ratio of 58.1%, when used to treat nude mice bearing KBV xenograft tumors.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zongji Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghui Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yiqi Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhihua Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
7
|
Yedla P, Babalghith AO, Andra VV, Syed R. PROTACs in the Management of Prostate Cancer. Molecules 2023; 28:molecules28093698. [PMID: 37175108 PMCID: PMC10179857 DOI: 10.3390/molecules28093698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer treatments with targeted therapy have gained immense interest due to their low levels of toxicity and high selectivity. Proteolysis-Targeting Chimeras (PROTACs) have drawn special attention in the development of cancer therapeutics owing to their unique mechanism of action, their ability to target undruggable proteins, and their focused target engagement. PROTACs selectively degrade the target protein through the ubiquitin-proteasome system, which describes a different mode of action compared to conventional small-molecule inhibitors or even antibodies. Among different cancer types, prostate cancer (PC) is the most prevalent non-cutaneous cancer in men. Genetic alterations and the overexpression of several genes, such as FOXA1, AR, PTEN, RB1, TP53, etc., suppress the immune response, resulting in drug resistance to conventional drugs in prostate cancer. Since the progression of ARV-110 (PROTAC for PC) into clinical phases, the focus of research has quickly shifted to protein degraders targeting prostate cancer. The present review highlights an overview of PROTACs in prostate cancer and their superiority over conventional inhibitors. We also delve into the underlying pathophysiology of the disease and explain the structural design and linkerology strategies for PROTAC molecules. Additionally, we touch on the various targets for PROTAC in prostate cancer, including the androgen receptor (AR) and other critical oncoproteins, and discuss the future prospects and challenges in this field.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology Hospitals, Gachibowli, Hyderabad 500082, India
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Vindhya Vasini Andra
- Department of Medical Oncology, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| | - Riyaz Syed
- Department of Chemiinformatics, Centella Scientific, JHUB, Jawaharlal Nehru Technological University, Hyderabad 500085, India
| |
Collapse
|
8
|
Yang G, Mi X, Wang Y, Li S, Yu L, Huang X, Tan S, Yu H. Fusion of Michael-acceptors enhances the anti-inflammatory activity of ginsenosides as potential modulators of the NLRP3 signaling pathway. Bioorg Chem 2023; 134:106467. [PMID: 36933337 DOI: 10.1016/j.bioorg.2023.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Ginsenosides are a promising group of secondary metabolites for developing anti-inflammatory agents. In this study, Michael acceptor was fused into the aglycone A-ring of protopanoxadiol (PPD)-type ginsenosides (MAAG), the main pharmacophore of ginseng, and its liver metabolites to produce novel derivatives and assess their anti-inflammatory activity in vitro. The structure-activity relationship of MAAG derivatives was assessed based on their NO-inhibition activities. Of these, a 4-nitrobenzylidene derivative of PPD (2a) was the most effective and dose-dependently inhibited the release of proinflammatory cytokines. Further studies indicated that 2a-induced downregulation on lipopolysaccharide (LPS)-induced iNOS protein expression and cytokine release may be related to its inhibitory effect on MAPK and NF-κB signaling pathways. Importantly, 2a almost completely inhibited LPS-induced production of mitochondrial reactive oxygen species (mtROS) and LPS-induced NLRP3 upregulation. This inhibition was higher than that by hydrocortisone sodium succinate, a glucocorticoid drug. Overall, the fusion of Michael acceptors into the aglycone of ginsenosides greatly enhanced the anti-inflammatory activities of the derivatives, and 2a alleviated inflammation considerably. These findings could be attributed to the inhibition of LPS-induced mtROS to block abnormal activation of the NLRP3 pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Xiaoliang Mi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yunxiao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xinru Huang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuai Tan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
9
|
Yang G, Xie H, Wang C, Zhang C, Yu L, Zhang L, Liu X, Xu R, Song Z, Liu R, Ueda M. Design, synthesis, and discovery of Eudistomin Y derivatives as lysosome-targeted antiproliferation agents. Eur J Med Chem 2023; 250:115193. [PMID: 36774698 DOI: 10.1016/j.ejmech.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Eudistomin Y is a novel class of β-carbolines of marine origin with potential antiproliferation activity against MDA-MB-231 cells (triple-negative breast carcinoma). However, the subcellular target or the detailed mechanism against cancer cell proliferation has not yet been identified. In this study, based on its special structure, a novel series of Eudistomin Y fluorescent derivatives were designed and synthesized by enhancing the electron-donor effect of N-9 to endow it with fluorescent properties through N-alkylation. The structure-activity relationships against the proliferation of cancer cells were also analyzed. A quarter of Eudistomin Y derivatives showed much higher potency against cancer cell proliferation than the original Eudistomin Y1. Fluorescent derivative H1k with robust antiproliferative activity could arrest MDA-MB-231 cells in the G2-M phase. The subcellular localization studies of the probes, including H1k, and Eudistomin Y1 were performed in MDA-MB-231 cells, and the co-localization and competitive inhibition assays revealed their lysosome-specific localization. Moreover, H1k could dose-dependently increase the autophagy signal and downregulate the expression of cyclin-dependent kinase (CDK1) and cyclin B1 which principally regulated the G2-M transition. Furthermore, the specific autophagy inhibitor 3-methyladenine significantly inhibited the H1k-triggered antiproliferation of cancer cells and the downregulation of CDK1 and cyclin B1. Overall, the lysosome is identified as the subcellular target of Eudistomin Y for the first time, and derivative H1k showed robust antiproliferative activity against MDA-MB-231 cells by decreasing Cyclin B1-CDK1 complex via a lysosome-dependent pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Hao Xie
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Conghui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Luyu Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xin Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Rongxia Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Wang Y, Mi X, Du Y, Li S, Yu L, Gao M, Yang X, Song Z, Yu H, Yang G. Design, Synthesis, and Anti-Inflammatory Activities of 12-Dehydropyxinol Derivatives. Molecules 2023; 28:molecules28031307. [PMID: 36770974 PMCID: PMC9921557 DOI: 10.3390/molecules28031307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Pyxinol skeleton is a promising framework of anti-inflammatory agents formed in the human liver from 20S-protopanaxadiol, the main active aglycone of ginsenosides. In the present study, a new series of amino acid-containing derivatives were produced from 12-dehydropyxinol, a pyxinol oxidation metabolite, and its anti-inflammatory activity was assessed using an NO inhibition assay. Interestingly, the dehydrogenation at C-12 of pyxinol derivatives improved their potency greatly. Furthermore, half of the derivatives exhibited better NO inhibitory activity than hydrocortisone sodium succinate, a glucocorticoid drug. The structure-activity relationship analysis indicated that the kinds of amino acid residues and their hydrophilicity influenced the activity to a great extent, as did R/S stereochemistry at C-24. Of the various derivatives, 5c with an N-Boc-protected phenylalanine residue showed the highest NO inhibitory activity and relatively low cytotoxicity. Moreover, derivative 5c could dose-dependently suppress iNOS, IL-1β, and TNF-α via the MAPK and NF-κB pathways, but not the GR pathway. Overall, pyxinol derivatives hold potential for application as anti-inflammatory agents.
Collapse
Affiliation(s)
- Yunxiao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xiaoliang Mi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yuan Du
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xiaoyue Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China
- Correspondence: (H.Y.); (G.Y.)
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
- Correspondence: (H.Y.); (G.Y.)
| |
Collapse
|
11
|
Shah D, Ajazuddin, Bhattacharya S. Role of natural P-gp inhibitor in the effective delivery for chemotherapeutic agents. J Cancer Res Clin Oncol 2023; 149:367-391. [PMID: 36269390 DOI: 10.1007/s00432-022-04387-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023]
Abstract
Multi-drug resistance has shown to be one of the leading threats faced currently in many chemotherapeutic agents. Permeability glycoprotein (P-gp) is an efflux transporter in membrane, an integral part of ATP-binding cassette (ABC) transporters widely distributed in the body for cellular uptake. It is present enormously in cancerous cells and is in charge of generating transporter mediated resistance to treatments of tumorous cells in addition to blocking the entry of chemotherapeutic drugs into the cell. Natural P-gp inhibitors are derived from natural plant sources possessing basic structures like alkaloids, flavonoids, phenolics, terpenoids, saponins, sapogenins, sterols, coumarins and miscellaneous structures acting on P-gp substrate for inhibition of multi-drug resistance via inhibiting the efflux pump. They do not depict their action on the healthy cells and thus it is proven to be more effective and less toxic than synthetic P-gp inhibitor leading to enhancement in bioavailability of chemotherapeutic drugs. The significant objective of the present review is surfing through the impact of natural P-gp inhibitors having basic structures derived from the plant sources and how it inhibits the resistance of chemotherapeutic drugs together with how well it delivers chemotherapy medicines.
Collapse
Affiliation(s)
- Disha Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
12
|
Discovery of a novel highly potent and low-toxic jatrophane derivative enhancing the P-glycoprotein-mediated doxorubicin sensitivity of MCF-7/ADR cells. Eur J Med Chem 2022; 244:114822. [DOI: 10.1016/j.ejmech.2022.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
|
13
|
Design, synthesis, and biological evaluation of ocotillol derivatives fused with 2-aminothiazole via A-ring as modulators of P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2022; 243:114784. [PMID: 36167009 DOI: 10.1016/j.ejmech.2022.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]
Abstract
Overexpression of P-glycoprotein (P-gp) plays a key role in the development of multidrug resistance (MDR), the major reason for the failure of chemotherapy in clinics. Ocotillol and its derivatives had been reported with good P-gp-mediated tumor MDR reversal activity in vitro. Herein, a series of ocotillol derivatives fused with 2-aminothiazole (2-AT) via A-ring were designed and synthesized to further improve the tumor MDR reversal potency. These compounds were evaluated for their MDR reversal activity against the KBV cells by MTT assay. Among them, the most promising derivative against P-gp-mediated MDR was compound 12 with 2-AT and glycine in the A-ring. Rhodamine123 (Rh123) accumulation assay, Western blot assay, and P-gp-Glo™ assay showed that compound 12 efficiently inhibited the efflux function of P-gp by stimulating P-gp ATPase rather than downregulating its expression. Moreover, compound 12 sensitized KBV cells to paclitaxel arrested cells in the G2/M phase and induced cell apoptosis. Importantly, compound 12 significantly inhibited the growth of KBV cell-derived xenograft tumors in nude mice by increasing the sensitivity of paclitaxel in vivo. Finally, the structure-activity relationships (SARs) of ocotillol derivatives were further investigated. In summary, compound 12 has the potential to overcome MDR in cancer caused by P-gp.
Collapse
|
14
|
Han L, Liu J, Yang Y, Zhang H, Gao L, Li Y, Chang S, Sun X. Pseudo-sapogenin DQ 3-mimaleate acid derivative induces ovarian carcinoma cell apoptosis via mitochondrial pathway. Chem Pharm Bull (Tokyo) 2022; 70:427-434. [PMID: 35418544 DOI: 10.1248/cpb.c21-01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, four novel ginsenosides fatty acid and aromatic acid derivatives were designed and synthesized, and their cytotoxic effects on human ovarian carcinoma cells (SKOV3) were assessed using the MTT assay. The results demonstrated that all derivatives inhibited SKOV3 cell growth, and Compound 3 showed the most outstanding anti-proliferative effect on SKOV3 cells. The IC50 value of Compound 3 was 33.8 ± 2.21 μM, less than half of that of cis-platinum (70.1 ± 7.64 μM). Subsequent analysis revealed that Compound 3 could promote SKOV3 cell apoptosis, and the percentage of apoptotic cell population increased with increasing Compound 3 concentrations. In addition, the expression ratios of Bax/Bcl-2, cleaved-Caspase-3/Caspase-3 and cleaved-Caspase-9/Caspase-9 were gradually elevated in Compound 3-treated SKOV3 cells compared with control cells. Furthermore, translocation of Bax to mitochondria was associated with the release of Cytochrome C. Molecular docking analysis revealed three hydrogen-bonds existed in Compound 3 with PARP receptor (PDB code: 5DSY), which may be the target of the anti-ovarian cancer effect of Compound 3. Altogether, our study indicates that Compound 3 induces SKOV3 cell apoptosis via ROS-dependent mitochondrial pathway, and can serve as an anti-cancer agent for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Liu Han
- College of pharmacy, Jilin Medical University
| | - Jiahuan Liu
- College of pharmacy, Jilin Medical University
| | - Yuxin Yang
- College of pharmacy, Jilin Medical University
| | | | | | - Yawei Li
- College of pharmacy, Jilin Medical University
| | - Sheng Chang
- College of pharmacy, Jilin Medical University
| | - Xin Sun
- College of pharmacy, Jilin Medical University
| |
Collapse
|
15
|
Huang W, Wang Y, Xu S, Qiao H, Cheng H, Wang L, Liu S, Tian Q, Wang R, Wang H, Bi Y. Design, synthesis, and tumor drug resistance reversal activity of novel hederagenin derivatives modified by nitrogen-containing heterocycles. Eur J Med Chem 2022; 232:114207. [DOI: 10.1016/j.ejmech.2022.114207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|